
mathematics

Article

A Node Embedding-Based Influential Spreaders
Identification Approach

Dongming Chen , Panpan Du, Bo Fang, Dongqi Wang * and Xinyu Huang

Software College, Northeastern University, Shenyang 110169, Liaoning, China; chendm@mail.neu.edu.cn (D.C.);
duppneu@163.com (P.D.); 17854257001@163.com (B.F.); neuhxy@163.com (X.H.)
* Correspondence: wangdq@swc.neu.edu.cn; Tel.: +86-1362-403-9571

Received: 11 August 2020; Accepted: 6 September 2020; Published: 10 September 2020
����������
�������

Abstract: Node embedding is a representation learning technique that maps network nodes into
lower-dimensional vector space. Embedding nodes into vector space can benefit network analysis
tasks, such as community detection, link prediction, and influential node identification, in both
calculation and richer application scope. In this paper, we propose a two-step node embedding-based
solution for the social influence maximization problem (IMP). The solution employs a revised
network-embedding algorithm to map input nodes into vector space in the first step. In the second
step, the solution clusters the vector space nodes into subgroups and chooses the subgroups’ centers
to be the influential spreaders. The proposed approach is a simple but effective IMP solution because
it takes both the social reinforcement and homophily characteristics of the social network into
consideration in node embedding and seed spreaders selection operation separately. The information
propagation simulation experiment of single-point contact susceptible-infected-recovered (SIR) and
full-contact SIR models on six different types of real network data sets proved that the proposed
social influence maximization (SIM) solution exhibits significant propagation capability.

Keywords: influence maximization; network embedding; weighted CBOW; clustering

1. Introduction

Through years of research on how network structure affects information diffusion, researchers
believe that social reinforcement and homophily are the two factors that play essential roles in the process
of information going viral [1–3]. On the one hand, social reinforcement inside communities tends to
trigger multiple exposures, and each additional exposure significantly increases the probabilities of
individuals adopting social behaviors [1], which is the underlying assumption of classic information
diffusion models like the LTM (linear threshold model). On the other hand, people sharing similar
characteristics are more likely to form social relationships, which makes homophily factors inseparable
from social contagion [3]. Let us posit that there is an underlying network over which information
propagates, so the social reinforcement and homophily factors implying that both local and global
structural information of the network should be taken into consideration. Except for the research on the
role social reinforcement and homophily in information diffusion, researchers also discussed the role of
centrality for the identification of influential spreaders in complex networks [4]. According to different
types of network and different research perspectives, the evaluation criteria of node importance
are also different. The research on critical node set recognition originated from the thinking of
Domingos and Richardson in “viral marketing” [5,6]. Domingos and Richardson propose to make use
of the customers’ ‘network value’, which means put more promotion effort to profit from customers
who may be influenced to buy by current customers or who may influence other customers [5,7].
Under this circumstance, researchers simulate word-of-mouth effects by using information diffusion
models, such as such as the Linear Threshold Model (LTM), Independent Cascade Model (ICM),
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the triggering (TR) model, time-aware diffusion models [8]. However, three aspects need to be taken
into consideration: First, selected nodes should be able to cover the whole social graph more efficiently
and the node influence must be taken into consideration; Second, Recognition of key node sets requires
the foundation of research on node centrality. Different centrality indexes have different computational
complexity and applicable scope, which will lead to differences in experimental results of the algorithm;
Three, the explosive growth of network data brings severe challenges to the identification of key nodal
sets [9]. In network marketing with a limited budget, the best strategy is to show the advertisements
and provide discounts to a set of customers who are likely to buy the product and able to trigger many
other people (including their friends, friends of friends) to buy the product to maximize the impact [10].

In this paper’s research, we propose a node-embedding algorithm and cluster nodes into subgroups
base on the learned node embeddings. Giving priority to the dispersion between nodes and ensuring
the relative importance of nodes, we extract the core nodes from the perspective of vector space distance.
We call this strategy for identifying key node sets the CNE (cluster by network embedding) algorithm.

2. Related Concepts

In this section, we give and explain necessary definitions and concepts which will be used through
this paper. We consider an undirected graph G = (V, E), where V is the set of nodes in G and E is the
set of edges among these nodes. Matrix A =

(
ai j

)
n× n is the adjacency matrix used to represent graph

G, where n = |V| is the number of nodes in G.

2.1. Social Influence Maximization (SIM) Problem

Given an integer k [n] and k << n, the task of social influence maximization is to identify a k-sized
node set such that when the information diffusion process is over maximum number of nodes become
influenced. According to this description, the social influence maximization problem (SIM) task is
closely associated with information diffusion models [11].

2.2. Node Embedding

The goal of node embedding is to encode nodes into lower dimension space and approximate the
similarities between nodes in original space by similarities in embedding space. By doing so, network
embedding avoids performing complex inference on the entire network which is a very practical
and efficient solution for downstream tasks such as node classification, clustering, link prediction,
and network visualization [12].

ϕ : v ∈ V → Rn∗d is a mapping function from node v of V to d dimension real embedding space Rn∗d.
To our knowledge, DeepWalk was one of the very first popular network embedding approaches

proposed in recent years [13]. DeepWalk provides a universal solution for feeding a network into neural
nets to undertake node representation learning. It also bridges the gap between word embedding and
network embedding through the use of the Word2Vec. Inspired by DeepWalk, research such as LINE,
which uses first – order and second-order proximity to formally define the large-scale information
network embedding problem [14], Node2vec which is similar to DeepWalk, but the main difference
is that depth first and breadth first are taken into account when walking [15], and GraRep, which is
a model that learns the node representation of a weighted graph and integrates the global structure
information of the graph into the learning process [16] started to boom. LINE proposes to embed both
local and global context information into node representation through a carefully designed objective
function and edge-sampling strategy is used during learning process to prevent exploding gradients.
Node2vec uses a biased random walk to generate nodes’ neighborhood information and employs
the skip-gram architecture for learning node representation based on the generated neighbourhood
contexts. GraRep emphases the importance of capturing k-steps relationship information between
node pairs and considers various powers of the adjacency matrix in order to capture higher-order
node similarity.
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The intuition behind most node embedding algorithms is that more popular or connected samples
should be selected more frequently during training since they are more informative [17]. Base on this
intuition, we naturally extended the continuous bag of words (CBOW) algorithm of DeepWalk to a much
faster and more accurate algorithm called centrality-weighted CBOW (IW-CBOW). The IW-CBOW
algorithm uses nodes’ importance value as prior information to guide the gradient descent optimization
of CBOW towards more meaningful directions and which will also accelerates the training at the
same time.

3. Centrality Analysis

In this paper, we only consider the network with no direction. We let the network G = (V, E),
where V is the node set and E is the edge set. A =

(
ai j

)
n × n represents the adjacency matrix of the

network, where n represents the number of nodes. If node i is connected to node j,
(
ai j

)
= 1, otherwise(

ai j
)
= 0. Our goal is to select m nodes in the node set of the network to maximize the influence of their

propagation in the network.
Next, some commonly used centrality measures and algorithms to identify key node groups based

on point coloring theory are briefly introduced. Finally, the SIR propagation model is introduced.

3.1. Centrality Measure

Degree centrality, the number of neighbors connected to node i.

DC(i) =
∑

j
Ai j, (1)

Closeness centrality is used to measure the average distance from one node to other nodes, where
di j represents the shortest path length between node i and node j.

CC(i) =
n− 1∑
j(!=i) di j

, (2)

Betweenness centrality, which describes the distribution of a node on the path between other
nodes, where δ(s, t) represents the total number of shortest paths from node s to node j, and δ(s, t

∣∣∣i)
represents the number of shortest paths from node s to node t through i.

BC(i) =
∑

st

δ(s, t
∣∣∣i)

δ(s, t)
, (3)

K-kernel, which describes the importance of nodes by their location in the network. Recursive
stripping of nodes with degrees less than or equal to k in the network is performed as follows: First of
all, delete the nodes with degree 1 and their connected edges in the network. At this time, new nodes
with degree 1 may appear in the network, and continue to delete the new nodes with degree 1 and their
connected edges. Repeat this operation until there are no more nodes with degree 1 in the network.
At this time, all the deleted nodes go to constitute the first layer; next, the above deletion operation
is repeated to obtain a second layer and so on, until all nodes in the network are given the value
of K-kernel.

3.2. Point Coloring Theory

Bao et al. introduced the point coloring theory of graphs to solve the problem of finding key node
groups. First of all, the nodes in Graph G are arranged in descending order of degrees. Next comes
coloring the ordered nodes, coloring the first node with the first color, and coloring each node that is
not adjacent to the preceding colored node with the same color in the order of arrangement. Then,
the above coloring process is repeated with a second color and so on, until all nodes are colored.
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Nodes of the same color are placed in the point set of the same selected node, and the first m nodes in
the node set with the largest number of nodes are taken as key node groups. It is also possible to sort
the nodes according to the kernel number, closeness centrality or betweenness centrality, and select the
key node group through the coloring process described above.

3.3. Susceptible-Infected-Recovered (SIR) Model

Classic propagation models are commonly used unsupervised.
Susceptible-infected-recovered (SIR) is a classic mathematical model of epidemics. SIR model

divides the total population N into three categories: susceptible, infected and recovered. Users in the
susceptible state are likely to be infected or influenced. Users are in infected state means that these
users have already been infected or influenced. Users in the recovered state are no longer able to be
infected or influenced. As is shown in Figure 1, at each time step, susceptible nodes.
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We use the SIR propagation model to verify the influence of the selected node group on the
network. The SIR model is the most classical model in infectious disease model, including three node
states, where S represents susceptible state, i.e., it has no disease and lacks immunity, I represents
the infected state, i.e., the diseased node, in the process of contacting with an S-state node; this type
of node transmits the disease to the s-state node with a transmission probability β, and the S-state
node is transformed into an I-state node at this time. R represents the removal state, i.e., a node that
has immunity due to disease recovery or dies due to disease, and an I-state node becomes an R-state
node with a removal rate µ. When the number of I-state nodes is 0, the propagation process ends
and the network tends to be stable. The SIR model has two implementations: full-contact SIR, i.e.,
every round of I-state nodes try to infect all their neighbors, such as social networks; single-point
contact SIR, i.e., each round of I-state nodes randomly select one of their neighbors to try to infect,
such as a call network. In the paper, we set the key node group as the propagation source, i.e., I-state
nodes. After SIR propagation model simulation, we compare the final number of R-state nodes in the
network to determine the advantages and disadvantages of key node group selection. In this paper,
in order to ensure the observability of experimental results, we set µ = 1 for full-contact SIR, and we
set µ = 0.1 for single-point contact SIR.

4. The Overall Approach

We begin by explaining our strategy for effective multiple spreaders identification. Considering
the definition of effective spreaders for the influence maximization problem (IMP), effective spreaders
should be both influential nodes and widely dispersed nodes (lower the cost) at the same time.
Taking these two essential requirements into consideration, the overall approach comprise 2 simple steps:

Step 1: Learn node representations and partition target network into clusters base on the similarity
between nodes in the embedding space;

Step 2: Calculate the ‘cores’ of clusters and set them as effective spreaders.
In the first step, we propose a modified DeepWalk algorithm which makes sure influential nodes

play a vital role in the embedding calculation, and k-means algorithm is applied to the embedding
space to cluster the target network into non-overlapping subgroups in which the nodes share particular
characteristics in common. The goal of the clustering step is to ensure that the selected spreaders
naturally cover the whole target network. In the second step, we set the node which has the smallest
mean distance to the rest of the nodes in the same cluster as the ‘core’ of the cluster, which is mainly the
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calculation of closeness centrality measurement. Employing closeness centrality as the measurement
aims to select representative nodes to the clusters.

4.1. Proposed Node-Embedding Approach

The DeepWalk algorithm comprises two steps.
Step 1. Perform random walks on nodes (anchor nodes) in a graph to construct contextual node

sequences of anchor nodes.
Step 2. Employ SkipGram algorithm to learn the embedding of anchor nodes based on the

contextual node sequences generated in step 1.
We replace the Skipgram algorithm of DeepWalk with an extended CBOW algorithm called

’centrality-weighted-CBOW’ to obtain the the proposed node-embedding approach for the multiple
spreaders identification (MSI) task. To lower the affect of uneven probabilistic distribution of node
centrality values, we normalize centrality values using Formula (4). Line 1 of Algorithm 1 constructs a
vector C of normalized centrality values of all nodes of G and line 6 feeds these centrality values as the
weights for Centrality-weighted-CBOW algorithm.

To understand why a centrality weighted strategy is employed, we need to put the node-embedding
approach back into the MSI task context. As we concluded, great influence should be one of the
key features shared by effective spreaders, and in a social science, individuals’ characteristics can be
decided or revealed by looking into its’ neighbors’ features. CBOW algorithm is one of the learns to
predict the anchor by its context, from this kind of sociology perspective, employ CBOW algorithm to
embed nodes is a reasonable choice.

Algorithm 1. Centrality-weighted DeepWalk (G, m, d, γ, t, λ)

Input: G = (V, E)
window size m
embedding size d
walks per vertex γ
walk length t
Number of iterations λ

Output: matrix of vertex representations Mn×h.
1. C =< Normalize(?(v)) f or v ∈ V//Vector of normalized node centrality values
2. for i = 0 to λ do
3. V′ = shu f f le(V)//Shuffle the node set of G
4. for v∈V do
5. Wv = Corpus.append(Random_walk(G,v,t,γ)//Generate node sequences
6. Centrality_weighted_CBOW(Mn*k,WV,C)//Train and gain node embeddings
7. end for
8. end for

norm
(
cvi

)
=

cvi

cmax − cmain
+

cmax − 2cmin
cmax − cmin

, (4)

norm
(
dvi

)
=

dvi

dmax − dmain
+

dmax − 2dmin
dmax − dmin

, (5)

Let G = (V, E) be a simple network, vi ∈ V(i = 1, 2, · · · , n) and n = |V|. As is shown in Figure 2,
a normal CBOW algorithm works as a three-layer neural network, where input layer in the embedding
space is h-dimension.
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There are two matrices, where i− th column of Wn×h is the h dimensional embedded vector for
node vi.

Let’s break down CBOW algorithm into the steps and explain how our extended approach works.

• Generate one hot node vectors (xvi−m , . . . , xvi−1 , xvi+1 , . . . , xvi+m) for anchor node vi’s context
nodes(inputs), where m is the window size.

• Calculate the embedded node vectors of context nodes
• xvi−m = xvi−m ×Wn×h, . . . ., xvi−1 = xvi−1 ×Wn×h, xvi+1 = xvi+1 ×Wn×h, xvi+m = xvi+m ×Wn×h

• where prime marks are used to distinguish the calculated embedded node vectors from the
corresponding one hot node vectors.

• Average the embedded node vectors to obtain v = xvi−m + xvi−m−1 + . . .+ xvi+m /2m;
• Calculate a score vector s = v×W′h×n;

• Turn the scores into probabilities ŷ = so f tmax(s);
• Use gradient descent to optimize loss function H(y, ŷ) = −

∑n
j=1 y jlog(ŷ), where y is the real

probability, which is actually the real one hot node vector of anchor node.

As we can see, compared to neural network models such as NLP (Natural Language Processing),
the CBOW model uses linear activation functions instead of non-linear activation. In the 2nd step,
it picks up the desired embeddings of input nodes by multiplying nodes’ one hot vector coding with
matrix Wn×h. In the following 3rd step, CBOW algorithm averages these h dimensional embedded
vectors of context nodes which forms the output of the hidden layer. This averaging operation treats all
nodes equally and does not consider the differences between nodes. It only considers whether or not a
node appears as the context of the anchor node. Inspired by the works on improving the word2vec
model carried out by NLP researchers [20,21], we use a weighted average (Formula (6)) to replace the
average calculation of the 3rd step above, where the node importance calculation can be any node
importance measurement. Since node importance is a critical measurement which reflects vital structural
characteristics of the network, we employ node importance as the weights; by doing this, the role
of important nodes will be strengthened in embedding calculation. We evaluated the performance
of the algorithm using community detection as the downstream task on 2 well-known network
datasets (Table 1). These 2 datasets are published with ground-truth communities, so normalized
mutual information was chosen to measure the K-means clustering results in node embedding space.
Node importance measures, including degree, PageRank, Betweennes and Coreness generated using
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k-shell decomposition analysis [22,23] were tested as the weight. To accelerate training, hierarchical
softmax was used instead of softmax. In the experiment, we chose degree centrality (node importance
measures) as the weights of models in CBOW algorithm, corresponding to Degree_CBOW algorithm.

To further improve the performance of node embedding, we can also use PCA(Principal
Component Analysis) on proposed weighted CBOW, the use of PCA is a way to make up for
the defect of CBOW as a shallow model. Throughout experiment (the experimental results are shown
in Table 2), applying PCA on node embeddings generated by proposed algorithm will improve the
community detection result NMI (Normalized Mutual Information) at an average of 0.20% for the
email-EU-core network datasets.

V =
Φ(vi −m)xvi−m + Φ(vi −m− 1)xvi−m+1 + . . .+ Φ(vi + m)xvi+m

2m
, (6)

Table 1. Datasets for verifying representation effect.

DataSets Nodes Edges Community

Email Network 986 16,064 42
Political Blogs 1222 16,714 2

Table 2. Result of community detection.

DataSets CBOW Degree_CBOW

Email network 69.81% 69.83%
Political blogs 75.00% 74.82%

4.2. Key Node Selection

In this paper, we choose two types of clustering: hierarchical clustering and K-means clustering.
Hierarchical clustering is the “tree” that forms a hierarchy or cluster of data objects. Hierarchical

clustering includes condensed hierarchical clustering and split hierarchical clustering. In this paper,
we use the aggregation hierarchy clustering and use the bottom-up strategy. First, make each node a
cluster, find the two most similar clusters and merge them to form a cluster, then iteratively merge the
clusters into larger and larger clusters until m clusters are formed.

K-means clustering is to randomly select m nodes in vector space, and each node represents the
initial mean or center of a cluster. Each remaining node is assigned to the most similar cluster according
to its Euclidean distance from the center of each cluster. Then, according to the nodes assigned to the
cluster, the average value of the nodes in each cluster is recalculated. The updated average value is
used as the new cluster center to redistribute all objects. Continue to iterate the above process until
the allocation is stable, i.e., the clusters formed in this round are the same as those formed in the
previous round.

In order to make the nodes in the selected key node group sufficiently dispersed, we choose the
clustering method to divide the network into m clusters, where the parameter m (the number of seed
nodes/clusters) will be determined by the ‘budget’ of the IMP application, the clustering algorithm,
and the data sets. Suppose the ‘budget’ of IMP application can support m1 seed nodes and the optimal
number of clusters determined by the data from the angle of the algorithm is m2, then we choose m
based on Formula (7). If m1 is greater than or equal to m2 which means the budget is enough, then the
m2 clusters’ centers will be selected; otherwise, the first m important nodes of the m2 clusters’ centers
will be selected.

m =

{
m1 m1 < m2

m2 m1 ≥ m2
, (7)

According to the above two different clustering strategies (CNE_HC (Cluster by Network
Embedding_ Hierarchical Clustering), CNE_KM (Cluster by Network Embedding_ K-means
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Clustering)), the network is divided differently. We select the core nodes in the class cluster after the
network is divided based on the similarity between nodes. We believe that a node in a cluster is most
important if it has the greatest similarity with all other nodes. The similarity between nodes based
on vector representation is the distance between nodes. The smaller the distance, the more similar
the nodes are. Therefore, in the cluster, we want to find the node with the smallest distance from
other nodes.

min(
∑

j∈clu

∣∣∣vec(i) − vec( j)
∣∣∣, (8)

5. Experimental Analysis

5.1. Datasets

We have carried out experiments on several different types of real network datasets in order
to verify the effectiveness of our method. The email network is the internal email network of a
large European research institution. Nodes represent users in the institution and edges represent
the fact that there is at least one mail exchange between users [24]. The political blogs network is a
hyperlink-oriented network between US political blogs recorded by Adamic and Glance in 2005 [25].
The open flights network is extracted from Open flights.org. This network includes flights between
airports in the world [26]. The Protein–Protein Interactions (PPI) network is a sub-network of human
protein interaction network. Nodes represent proteins and edges represent interactions between
proteins [8]. The Web-EPA (Environmental Protection Agency) network provides network data linked
to www.epa.gov from a scientific network data warehouse called Network Repository, where nodes
represent web pages and edges represent hyperlinks [27]. The Human Protein Vidal network is also a
protein interaction network. Compared with the PPI network, the Vidal network is more sparse [28].

In order to simplify the operation, we carry out a series of preprocessing on the data set, including
transforming the network into an undirected and weightless network, taking the maximum branch
of the network, removing duplicate edges, self-edges and deleting isolated nodes in the network.
The preprocessed network data structure information is shown in the following Table 3, in which the
number of nodes, the number of edges and the average degree of the network are respectively listed.

Table 3. The preprocessed network data structure information.

DataSets Nodes Edges <k> (Average Degree)

Email Network 986 16,064 32.5842
Political Blogs 1222 16,714 27.3552
OpenFlights 2905 15,645 10.7711

Protein–Protein Interactions (PPI) 3852 37,841 19.6475
Web-EPA 4253 8897 4.1839

Human Protein (Vidal) 2783 6607 4.3169

5.2. Comparing Algorithms

We chose two kinds of benchmark algorithms for comparative analysis. The first type of benchmark
algorithm is based on a centrality measure, directly selecting the first m most important key nodes as
key node groups. In this paper, we have chosen four measures: Degree centrality (DC), K-kernel (KS),
Betweenness centrality (BC) and Closeness centrality (CC) [29,30]. The second kind of benchmark
algorithm is to select m key nodes that are not connected to each other as key node groups [31]. In this
paper, a key node group identification algorithm based on point coloring theory is used. Firstly,
the nodes are sorted by four measures: Degree, Kernel, Betweenness and Closeness. Then, the first
m nodes in the largest independent set are selected as key node groups by using the point coloring
theory, which correspond to the DCC, KSC, BCC and CCC algorithms, respectively.

www.epa.gov
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5.3. The Experimental Results

In order to compare the performance of different methods in identifying key node groups, we first
select m nodes as propagation sources according to a method, and then simulate the propagation
process through single-point contact SIR and full-contact SIR models. When I-state nodes finally
do not exist in the network, the propagation process ends, and the final number of R-state nodes
is counted, which is the network range finally affected by the key node groups. The advantages
and disadvantages of the key node group identification algorithm are determined by comparing the
propagation range. At the same time, the experiment was repeated 500 times independently in order
to ensure the reliability of the experimental results.

We introduce the relative proportion index of node group influence ∆ to measure the effect of the
algorithm, where Ri represents the final number of R-state nodes after the SIR propagation simulation
for the key node group selected by a certain method; RDC represents the number of R-state nodes
finally obtained after SIR propagation simulation using the key node group selected by DC (Degree
Centricity) (i.e., selecting the top M nodes with the largest degree). When ∆ > 0, this method is better
than DC. the larger ∆, the better the effect of this method.

∆ =
Ri −RDC

RDC
, (9)

Finally, the influence range of the SIR simulation propagation is determined by a number of
factors, including the implementation of the SIR model, the infection rate β, the number of nodes in
the key node group, and the selection method of the key node group. In the network division of the
CNE algorithm, in order to avoid the situation that the k-means clustering algorithm may fall into the
local optimal situation, the aggregation hierarchy clustering algorithm is also adopted, and these two
strategies are named CNE_KM and CNE_HC respectively. In order to undertake a comprehensive
comparison, we carried out a series of cross experiments with fixed parameters.

First of all, we explored the change of the relative proportion index of node group influence ∆
with the infection rate β on the basis of different key node group identification algorithms. In the
single-point contact SIR model, we set the infection rate β from 0.1 to 0.5 while making the number
of nodes in the key node group 1%, 3% and 5% of the total number of nodes in the network dataset.
The experimental results are shown in Figure 3. From the experimental results, we can find that in the
single-point contact SIR model:

(1) In the case of few key node groups (1%), when the infection rate β is very small, i.e., β = 0.1 as
shown in the figure, the effects of CNE_HC and CNE_KM are not particularly ideal. With the
increase of infection rate, the experimental results of CNE_HC and CNE_KM gradually improve
and are better than other algorithms.

(2) When the number of nodes in the key node group is 3% and 5%, the experimental results of
CNE_HC and CNE_KM are better than other algorithms on the whole in terms of the impact on
the whole network under the condition of different infection rates β.

(3) With the increase of infection rate β, the difference in the impact of various key node group
identification algorithms on the entire network will gradually decrease, and information such as
disease information will be easily spread in the network. However, the experimental results of
CNE_HC and CNE_KM still maintain good results and are superior to other methods.

At the same time, we studied the performance of different methods in the full-contact SIR model.
The experimental results are shown in Figure 4. In the full-contact SIR model, every round of I-state
nodes try to infect all its neighbor nodes, so the model has extremely strong information transmission
capability. In order to facilitate our observation of the experimental results, we set the removal
rate µ = 1. From the experimental results in Figure 4, we find some conclusions different from the
single-point contact SIR model.
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(1) In Email, Openflights, PPI networks, regardless of the number of nodes in the key node group is
1%, 3% or 5%, and regardless of the infection rate, CNE_HC and CNE_KM perform well and are
superior to other algorithms on the whole.

(2) There are obviously different rules from the other four datasets in the Web-EPA and Vidal datasets.
In Web-EPA and Vidal, when the infection rate β is very small, i.e., β = 0.1, the experimental results
of CNE_HC and CNE_KM are not ideal. With the increase of infection rate, the experimental
results of CNE_HC and CNE_KM gradually improve, and catch up with and surpass other
algorithms in the later stage.

Next, we explore the relationship between the number of nodes m in key node groups and the
relative proportion index of node group influence ∆ based on different key node group identification
algorithms through experiments. We set the infection rate β = 0.2 in single-point contact SIR (removal
rate µ = 0.1) and full-contact SIR (removal rate µ = 1) models, respectively, and set the number of
nodes in the node group to be 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5% and 5% of the total number
of nodes. The experimental results are shown in Figure 5. CNE_HC and CNE_KM have excellent
effects and are superior to other algorithms in most cases. With the increase of the number of nodes m,
the effect on the whole network increases significantly.
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Figure 3. In the single-point contact SIR model, the relative proportion index of node group influence ∆
varies with the infection rate β. From left to right corresponds to taking 1%, 3% and 5% of the number
of nodes in the dataset as the number of nodes in the key node group respectively.
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Figure 4. In the full-contact SIR model, the relative proportion index of node group influence ∆ varies
with the infection rate β. From left to right corresponds to taking 1%, 3% and 5% of the number of
nodes in the dataset as the number of nodes in the key node group respectively.
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Figure 5. The relative proportion index of node group influence ∆ varies with the number of nodes.
From left to right, the experimental results of single-point contact SIR and full-contact SIR models are
respectively corresponding to the dataset.

In order to try to explain the above experimental results, we calculated the geodetic distances
between the nodes of key node groups in the network, and measured the differences between the
distances by introducing the distance relative proportion index K, where, di represents the average
geodesic distance between node i and all nodes in the network, and dDC represents the geodesic
distance of DC (Degree Centricity) infecting the network.

K =
di − dDC

dDC
, (10)

Considering various factors, the performance of CNE_HC and CNE_KM are still satisfactory.
Finally, we conducted another experiment to analyze the performance of NE_HC and NE_KM in
terms of infected network speed. Since the full-contact SIR model is very easy to transmit information
and cannot distinguish the infection rate of different algorithms, we only carried out experiments on
the single-point contact SIR model in this group of experiments. We set the infection rate β = 0.2,
divided the range that will ultimately affect the network (i.e., the number of nodes in the R-state) by the
number of rounds that will eventually be needed to infect the entire network as the infection speed v.
At the same time, in order to compare the infection speed of each method, we define the speed relative
proportion index Φ, where vi represents the speed of a method infecting the network, vDC represents
the speed of DC (Degree Centricity) infecting the network. The experimental results are shown in
Figure 6.

vi = Ri/t, (11)

Φ =
vi − vDC

vDC
, (12)
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Figure 6. Set the infection rate β = 0.2, and the relative ratio Φ of infection rate V varies with the
number of nodes m, repeating the experiment 500 times independently.

From the above results, we found that CNE_HC and CNE_KM in the Email, Polblogs, Openflights
and PPI networks performed well in terms of the speed of infection network as a whole. In the
Web-EPA and Vidal networks, although the performance is not the best, it also reaches a medium level.
At the same time, it can be seen that the point coloring algorithm (DCC) based on degree centrality has
the highest propagation speed. This experimental result inspires us that in sparse networks, we may
obtain better results in infection speed by using the most basic degree centrality.

6. Conclusions

This paper proposed a network representation learning-based solution for the influence
maximization problem (IMP). The solution was designed based on the innate understanding that
each selected seed node should be influential enough by itself, and all the seed nodes should be more
dispersed in the network topology. So it extended the CBOW algorithm from NLP by using node
centrality as weights to guide the training and then clusters the network nodes into subgroups in
learned vector space and selects the ‘center’ of subgroups as seed set for the IMP solution. Since IMP is
an NP-hard problem, the proposed solution was compared with seven baseline IMP solutions on six
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commonly used network datasets. Experiment results show that the solution outperforms the baseline
algorithm in transmission speed and network coverage in information propagation simulation.

The IMP problem has high application value, so research on the existing IMP solution’s real-world
applications will be vital. For real applications, the research on multi-layer networks and temporal
networks IMP is critical. The proposed approach aimed to recognize seed sets in simple networks so
that we will put more research effort into the IMP solution for multi-layer and temporal networks in
the future.

Author Contributions: Conceptualization, D.C. and B.F.; methodology, B.F. and D.C.; software, P.D. and X.H.;
validation, X.H., D.C. and D.W.; formal analysis, P.D.; investigation, B.F.; resources, P.D.; data curation, B.F.;
writing—original draft preparation, P.D. and B.F.; writing—review and editing, D.C. and D.W.; visualization, X.H.;
supervision, D.C.; project administration, D.C. and D.W.; funding acquisition, D.C. and D.W. All authors have
read and agreed to the published version of the manuscript.

Funding: This work is partially supported by the Liaoning Natural Science Foundation under grant no.
20170540320, the Fundamental Research Funds for the Central Universities under grants no. N161702001,
no. N2017010 and no. N172410005-2.

Acknowledgments: We would like to thank the anonymous reviewers for their careful reading and useful
comments that helped us to improve the final version of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tsugawa, S. Empirical Analysis of the Relation between Community Structure and Cascading Retweet
Diffusion. In Proceedings of the International AAAI Conference on Web and Social Media, Munich, Germany,
11–14 June 2019; Volume 13, pp. 493–504. Available online: https://www.aaai.org/ojs/index.php/ICWSM/

article/view/3247 (accessed on 11 August 2020).
2. Weng, L.; Menczer, F.; Ahn, Y.-Y. Virality prediction and community structure in social networks. Sci. Rep.

2013, 3, 2522. [CrossRef] [PubMed]
3. Centola, D. The spread of behavior in an online social network experiment. Science 2010, 329, 1194–1197.

[CrossRef] [PubMed]
4. De Arruda, G.F.; Barbieri, A.L.; Rodriguez, P.M.; A Rodrigues, F.H.; Moreno, Y.; Costa, L.D.F. Role of centrality

for the identification of influential spreaders in complex networks. Phys. Rev. E 2014, 90. [CrossRef]
[PubMed]

5. Richardson, M.; Domingos, P. Mining knowledge-sharing sites for viral marketing. In Proceedings of the
8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, AB,
Canada, 23–26 July 2002; pp. 61–70.

6. Probst, F.; Grosswiele, D.-K.L.; Pfleger, D.-K.R. Who will lead and who will follow: Identifying influential
users in online social networks. Bus. Inf. Syst. Eng. 2013, 5, 179–193. [CrossRef]

7. Lu, Z.; Zhang, W.; Wu, W.; Fu, B.; Du, D.Z. Approximation and Inapproximation for the Influence
Maximization Problem in Social Networks under Deterministic Linear Threshold Model. In Proceedings of
the 31st International Conference on Distributed Computing Systems Workshops, Minneapolis, MN, USA,
20–24 June 2011.

8. Livstone, M.S.; Breitkreutz, B.J.; Stark, C.; Boucher, L.; Tyers, M. The biogrid interaction database. Nat. Preced.
2011. [CrossRef]

9. Roy, M.; Pan, I. Lazy Forward Differential Evolution for Influence Maximization in Large Data Network.
SN Comput. Sci. 2020, 1, 1–6. [CrossRef]

10. Dospinescu, O.; Anastasiei, B.; Dospinescu, N. Key Factors Determining the Expected Benefit of Customers
When Using Bank Cards: An Analysis on Millennials and Generation Z in Romania. Symmetry 2019, 11,
1449. [CrossRef]

11. Liu, B.; Cong, G.; Zeng, Y.; Xu, D.; Chee, Y.M. Influence spreading path and its application to the time
constrained social influence maximization problem and beyond. IEEE Trans. Knowl. Data Eng. 2014, 26,
1904–1917. [CrossRef]

12. Hamilton, W.L.; Ying, R.; Leskovec, J.J. Representation learning on graphs: Methods and applications. arXiv
2017, arXiv:1709.05584.

https://www.aaai.org/ojs/index.php/ICWSM/article/view/3247
https://www.aaai.org/ojs/index.php/ICWSM/article/view/3247
http://dx.doi.org/10.1038/srep02522
http://www.ncbi.nlm.nih.gov/pubmed/23982106
http://dx.doi.org/10.1126/science.1185231
http://www.ncbi.nlm.nih.gov/pubmed/20813952
http://dx.doi.org/10.1103/PhysRevE.90.032812
http://www.ncbi.nlm.nih.gov/pubmed/25314487
http://dx.doi.org/10.1007/s12599-013-0263-7
http://dx.doi.org/10.1038/npre.2011.5627.1
http://dx.doi.org/10.1007/s42979-020-0121-x
http://dx.doi.org/10.3390/sym11121449
http://dx.doi.org/10.1109/TKDE.2013.106


Mathematics 2020, 8, 1554 19 of 19

13. Perozzi, B.; Al-Rfou, R.; Skiena, S. DeepWalk: Online Learning of Social Representations. In Proceedings of the
20th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (NY, USA) (KDD ’14); ACM: New York,
NY, USA, 2014; pp. 701–710.

14. Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; Mei, Q. LINE: Large-Scale Information Network Embedding.
In Proceedings of the 24th Int. Conf. on World Wide Web, Florence, Italy, 18–22 May 2015; IW3C2.
pp. 1067–1077.

15. Grover, A.; Leskovec, J. node2vec: Scalable Feature Learning for Networks. arXiv 2016, arXiv:1607.00653.
16. Cao, S.; Lu, W.; Xu, Q. Grarep: Learning graph representations with global structural information.

In Proceedings of the 24th ACM International on Conference on Information and Knowledge
Management-CIKM ’15, Melbourne, Australia, 19–23 October 2015. [CrossRef]

17. Zhou, D.; He, J.; Yang, H.; Fan, W. SPARC: Self-Paced Network Representation for Few-Shot Rare Category
Characterization. In Proceedings of the 24th ACM SIGKDD International Conference, London, UK,
19–23 August 2018.

18. Feng, L.P.; Wang, H.B.; Feng, S.Q. Improved SIR model of computer virus propagation in the network.
J. Comput. Appl. 2011, 31, 1891–1893.

19. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space.
arXiv 2013, arXiv:1301.3781.

20. Schmidt, C.W. Improving a tf-idf weighted document vector embedding. arXiv 2019, arXiv:1902.09875.
21. Chang, C.-Y.; Lee, S.-J.; Lai, C.-C. Weighted word2vec based on the distance of words. In Proceedings of the

2017 International Conference on Machine Learning and Cybernetics (ICMLC), Ningbo, China, 9–12 July 2017;
Volume 2, pp. 563–568.

22. Kitsak, M.; Gallos, L.K.; Havlin, S.; Liljeros, F.; Muchnik, L.; Stanley, H.E.; Makse, H. AIdentification of
influential spreaders in complex networks. Nat. Phys. 2010, 6, 888–893. [CrossRef]

23. Bollobás, B. Graph Theory and Combinatorics: Proceedings of the Cambridge Combinatorial Conference in Honour of
Paul Erdös, Trinity College, Cambridge, 21–25 March 1983; Academic Press: Cambridge, MA, USA, 1984.

24. Leskovec, J.; Kleinberg, J.; Faloutsos, C. Graph evolution: Densification and shrinking diameters. ACM Trans.
Knowl. Discov. Data 2007, 1, 2-es. [CrossRef]

25. Adamic, L.A.; Glance, N. The political blogosphere and the 2004 U.S. election: Divided they blog.
In Proceedings of the 3rd International Workshop on Link Discovery, Chicago, IL, USA, 21–25 August 2005;
ACM: New York, NY, USA; pp. 36–43.

26. Opsahl, T.; Agneessens, F.; Skvoretz, J. Node centrality in weighted networks: Generalizing degree and
shortest paths. Soc. Netw. 2010, 3, 245–251. [CrossRef]

27. Rossi, R.A.; Ahmed, N.K. The Network Data Repository with Interactive Graph Analytics and Visualization.
In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA,
25–30 January 2015; AAAI Press: Menlo Park, CA, USA, 2015.

28. Rual, J.F.; Venkatesan, K.; Hao, T.; Hirozane-Kishikawa, T.; Dricot, A.; Li, N.; Berriz, G.F.; Gibbons, F.D.;
Dreze, M.; Ayivi-Guedehoussou, N.; et al. Towards a proteome-scale map of the human protein-protein
interaction network. Nature 2005, 437, 1173–1178. [CrossRef] [PubMed]

29. Fortunato, S. Community detection in graphs. Phys. Rep. 2011, 486, 75–174. [CrossRef]
30. Newman, M. Networks: An Introduction; Oxford University Press, Inc.: Oxford, UK, 2010.
31. Feixiong, L.; Liang, M.A. Heuristic ant search algorithm for Graph coloring problem. Comput. Eng. 2007, 33,

191–192.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2806416.2806512
http://dx.doi.org/10.1038/nphys1746
http://dx.doi.org/10.1145/1217299.1217301
http://dx.doi.org/10.1016/j.socnet.2010.03.006
http://dx.doi.org/10.1038/nature04209
http://www.ncbi.nlm.nih.gov/pubmed/16189514
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Concepts 
	Social Influence Maximization (SIM) Problem 
	Node Embedding 

	Centrality Analysis 
	Centrality Measure 
	Point Coloring Theory 
	Susceptible-Infected-Recovered (SIR) Model 

	The Overall Approach 
	Proposed Node-Embedding Approach 
	Key Node Selection 

	Experimental Analysis 
	Datasets 
	Comparing Algorithms 
	The Experimental Results 

	Conclusions 
	References

