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Abstract: Traditional image steganography needs to modify or be embedded into the cover image
for transmitting secret messages. However, the distortion of the cover image can be easily detected
by steganalysis tools which lead the leakage of the secret message. So coverless steganography has
become a topic of research in recent years, which has the advantage of hiding secret messages without
modification. But current coverless steganography still has problems such as low capacity and poor
quality .To solve these problems, we use a generative adversarial network (GAN), an effective deep
learning framework, to encode secret messages into the cover image and optimize the quality of the
steganographic image by adversaring. Experiments show that our model not only achieves a payload
of 2.36 bits per pixel, but also successfully escapes the detection of steganalysis tools.

Keywords: coverless steganography; deep learning; generative adversarial network

1. Introduction

Since the invention of the Internet, technology has developed rapidly. The emergence of
multimedia information such as images, audio and video has brought convenience to society [1]
but it has also resulted in the illegal wiretapping, interception, tampering or destruction of important
and sensitive information related to politics, military, finance and business, bringing huge losses to
society. Therefore, information hiding technology has emerged [2,3]. With the development of this
technology, the corresponding steganographic detection technology has also evolved. The traditional
approaches, which adopt artifacts, tend to be easily detected by automated steganalysis tools and, in
extreme cases, by human eyes, which poses the challenge of information hiding.

To solve this problem, researchers proposed a new information hiding
method—coverless steganography—in 2015. Compared with the traditional approaches, which need
to adopt the specified cover image for embedding the secret data, such as Highly Undetectable SteGO
(HUGO) and JPEG compression [4–7], the coverless steganography no longer modifies the cover
images, which is why it is called coverless. It is achieved by means of mapping with secret information.
Even if the image is intercepted, it is hard to detect the presence of a message. Therefore, coverless
steganography can naturally resist steganalysis tools. At present, existing coverless steganography
is divided into two categories according to the steganographic principle—mapping-based [8,9] and
synthetic-based methods [10]. The coverless image steganography based on mapping rules was first
proposed by Zhou [11]. Each image represented an 8-bit pixel and was divided into nine blocks,
and the feature sequence was calculated from the relationship between the mean values of adjacent
block pixels. Zheng et al. [12] proposed an image steganography algorithm based on invariant features
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(SIFT). Unlike Zhou, Zheng used feature sequences generated by SIFT features, which enhanced
the robustness of the system. Recently, Zhou et al. [13] proposed a method based on SIFT and
Bag-of-Features (BOF). Compared with Reference [11], this method can better resist rotation, zoom,
brightness change and other attacks, but the ability to resist translation, filter and shear is still limited.

The instance-based texture synthesis algorithm is a hotspot of current texture synthesis algorithms,
which synthesizes new texture images by resampling the original images. The new texture image
can be of any size, and its local appearance is similar to the original image. Otori [14,15] and others
pioneered a steganographic algorithm based on pixel-based texture synthesis. First, they encoded
the secret information into a colored dot pattern and then automatically draw a pattern from the
sample image on the coat texture image to mask its existence and natural texture mode. Wu et al. [16]
proposed an image steganography algorithm based on patch texture synthesis. Firstly, an overlap
area will be generated during the synthesis process, and the mean square error of the overlap area
and the candidate block will be calculated so as to sort the candidate blocks. Finally, the candidate
blocks identical to the secret information sequence number are synthesized into the overlapping area
to hide the secret information. However, if the method needs to hide more information, the hidden
ability will drop. Inspired by the the marble deformation texture synthesis algorithm, Xu et al. [17]
proposed a reconfigurable image steganography algorithm based on texture deformation. In order
to hide the secret information, the secret image is reversibly twisted to synthesize different marble
textures, but the robustness of the algorithm is limited.

Coverless information hiding is still a relatively new field. Compared with other information
hiding technologies, its theoretical research and technical maturity still have some gaps, and there
are still some problems such as low hiding capacity and efficiency. With the advent of deep
learning [18–20], a new method of image steganography approaches is emerging [21–24]. The first set
of deep learning approaches to steganography were from Baluja [22]. They used neural networks to
combine a cover image and a secret message into a steganographic images but their images showed
a strong spatial correlations, and convolutional neural network (CNN) training will use this feature
to hide images in the images. So, the model trained in this way cannot be applied to arbitrary data.
The emergence of generative adversarial networks (GANs)[25] has provided new approaches to
achieving image steganography.

We propose a novel approach which uses CNN and GAN to achieve coverless steganography.
Our work makes the following contributions:

(1) We propose a method of using GAN to complete steganography tasks, whose relative payload is
2.36 bits per pixel.

(2) We propose a measurement method to evaluate the image quality of the steganography algorithm
based on deep learning, which can be compared with traditional methods.

The rest of the paper is organized as follows—Section 2 briefly describes the image steganography
based on GAN. We elaborate on the details of our method in Section 3. Finally, Section 4 contains our
experimental results, followed by conclusions in Section 5.

2. Image Steganography Based on GAN

At present, GAN has been applied for image steganography as follows—Volkhonskiy et al. [26]
first proposed the Steganographic GAN (SGAN). SGAN adopted deep GAN [27], which accounted for
not only the authenticity of the generated images but also the resistance to the detection. Based on
SGAN, Shi [28] proposed SSGAN . The model structure of SSGAN was similar to that of SGAN,
but Wasserstein GAN [29] was adopted as the network structure, which had a faster training speed and
higher image quality. The above two networks used a GAN network to generate cover images, while the
Hayes GAN model proposed by Hayes et al. [21] used adversarial learning to directly generate dense
images. Zhu et al. [23] put forward another method of generating hiding data with deep networks by
referring to Hayes GAN’s structure. It is characterized by the robustness of an adversarial sample to



Mathematics 2020, 8, 1394 3 of 11

image changes, so that the embedded information can be extracted with high accuracy under various
cover attacks (Gaussian blur, pixel loss, cropping and JPEG compression). Tang et al. [30] proposed
an adaptive steganographic distortion learning framework (ASDL) to learn the cost. After several
rounds of adversarial learning, the security of ASDL-GAN has been continuously enhanced, but
the security has not surpassed the traditional steganic algorithm represented by S-UNIWARD [31].
Atique et al. [32] proposed another model based on an encoder-decoder to accomplish the same
steganographic task and their secret images are grayscale images, but they had problems such as
color distortion and poor security of secret images. Then, Hayes et al. [21] and Zhu et al. [23] made
use of GAN. They used the mean squared error (MSE) for the encoder, the cross entropy loss for
the discriminator, and the mean squared error for the decoder but their capacity was only limited to
0.4 bits per pixel. Zhang [33] proposed a method for hiding arbitrary binary data in images using
GAN, but their experimental results were not as ideal as designed. So we are inspired by the works of
Baluja and Zhang, which can improve some shortcomings.

3. Method

In general, steganography only requires two operations—encoding and decoding, consisting of
three modules:

(1) An Encoder network ε, which receives a coverless image and a string of binary secret message,
generates a steganographic image;

(2) A Decoder network G, which obtains a steganographic image, attempts to recover a secret
message;

(3) A Discriminator network D is used to evaluate the quality of vectors and steganographic images S.

So, the architecture of our model is shown in Figure 1.

Figure 1. The architecture of the Coverless Image Steganography generative adversarial network (GAN).

3.1. Encoder Network

Firstly, we input the cover image C with the size of (3×W × H) and secret information M∈
{0, 1}Depth×W×H into the Encoder network ε. M is a binary data tensor of the shape Depth×W × H,
where Depth is the number of bits that we try to hide in each pixel of the cover image, W × H
represents the size of cover images. The encoded images should look visually similar to the cover
images. We perform two methods on the Encoder network ε, respectively:

(1) Use convolutional block Conv to process the cover image C to get the tensor a with the size of
(32×W × H).

a = Conv3→32(C). (1)

(2) Concatenate the message M with a and then process the tensor b with a convolutional block Conv.
The size of b is (32×W × H):

b = Conv32+Depth→32(Con Cat(a, M)). (2)
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Then we built two encoders models:

(i) Basic model: We apply two convolution blocks Conv to tensor b successively to generate
steganographic images S. Formally:

Eb(C, M) = Conv32→3 (Conv32→32(b)) . (3)

(ii) Dense model: We use the skip connection [18] to map the features f generated by the former
Dense Block to the features l generated by the latter Dense Block, as shown in Figure 1. We assume
that using skip connection can improve the embedding rate. Formally:

f = Conv64+Depth→32(Con Cat(a, b, M))

l = Conv96+Depth→3(Con Cat(a, b, f , M))

El(C, M) = C + l
(4)

3.2. Decoder Network

The Decoder network G uses steganographic images S generated by the Encoder network ε.
The Decoder network generates M′ = G(S), and is trying to recover the secret information tensor M
according to the Reed Solomon algorithms.

a = Conv3→32(S)
b = Conv32→32(a)
f = Conv64→32(Con Cat(a, b))
G(S) = Conv96→Depth(Con Cat(a, b, f ))

(5)

3.3. Discriminator Network

In order to provide feedback on the performance of the encoder ε and generate more realistic
images, we introduced a discriminator network D, which can differentiate stego images S from cover
images C. {

a = Conv 32→32 ( Conv 32→32 ( Conv 3→32(S)))
D(S) = Mean ( Conv 32→1((a))

(6)

XuNet, an image steganalysis, has been designed based on a CNN by Xu. For improving
the statistical modeling, it embedded an absolute activation (ABS) in the first convolutional layer,
and applied the TanH activation function in the shallow layers of networks to prevent overfitting,
and also added batch normalization (BN) before each nonlinear activation layer. This well-designed
CNN provides excellent detection performance in steganalysis. To our knowledge, it is the
best-performing data-driven CNN steganalyzer based on JPEG. Therefore, we design our steganalyzer
based on XuNet and adjusted it to fit our models, as shown Figure 2. The discriminator network D
consists of five convolution blocks and an SPP block, and two fully connected layers with a scalar
output. In order to generate scalar scores, we use the adaptive mean pool on the output of the
convolution layer. In addition, we use the spatial pyramid pooling (SPP) module to replace the global
average pooling layer. The spatial pyramid pooling (SPP) module [34] and its variants play a huge
role in target detection and semantic segmentation models. It breaks through the limitation of fully
connected layers, so that images of any size can be input to the next fully connected layers. At the same
time, the SPP module can extract more features from different acceptance domains, thereby improving
performance. The detailed architecture of our steganalyzer is shown in Table 1.
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Figure 2. Inception module with residual connection.

Table 1. The architecture of the Discriminator.

Layers Name Output Size

Input / 3× 256× 256
Layer1 ConvBlock1 8× 128× 128
Layer2 ConvBlock1 8× 128× 128
Layer3 ConvBlock2 16× 64× 64
Layer4 ConvBlock2 32× 32× 32
Layer5 ConvBlock3 128× 8× 8
Layer6 SPPBlock 2688× 1
Layer7 FC 128× 1
Layer8 FC 2× 1

3.4. The Objective Fuction

c is referred to as one of the cover images C, which can be represented by the probability
distribution function P. We made the cover images C follow with P and a secret message M is
embedded, and the generated steganographic images S also follow the probability distribution function
Q. The statistical detection ability can be quantified by the KL divergence shown in formula (7) or the
JS divergence in formula (8),

KL(P‖Q) = ∑
c∈C

P(c) log
P(c)
Q(c) (7)

JS(P‖Q) =
1
2

KL
(

P‖P + Q
2

)
+

1
2

KL
(

Q‖P + Q
2

)
. (8)

The KL divergence and the JS divergence are very basic quantities, which establish the best
probabilistic steganographic analysis. The original GAN’s goal is to minimize the JS divergence or
the KL divergence [35]. GAN avoids the Markov chain learning mechanism in a sense, which makes
it distinguishable from traditional probability generative models. Traditional probability generation
models generally require Markov chain sampling and design, and GAN avoids this process
with particularly high computational complexity, and directly performs sampling and correction,
thereby improving the application efficiency of GAN, so its practical application scenarios are more
extensive. The Encoder network ε with noise z tries to generate images which are similar with the
cover images C. The Discriminator network D receives the generated images and judges them whether
are the real examples or the false samples. The Discriminator network D and the Encoder network ε

use cost functions (9) to play the minimax game. It trained D to maximize the probability of assigning
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the correct label to both training examples and samples from ε. Therefore, GAN can be used to solve
the problem of steganography.

Minε max
D

V(ε, D) = Ex∼pdata (x)[log D(x)] +Ez∼pZ(z)[log(1− D(ε(z)))]. (9)

3.4.1. Encoder-Decoder Loss

In order to optimize the encoder-decoder network, this section optimizes three loss
functions jointly, as shown Algorithm 1.

(1) The cross entropy loss function is used to evaluate the decoding accuracy of decoder network,
that is

LG = EX∼pc CrossEntropy (G(ε(X, M)), M). (10)

(2) The mean square error is used to analyze the similarity between the steganographic image and
the cover image, where W is the width and H is the length of image, that is

Ls = EX∼PC

1
3×W × H

‖X− ε(X, M)‖2
2. (11)

(3) And the realness of the steganographic image using the discriminator, that is

Lr = EX∼PC D(ε(X, M)). (12)

So, the training objective is to

minimize (LG + Ls + Lr) . (13)

Algorithm 1 Steganographic training algorithm based on GAN

Input: Encoder ε, Decoder G, Discriminator D. threshold G ← 0.9, threshold D ← 0.85.
Output: valG ←CrossEntropy of G.

1. While valG <thresholdG do
2. Update ε and G using LG + Ls + Lr.
3. for n training epochs do
4. if valG <thresholdG then
5. Update ε using Ls, G using LG
6. else if valD <thresholdD then
7. else
8. Update ε using Ls + Lr, G using LG
9. Get valG ← CrossEntropy of G
10. Get valD ←Cross validation accuracy of D
11. end if
12. end for
13. done
14. return valG

3.4.2. Structural Similarity Index

Baluja [22] used the mean square error (MSE) between the pixels of the cover image and the
generated image pixels as the loss function. However, MSE only penalizes the large errors of
the corresponding pixels of the two images, but ignores the underlying structure of the images.
Human visual systems (HVS) are more sensitive to the changes of brightness and color in textless
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areas, so the steganography GAN introduces the structural similarity index (SSIM) and its variant
MS-SSIM [36] into the loss function.

The SSIM index compares similarity measurement tasks from three aspects—brightness δ, contrast
ε and structure ρ. The similarity of the two images is measured by formulas (14)–(16) respectively,
where µx and µy are the pixel averages of image x and image y, θx and θy are the pixel deviations of
image x and image y, and θxy is the standard variance of image x and y. In addition, c1, c2, and c3 are
three constants to prevent the denominator from going to zero and making the formula meaningless.
The general calculation method of SSIM is shown in (17), where l > 0, m > 0, n > 0 and they are the
parameters used to adjust the relative importance of the three components. The value range of the
SSIM index is [0, 1]. The higher the index, the more similar the two images. So steganography GAN
uses 1-SSIM (x, y) as the loss function to measure the difference between two images. MS-SSIM is an
enhanced variant of the SSIM index, so it also introduces steganography GAN’s loss function.

δ(x, y) =
2µxµy + c1

u2
x + u2

y + c1
(14)

ε(x, y) =
2θxθy + C2

θ2
x + θ2

y + C2
(15)

ρ(x, y) =
θxy + c3

θxθy + c3
(16)

SSIM(x, y) = [δ(x, y)]l · [ε(x, y)]m · [ρ(x, y)]n. (17)

Considering the difference in pixel value and structure, we join MSE, SSIM and MS-SSIM together.
Therefore, its mixed loss function LD is shown:

LD
(
c, c′
)
= α

(
1− SSIM

(
c, c′
))

+ (1− α)
(
1−MS-SSIM

(
c, c′
))

+ β MSE
(
c, c′
)

, (18)

where c represents the cover images, c′ is the steganographic images. M is the secret message,
and M′ are extracted from the steganographic images. α and β are super parameters to trade off
the quality of steganographic images and cover images. we set α and β of the loss function as 0.5,
0.3 respectively.

4. Experimental Results and Analysis

In this section, we will introduce our experiment details and results.

4.1. Evaluation Metrics

We take capacity, distortion, and secrecy into account. In this section, we will evaluate the
performance of our model with the RS-BPP, PSNR and MS-SSIM.

4.1.1. Reed Solomon Bits Per Pixel

In the experiments, we adopt Reed-Solomon codes to accurately estimate the relative payload
of our model. We call this metric the Reed-Solomon bits-per-pixel (RS-BPP), and note that it can be
directly compared to traditional steganographic techniques because it represents the number of bits
that are reliably transmitted in the image divided by the size of image.
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4.1.2. Peak Signal-to-Noise Ratio

Peak signal-to-noise ratio (PSNR) is a commonly used image quality measurement indicator,
whose purpose is to measure the distortion of the image, and has been shown to be related to the
average opinion score of human experts [37].

MSE =
1

W × H

W

∑
i=1

H

∑
j=1

(X(i, j)−Y(i, j))2 (19)

PSNR = 10 log10

(
(2n − 1)2

MSE

)
. (20)

4.2. Training

In each iteration, we match each cover image C with a data tensor M, which consists of a randomly
generated sequence Depth×W × H bits. This sequence is sampled from a Bernoulli distribution M ∼
Ber (0.5). In addition, we use standard data enhancement processes in preprocessing, including
horizontal flipping and random cropping to the cover image C. We use the Adam optimizer with
a learning rate of 1e4, normalize the gradient norm as 0.25, clip the weight of the discriminator as
[−0.1, 0.1], and train 32 epoch.

The experiments are conducted with the Intel(R) Core(TM) i7-7800X CPU @ 3.50GHz, 64.00 GB
RAM and one NVIDIA GeForce GTX 1080 Ti GPU.

4.3. Experimental Results

In our experiment, we used Div2k dataset (https://data.vision.ee.ethz.ch/cvl/DIV2K) to train
and evaluate our model with 6 different data Depth ∈ {1, 2 . . . , 6}. We used 786 pictures for training
and 100 pictures for validation. Data depth means that each pixel bit of the target randomly generates
data tensor shape Depth ×W × H. The mean values of extracted accuracy, RS-BPP, PSNR, and
MS-SSIM for the test set are recorded in Tables 2–4.

Table 2. The image quality metrics and model variant compared with Zhang’s.

Dataset Depth

Ours Zhang’s

Basic Model Dense Model Basic Model Dense Model

PSNR MS-SSIM PSNR MS-SSIM PSNR MS-SSIM PSNR MS-SSIM

Div2k

1 39.80 0.91 37.27 0.90 34.71 0.86 34.33 0.85
2 36.03 0.87 36.09 0.88 34.21 0.84 34.32 0.85
3 34.74 0.84 34.65 0.84 33.14 0.80 33.00 0.80
4 35.59 0.86 35.35 0.85 33.73 0.83 33.99 0.83
5 35.88 0.87 36.47 0.88 34.17 0.84 34.36 0.84
6 36.61 0.88 36.78 0.89 34.97 0.86 34.71 0.85

Table 3. The relative payload and model variant compared with Zhang’s.

Dataset Depth

Ours Zhang’s

Basic Model Dense Model Basic Model Dense Model

RS-BPP

Div2k

1 0.96 0.96 0.93 0.93
2 1.82 1.83 1.76 0.93
3 2.36 2.36 2.18 2.22
4 2.30 2.30 2.20 2.23
5 2.28 2.31 2.15 2.19
6 2.24 2.27 2.17 2.18

https://data.vision.ee.ethz.ch/cvl/DIV2K
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Table 4. The accuracy of the Decoder network compared with Zhang’s

Dataset Depth

Ours Zhang’s

Basic Model Dense Model Basic model Dense Model

Accuracy of Recovery

Div2k

1 0.98 0.98 0.97 0.96
2 0.96 0.96 0.94 0.96
3 0.89 0.89 0.86 0.87
4 0.79 0.79 0.77 0.78
5 0.73 0.73 0.72 0.72
6 0.67 0.69 0.68 0.68

We randomly selected cover images to generate samples (b) (d) from the Div2k dataset. As we
can see in Figure 3, steganography GAN is an efficient method which generates highly similar images
according to the cover images (a) (c).

(a) (b)

(c) (d)

Figure 3. The samples generated by steganography GAN. (a) cover image; (b) steganographic image;
(c) cover image; (d) steganographic image.

As Tables 2 and 3 show, they are image quality measurements and the relative load of the Basic
and Dense models on the Div2k dataset. In all the experiments, our model shows the best performance
on almost all the indicators compared with Zhang’s [33]. Focusing on the Basic model, it performs
significantly well compared with the Zhang’s. Table 4 shows the extracted accuracy of the Decoder
network which recovers secret information. Our dense model is close to Zhang’s, but the basic model
behaves better.

5. Discussion and Conclusions

In this study, GAN is used to synthesize the secret information and the cover image. At this point,
the secret information is embedded in any position of the composite image. On this basis, a performance
index of a steganography system based on deep learning is proposed, which is convenient for direct
comparison with the traditional steganography algorithm. Our models adopt different convolution
methods, and the experimental results prove that our models have a high payload, the cover image
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especially will not be modified in the process of hiding and extracting secret information, thus ensuring
the security of secret information. Furthermore, we will consider how to combine GAN with relevance
feedback, compensated for the lack of user intervention, to select cover images, to increase a user’s
overall quality of experience. Future steps for grouping relevant items together to make the system
more efficient will be investigated.
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