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Abstract: This work presents an initial analysis of using bijective mappings to extend the Theory of
Functional Connections to non-rectangular two-dimensional domains. Specifically, this manuscript
proposes three different mappings techniques: (a) complex mapping, (b) the projection mapping,
and (c) polynomial mapping. In that respect, an accurate least-squares approximated inverse mapping
is also developed for those mappings with no closed-form inverse. Advantages and disadvantages
of using these mappings are highlighted and a few examples are provided. Additionally, the paper
shows how to replace boundary constraints expressed in terms of a piece-wise sequence of functions
with a single function, which is compatible and required by the Theory of Functional Connections
already developed for rectangular domains.
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1. Introduction

The Theory of Functional Connections (TFC) is a mathematical methodology to perform functional
interpolation, i.e., the process of deriving functionals, called constrained expressions, which contain the
constraints of the problem already embedded on their expression. To give an example, consider the
following univariate functional y(x, g(x)),

y(x, g(x)) = g(x) +
2g(−3)− 2g(π) + (9− π2)(1− g′(1))

2π − π2 + 15
x+

+
g(π)− g(−3) + (π + 3)(1− g′(1))

2π − π2 + 15
x2,

(1)

where x is the independent variable, g is a function of x, and (′) indicates first derivative. This functional
always simultaneously satisfies the following two constraints,

y(−3) = y(π) and y′(1) = 1,

no matter what the g(x) function is. Function g(x), called free function, can be any kind of function,
including discontinuous or the Dirac functions, as long as it is defined where the constraints are specified.
In this example: g(−3), g(π), and g′(1) must be defined. A mathematical proof [1] has shown that
constrained expressions, like the one given in Equation (1), can be used to represent the whole set of
functions satisfying the set of constraints they are derived for.

The TFC has been mainly developed [1–4] to better solve constraint optimization problems, such as
ODEs [5–8], PDEs [4,9], or programming [10,11], with effective applications in optimal control [12,13],

Mathematics 2020, 8, 1593; doi:10.3390/math8091593 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0003-0787-4547
https://orcid.org/0000-0002-8507-4679
http://www.mdpi.com/2227-7390/8/9/1593?type=check_update&version=1
http://dx.doi.org/10.3390/math8091593
http://www.mdpi.com/journal/mathematics


Mathematics 2020, 8, 1593 2 of 21

as well as in machine learning [4,14,15]. In fact, a constrained expression restricts the whole space
of functions to the subspace fully satisfying the constraints. This way, a constraint optimization
problem can be solved using simpler, faster, more robust and accurate methods already developed and
optimized to solve unconstrained optimization problems.

In this work we focus on the application mapping tools to extend the Theory of Functional
Connections to non-rectangular domains in two dimensional spaces. This is done via domain mapping.
In particular, three distinct domain mappings are analyzed. These are:

• Complex mapping: which is based on using the properties of complex analytical functions to
generate conformal mappings.

• Projection mapping: a new method proposed in this paper to obtain simple bijective mappings
that preserve the continuity through the transformation.

• Polynomial mapping: based on the interpolation of the transformation using polynomial
basis functions.

These three mappings are the subjects of the first three sections of this manuscript.
These transformations are studied considering the direct and inverse mappings defined as:

1. Direct mapping: from rectangular domain Z (coordinates [a, b] if real, or z = a + i b, if complex
with a, b ∈ [−1,+1]) to generic domain W (coordinates [x, y] if real, or w = x + i y, if complex).

2. Inverse mapping: from domain W to domain Z.

The reason this paper is specifically interested in the mapping from/to the Z rectangular domain
relies on the fact that the TFC has been fully developed for rectangular domains [1–3]. Therefore,
the main purpose of this study consists of developing easy mappings between the unit-square domain
and any other domain, where the flexibly can accommodate typical domains appearing in physics,
science, and engineering problems. Examples of this include computation of structures with “C”,
“I”, and “T” shapes, the simplification of differential equations, or its application in fluidynamics.
In other words, by obtaining these mappings, the TFC framework is consequently extended to
generic domains.

In addition, this work extends the application of the TFC to discontinuous boundary constraints,
which appear in the projection mapping and may also appear in some other applications. This has
been done by replacing the discontinuous sequence of boundary contraint functions with a single
function. Finally, a least-squares method to approximate inverse transformations is provided for those
mapping transformations with no analytical inverse.

2. Complex (Conformal) Mapping

In mathematics, a conformal mapping is a transformation that, locally, preserves angles, but not
necessarily lengths. In particular, the conformal property is mathematically described in terms of
the Jacobian of a coordinate transformation. If the Jacobian at each point is a positive scalar times
a rotation matrix, then the transformation is defined as conformal. Since any function of a complex
variable, w = f (z), provides a complex variable, then a complex function can be seen as a complex
change of variables or, from a different point of view, as a mapping in a complex Euclidean plane [16].
In particular, any complex mapping, w = f (z), is mathematically proven to be conformal, i.e., it is
a transformation preserving (signed) angles, meaning, local orientations.

Conformal (angle-preserving) and area/volume-preserving mappings are particularly important
transformations since they are very interesting for their applications in physics, science,
and engineering. For instance, these mappings are used to transform differential equations in order to
simplify the system and make it easier to solve [16].

A generic complex analytical mapping can be expressed as,

w = wr + i wi = f (z) = f (zr + i zi) = fr(zr, zi) + i fi(zr, zi), (2)
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where z, w ∈ C, zr, zi, wr, wi ∈ R represent the original and transformed points, and f : C→ C
is the transforming function, where fr, fi : R→ R are the real and imaginary parts of the
transformation. Examples of some basic complex mappings are: (1) Translation, w = z + zt,
(2) Scaling, w = ρ z, (3) Rotation, w = ei φ z, (4) Affine, w = α z + β, (5) Inversion, w = 1/z,
(6) Exponential, w = ez, (7), Squaring, w = z2, (8) Cayley, w = (z − 1)/(z + 1), and (9) Möbius
(linear fractional), w = (α z + β)/(γ z + δ), which is subject to α δ 6= β γ. In particular, the set of
Möbius mapping includes, as a subset, translations, scalings, affines, inversions, and Cayley mappings.

Figure 1 shows the effect of inversion (w = 1/z), exponential (w = ez), squaring (w = z2),
and Möbius mappings for z = a + i b within the a, b ∈ [−1,+1] domain. In particular, the Möbius
mapping was selected with α = −3.8 + 4.4 i, β = 3.4− 0.2 i, γ = 1, and δ = −0.6 + 3.8 i. These values
were obtained by selecting γ = 1 and imposing the mapping

z1 = −1− i → w1 = 2− 3 i

z2 = +1− i → w2 = 3− i

z3 = +1 + i → w3 = i

allowing the computation of α, β, and δ. The Möbius mapping can be seen as the stereographic
projection from the plane to a rotated and translated unit-sphere. The Möbius mapping plays
a particularly important role in the conformal complex mapping because: (1) it admits a closed-form
expression for the inverse mapping and (2) is the composition or the most basic transformations of
the space, including similarities, orthogonal transformations, and inversions. Also and for several
dimensions equal or higher than 3, Liouville’s theorem states that Möbius transformations are the
unique transformations that are conformal.

Figure 1. Examples of complex conformal mappings.

2.1. Control Points in Complex Conformal Mapping

Given a set of n complex control points, wi with i ∈ {1, . . . , n}, in the W domain associated
with n corresponding boundary reference points, zj with j ∈ {1, . . . , n}, in the unit-square Z domain,
the transformation,

w(z) = wi φi(z) where φi(zj) = δij (3)

is a n-point complex conformal mapping. In this equation, φi(z) are a set of switching functions related
to the reference points, zj. In particular, Let select n = 4 control points (red markers on the top-left plot
of Figure 2) defined by,

reference points:


z1 = −1− i

z2 = +1− i

z3 = +1 + i

z4 = −1 + i

control points:


w1 = 0

w2 = +5− 2 i

w3 = +6 + 8 i

w4 = −2 + 4 i

. (4)
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The switching functions, φi(z), are expressed as a linear combination of n complex support
functions. For the sake of simplicity, let the support functions be selected as complex monomials.
The main reason for that is the simple closed-form expression of derivatives and integrals for this set of
functions. Please note that since any set of n linearly independent functions can be selected as support
functions, this provides additional degrees of freedom that are not analyzed in this study. Therefore,
using complex monomial, the switching functions are expressed as,

φi(z) = cij zj−1

where cij are a set of constants to be found. Since the switching property states that φi(zj) = δij, we
can derive the following expression,

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

 =


1 1 1 1
z1 z2 z3 z4

z2
1 z2

2 z2
3 z2

4
z3

1 z3
2 z3

3 z3
4


−1

=
1

16


4 −2 + 2i −2i 1 + i
4 2 + 2i 2i −1 + i
4 2− 2i −2i −1− i
4 −2 + 2i 2i 1− i

 ,

which provides the coefficients needed for the direct (Z →W) mapping given in Equation (3).

Figure 2. Rubber effect on the W domain by the TFC free function.

It is important to outline that in general complex mapping may not be bijective, which makes
impossible to find an inverse transformation for the whole domain. However, due to the switching
functions, the inverse mapping always exists for the control points. When the complex mapping is
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bijective, then a least-squares approximated inverse mapping using a basis of complex orthogonal
polynomials and presented in Section 5 can be used.

2.2. Complex TFC Mapping

We can generalize the previous result by using the Theory of Functional Connections. In particular,
the functional,

w(z, g(z)) = g(z) +
n

∑
i=1

[wi − g(zi)] φi(z), (5)

where g(z) is a free complex function (where the g(zi) must be defined), can be seen as the most
general expression that defines the conformal mapping between the control points in Z and W. In fact,
Equation (5) represents the TFC functional generalization of Equation (3).

Figure 2 shows one effect of the free function in the complex mapping defined by the control
points from Equation (4). The free function modifies the domain while the conformal property is
still preserved. The top-left plots of Figure 2 shows a grid of orthogonal lines in the Z domain,
while the top-center plot shows the lines mapped in the corresponding W domain using g(z) = 0,
i.e., using Equation (3), and the control points given in Equation (4). The free function does not
change the mapping of the control points. The points mapping is the constraint embedded in
Equation (5). The top-right plot shows the mapped W domain obtained using the free function
g(z) = sin(3z/2) + cos(3z/2), i.e., applying Equation (5). This shows the free function “rubber” effect
on the W domain. While the top figures use four control points (red dots), the bottom plots are obtained
for eight control points distributed along a circle and using for the free function, the expression
g(z) = sin(z2) e−z2

. This example highlights that the selection of control points is not completely free
because they often produce non-bijective mappings (points in the W domain may be associated with
multiple points in the Z domain). Non-bijective mappings may occur when one or more control points
fall inside the W domain.

Equation (5) highlights the fact that the free function can be used not only to derive functional
satisfying constraints, but also to warp domains (rubber effect). The free function, however, is not
anymore completely free if the important bijective property (see the bottom-right of Figure 2) must
be preserved.

3. Projection Mapping

In this section, a transformation method based on a projection that preserves the continuity of the
space and provides both the direct and the inverse mappings is presented. However, and due to its
nature, the conformal property is not maintained by this mapping approach.

Projection mapping is based on the selection of a set of points (the projection points) inside the
boundaries of the domain in such a way that a straight segment can be defined between any point in
the domain and at least one projection point, where this segment does not cross at any moment any of
the boundaries of the domain. This means that the distances from these projection points to the points
at the boundary can be expressed as a continuous function, or in other words, if δΩ represents the
boundary of the domain, the projection is well defined if and only if δΩ = δΩ(θ) is a bijective function
where θ is the polar angle coordinate of a given point in δΩ with respect the projection point.

The most interesting feature of the projection mapping is that, using an identical formalism,
the direct and the inverse mapping transformations can be derived (isomorphism). If the projection
points are selected properly, the continuity of the transformation can be assured; however, in general,
the derivative of this transformation is not defined in the whole domain and thus, the transformation
is not conformal.

To show the methodology in a clearer manner, we first present the case of a single projection point.
Then, we use this result to generalize the methodology for the case of multiple projection points.



Mathematics 2020, 8, 1593 6 of 21

3.1. Single-Point Projection Mapping

The idea of this methodology is to perform a linear transformation in polar coordinates with
respect to a projection point that lies inside the domain. While the projection mapping can be applied
to any dimensional domains, to be consistent with the complex conformal mapping, the analysis is
here restricted to bivariate domains.

Let {r, θ} be the polar coordinates with respect to the projection point defined in the space Z of
a given point inside the domain, and let {d, φ} be the polar coordinates of that point with respect to the
transformed projection point in the space W. As said before, the projection points are selected in such
a way that it is possible to connect univoquely and with a straight line any point in the boundary with
the selected projection point. Therefore, for any point inside the square boundary of Z, the distance
from the projection point to the boundary can be defined as rb(θ) = f (θ) where f is a continuous but
not differentiable function. In the same way, if the distances from the projection point to the boundaries
in W can be expressed as db(φ) = g(φ), then, the following direct transformation can be defined:

φ = θ;

d = db(θ)
r

rb(θ)
. (6)

This represents a transformation that maintains both the polar angle to the point as well as the
ratio between the distances from the projection points to the point to transform and to the point in the
boundary located at a polar angle θ from the projection point, i.e.,: d/db(θ) = r/rb(θ). In the same
way, the inverse transformation can be defined by inverting the previous relation, or by applying the
same formalism for the inverse transformation:

θ = φ;

r = rb(φ)
d

db(φ)
. (7)

Equations (6) and (7) allow performing a the projection transformation using a simple
transformation. Nevertheless, in some applications it is useful to define the boundary in W as a given
polygon defined by a set of control points. Therefore, we include in this section the algorithm to
generate a transformation mapping between a set of n control points. In this case, and since we are
using the control points as the reference to perform the transformation, the angles in both mappings
are in general not equal as in the previous equations. In particular, a linear interpolation in the angle
between the control points and the projection point is performed in order to maintain the continuity of
the transformation.

Let a and b be the coordinates in Z of a given point inside the original domain that is required to
be transformed, and x and y be the coordinates in W of the transformed point. Moreover, c = {ca, cb},
υ = {υx, υy} are the coordinates of the projections points in Z and W respectively, while {pa(j), pb(j)},
and {qx(j), qy(j)}, with j ∈ {1, . . . , n + 1}, are the coordinates of the n control points defined in Z and
W respectively plus the first one repeated in order to close the polygon. Please note that the control
points have to be consecutive, i.e., it must be possible to generate the polygon by linking the control
points in the order provided.

The transformation process follows these steps:

1 The polar coordinates of the point with respect to the projection point in Z are computed.
2 We determine the region from the domain in Z in which the point is located. In that regard, each

region is defined by the triangle formed between the projection point and two consecutive control
points in Z. This is done using the polar angle boundaries of the region.
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3 We compute the distance from the projection point in Z to the intersection between the straight
line passing through the projection point and the point to transform, and the boundary of the
domain in Z. This provides the value rb.

4 We determine the transformed region in W. This is done knowing that the control points
{pa(j), pb(j)}, are the transformed versions of {qx(j), qy(j)} in their respective spaces.

5 A linear interpolation in the polar angle is performed between the original point and the angle
boundaries of the regions in which the point is located. This step provides the polar angle φ.

6 We compute the distance between the projection point in W and the intersection between the
straight line with angle φ passing through the projection point, and the boundary of the domain
in W. This provides the value db.

7 The distance of the transformed point to its projection point d is obtained by applying the relation
seen in Equation (6).

A more in detail description of the operations required to transform {a, b} into {x, y} is presented
in Algorithm 1. On the other hand, the inverse transformation is equivalent to the process presented
so we do not repeat it in here. Finally, it is important to note that since the transformations used in
the projection mapping are in fact linear transformations, the transformation is always bijective if the
condition about the definition of the projection point with respect to the boundary is met.

As an example of this method, Figure 3 (right) presents the result of applying the transformation
(direct and inverse) to the control points provided by Table 1 and the projecting points c = {0, 0} and
υ = {0, 0}. As it can be seen, the polynomial in W resembles a “T” shape, where each consecutive
pair of control points generates a region where the transformation is continuous and differentiable.
However, at the boundaries between regions the transformation stops to be differentiable, although it
maintains the property of continuity.

Figure 3. Examples of projection mapping for “C”, “I”, and “T” beam shape domains.

Table 1. Control points for the “T” beam shape transformation.

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

pa −1 −0.5 0 0.5 1 1 1 1 1 0.5 0 −0.5 −1 −1 −1 −1 −1
pb −1 −1 −1 −1 −1 −0.5 0 0.5 1 1 1 1 1 0.5 0 −0.5 −1

qx −2 −1 −1 −1 0 1 1 1 2 3 3 3 0 −3 −3 −3 −2
qy −1 −1 −4 −7 −7 −7 −4 −1 −1 −1 0 1 1 1 0 −1 −1

3.2. Multiple-Point Projection Mapping

There are cases in which it is not possible to generate a function db(φ) = g(φ) as in the previous
case due to the shape of the domain in W. This happens for instance when the domain boundary
cannot be represented as a function in polar coordinates from the projection point. Nevertheless,
in these situations it is possible to solve this problem using a set of projection points instead of just
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one; however, some considerations regarding the continuity of the transformation must to be taken
into account first. In that regard, and as a first approach to deal with this situation, we could think on
finding the smallest number of projection points required to cover the whole domain. This represents
in effect the so-called “art gallery problem”. The “art gallery problem” (known also as the museum
problem) is a problem in computational geometry providing the solution for the minimum number of
required points to cover the complete domain. Its name comes from the real-world problem of placing
the minimum number of guards in an art gallery such that, all together, can observe the whole gallery.
This problem was first solved by Chvátal in 1975 [17], but Fisk, in 1978, provided such a brilliant and
short proof [18] that Paul Erdős decided to include it in “The BOOK”, an imaginary book in which God
keeps the most elegant proof of each mathematical theorem. This book was then published after Erdős
dead [19]. The solution to this problem states that bn/3c guards are always sufficient and (sometimes)
necessary to guard a simple polygon with n vertices. In general these points are in the boundary of the
polygon and thus, although the theorem is interesting, it is not really practical for most applications
since it distributes points more densely in the boundaries of the domain in W rather than obtaining
a more uniform distribution of points.

Therefore, instead of focusing on identifying the smallest number of projection points required,
in this work we deal with the problem on how to separate both domains (in Z and W) in a set of regions,
one for each projecting point, in such a way that the property of continuity is preserved through the
transformation. Once these regions are defined, we proceed as in the case of single-point projection
mapping. Please note that by doing that, each time that a point is transformed, the method requires
to determine the region, from the ones defined, to which it belongs. This can be done, for instance,
by using the transformation for each of these regions checking if the point is inside the region in the
Z space.

Let δΩ be the boundary in W of a given domain. Then, connecting with a line two points in δΩ
implies connecting two points in the boundary of Z since during the transformation the boundary in
one space transforms into the boundary on the other space. For instance, from Figure 4, if we select the
points A and B from W, we know that both points belong to the boundary in Z and also, both points
can be connected through a curve in Z and W. Then, if we use just straight lines as curves, this means
that A and B in Z must be in a different side of the square boundary in order to define a region of
area different to zero. The same can be said with the points C and D. Following this procedure, it is
possible to generate four regions in which each projection point can cover completely its own region.
At this point, it is important to note that the boundary between regions 1 and 4 is the curve between A
and B in both spaces. In the same way, regions 3 and 4 have a boundary in the curve between A and C,
while in regions 2 and 4 the boundary in common is defined by the curve between B and D. This means
that since the transformation is continuous inside the regions and at the boundaries of these regions,
then, the whole transformation is continuous in the whole domain. This process can be continued
even using the boundaries between these defined regions. This means that, for instance, if region 4 is
split in half vertically, a point in the curve between A and B will be part of the new boundary created
between regions 4’ and 4”, while another point in the boundary should be in δΩ between C and D.

Figure 4. Definition on region for multi-point projection mapping.
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To present an example of application for the case of multiple projection points, we apply this
methodology to the “C” and “I” beam transformations shown in Figure 3 . To that end, we know that
for these cases we can cover all the domain with two projection points. Moreover, and since both
figures are symmetric with respect b = 0 and y = 0 respectively, we use this line as the boundary
between the two regions in which to apply Algorithm 1. In particular, for the case of the “C” beam
shape, we define the control points for the two defined regions in Table 2, where the projecting points
used are c1 = {0, 0.5}, c1 = {0,−0.5}, υ1 = {0, 3i}, and υ2 = {0,−3i}. Figure 3 shows the result of
the transformation.

Algorithm 1: Direct transformation by projection mapping using a set of n control points.

Inputs: control points {pa(j), pb(j)}, and {qx(j), qy(j)}; projection points c = {ca, cb}, and
υ = {υx, υy}; and point in Z to transform {a, b}.

Output: transformed point {x, y} in W.
Angle and distance with respect to the projecting point in Z:
θ = atan2(b− cb, a − ca); r2 = (a− ca)2 + (b− cb)

2;
for j = 1 to j = n do

Angle boundaries of the region in Z:
θmin = atan2(pb(j)− cb, pa(j)− ca); θmax = atan2(pb(j + 1)− cb, pa(j + 1)− ca);
∆θ = θmax − θmin mod (2π);

if ((θ ≥ θmin) and (θ ≤ θmax)) or ((θ ≥ θmin mod (2π)) and (θ ≤ θmax mod (2π))) then
Line passing through the projecting point in Z:
mp = (b− cb)/(a− ca); np = cb −mpca;
Line defining the boundary in Z:
mb = (pb(j + 1)− pb(j))/(pa(j + 1)− pa(j)); nb = pb(j)−mb ∗ pa(j);
Distance to the intersecting point in Z:
r2

b = ((np − nb)/(mb −mp)− ca)2 + (mb(np − nb)/(mb −mp) + nb − cb)
2;

Angle boundaries of the region in W:
φmin = atan2(qy(j)− υy, qx(j)− υx); φmax = atan2(qy(j + 1)− υy, qx(j + 1)− υx);
∆φ = φmax − φmin mod (2π);

Transformed angle:
φ = θ − θmin mod (2π); φ = φ∆φ/∆θ + φmin;
Line passing through the projecting point in W:
mp = tan(φ); np = υy − υxmp;
Line defining the boundary in W:
mb = (qy(j + 1)− qy(j))/(qx(j + 1)− qx(j)); nb = qy(j)−mbqx(j);
Distance to the intersecting point in W:
d2

b = ((np − nb)/(mb −mp)− υx)2 + (mb(np − nb)/(mb −mp) + nb − υy)2;
break;

end
end
Transformed point:
d = dbr/rb;
x = υx + d cos(φ); y = υy + d sin(φ);
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Table 2. Control points for the “C” beam shape transformation.

j 1 2 3 4 5 6 7 8 9 10

p′a 1 1 1 0.5 0 −0.5 −1 −1 −1 1
p′b 0 0.5 1 1 1 1 1 0.5 0 0

p′′a −1 −1 −1 −0.5 0 0.5 1 1 1 −1
p′′b 0 −0.5 −1 −1 −1 −1 −1 −0.5 0 0

q′x 1 1 2 3 3 3 1 −1 −1 1
q′y 0 2 2 2 3 4 4 4 0 0

q′′x −1 −1 1 3 3 3 2 1 1 −1
q′′y 0 −4 −4 −4 −3 −2 −2 −2 0 0

3.3. Maintaining the Density of Points during the Transformation

In some applications it is of interest to maintain the density of points through the transformation
between W and Z. This can be achieved easily using the projection mapping transformation proposed
by defining appropriately the control points in the square domain in Z.

Let n be the number of uniformly distributed points in W that are inside the problem domain
of area A. Let np be the number of points in a given region in W of area Aw that is defined by
two consecutive control points and the projection point. Then, since the points are uniformly
distributed: np/n = Aw/A. This argument can be also applied to the square domain in Z leading to:
np/n = Az/As where Az is the area defined by the transformed control points and the projection point
in Z, and As is the area of the square. This means that, since np/n is a fixed value in the transformation,
we have to impose that Az = As Aw/A in order to maintain the density of points. In other words,
the proportion of the area of each region with respect to the area of the domain must be equal in both
domains. Therefore, it is possible to select the two control points in the boundary of Z in such a way
that this area is maintained. For instance, if the area of a given region in W is 10% of the domain area,
and one of the control points in Z was already in the position {1, 0}, this means that the second control
point for that region should be {1, 0.8}. It is important to note that in general, these new control points
will not coincide with the corners of the square, and thus, additional control points in the square
(and their transformed equivalents in W) must be generated in order to define completely the domain
in Z.

3.4. Merging a Sequence of Boundary Functions into a Single Function

The strength of the projection mapping consists of providing the direct and inverse
transformations with the same formalism and with no approximation. This section solves a problem
arising from the application of the projection mapping when mapping the boundaries of the W-domain
back to the Z-domain. This may create a sequence of functions with no C1 continuity. This problem
appears, for instance, when we perform a transformation between polygons with different number
of sides. As a result of that, the continuity is lost for Newmann constraints. Because of this, there is
the need for representing a sequence of functions by a single boundary function, as required by the
TFC framework.

In this subsection using the Heaviside step function,

H(x) =

{
= 0 if x < 0

= 1 if x > 0
,

we show how to replace, with no approximation, a set of n contiguous piece-wise functions by a single
function that can be used in the TFC framework. In particular, no C 0 continuity is also considered as it
can be generated by imposing Newmann boundary constraints in the W-domain.
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Consider, for example, the boundary constraints described by the following set of four piece-wise
functions, each defined in contiguous ranges,

f1(x) = −1− 2 x in x ∈ [−1,−1/2]
f2(x) = 1 + 4(1 + x) x in x ∈ [−1/2, 0]
f3(x) = sin(5π x) in x ∈ [0, +1/2]
f4(x) = 4(1− x) x in x ∈ [+1/2,+1]

(8)

This piece-wise function is shown in the top plot of Figure 5; while the equivalent single function,
f (x), which is derived by the general equation,

f (x) = f1(x) +
n

∑
k=2

H(x− xk) [ fk(x)− fk−1(x)] (9)

applied for n = 4 piece-wise functions, is shown at the bottom plot of Figure 5. In particular,
this example includes, C 0 continuity (black marker) at x2 = −1/2, discontinuity (blue dashed line) at
x3 = 0, and C 0 and C 1 continuity (red marker) at x2 = 1/2.

Figure 5. Four functions given in Equation (8) (top) and equivalent single function given by
Equation (9) (bottom).

The function, f (x), computed using Equation (9) can be used, for instance, to describe a boundary
constraint at y = −1 in the 2-dimensional TFC matrix formulation [2,3],

f (x, y, g(x, y)) = g(x, y) + vT(x) [M( f (x))−M(g(x, y))] v(y) (10)

where the matrix tensor is simply,
M( f (x)) =

[
0, f (x)

]
(11)

and the switching vectors are,

v(x) = 1 and v(y) =
1
2

{
2

1− y

}
(12)



Mathematics 2020, 8, 1593 12 of 21

Therefore, the TFC functional is,

f (x, y, g(x, y)) = g(x, y) +
1− y

2
[ f (x)− g(x,−1)] (13)

The single function, f (x), can be used in the TFC framework to represent a boundary constraint.
Figure 6 shows two TFC surfaces using the single constraint boundary function, f (x), shown in red and
for two different expressions of the free functions: g(x, y) = 0 (left figure, most simple interpolating
surface) and g(x) = sin(5 x) ex cos(5 x) (right figure).

Figure 6. TFC surface examples obtained with g(x) = 0 (left) and g(x) = sin(5 x) ex cos(5 x) (right).

4. Polynomial Mapping

The polynomial mapping presented in this section is a well known mapping between two real
domains. This mapping is performed using a set of n polynomial (switching) functions and a set of n
boundary (control) points in the Z and W domains. While the proposed mapping can be applied to
any dimensional domains, to be consistent with the complex conformal mapping, the analysis is here
restricted to the bi-variate domains only.

Let the boundaries of two domains, Z and W, be identified by the following sequence of n
control points,

zk =

{
ak
bk

}
and wk =

{
xk
yk

}
where k ∈ {1, . . . , n} (14)

then, the direct mapping is provided by,{
x
y

}
=

n

∑
i=1

{
xi
yi

}
fi(a, b), (15)

where fi(aj, bj) = δij defines the switching property of the polynomials. This property gives the
points association relationship, [xi, yi] ↔ [ai, bi]. The n coefficients of the switching functions are
computed from the switching function property. For instance, consider the simplest example of n = 3
points (triangle) mapping. In this case, the mapping becomes linear, fi(a, b) = ci1 + ci2 a + ci3 b.
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The coefficients of the three switching functions (i = 1, 2, 3) are derived by imposing the switching
functions property,

1 = c11 + c12 a1 + c13 b1

0 = c11 + c12 a2 + c13 b2

0 = c11 + c12 a3 + c13 b3


0 = c21 + c22 a1 + c23 b1

1 = c21 + c22 a2 + c23 b2

0 = c21 + c22 a3 + c23 b3

and


0 = c31 + c32 a1 + c33 b1

0 = c31 + c32 a2 + c33 b2

1 = c31 + c32 a3 + c33 b3

(16)

or, in matrix form,c11 c12 c13

c21 c22 c23

c31 c32 c33


 1 1 1

a1 a2 a3

b1 b2 b3

 =

1 0 0
0 1 0
0 0 1

 →

c11 c12 c13

c21 c22 c23

c31 c32 c33

 =

 1 1 1
a1 a2 a3

b1 b2 b3


−1

(17)

In this example the mapping function is linear and, therefore, the inverse mapping function,{
a
b

}
=

n

∑
i=1

{
ai
bi

}
pi(x, y) (18)

where

pi(x, y) = ci1 + ci2 x + ci3 y →

c11 c12 c13

c21 c22 c23

c31 c32 c33

 =

 1 1 1
x1 x2 x3

y1 y2 y3


−1

(19)

is also linear. This is shown in Figure 7, where the direct mapping of a grid of points on the Z-domain
(small black dots, left plot) are mapped to the W-domain (red cicles, right plot) and then mapped back
to the Z-domain (red cicles, left plot).

Figure 7. 3-points polynomial mapping example.

Please note that in the polynomial mapping the linearity holds in all the cases when the number
of control points is equal to the dimensions of the mapping domain plus one. However, in the more
interesting general case, when the number of control points is greater, then the mapping becomes
nonlinear, with no closed-form inverse mapping expression. However, the mapping becomes more
flexible to describe complex domains. This is shown in the next subsection where the domain is
identified by four points.
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4.1. 4-Points Polynomial Mapping

The polynomial mapping using n = 4 points on bi-variate domains (quadrangular polygons) is
nonlinear. However, an inverse mapping is still possible to derive, as shown in Section 4.2. This means
that this non-linear mapping is bijective.

Again, the mapping is performed between the unit-square domain, (a, b) ∈ (−1,+1)× (−1,+1),
shown in top-left of Figure 8, and the quadrangular polygonal domain, defined by the four points,
xk = [0, 5, 6, −2] and yk = [0, −2, 8, 4], shown in top-right of Figure 8. In particular, the mapping has
been performed using a grid of 400 points.

The direct mapping, (a, b)→ (x, y), is,

x =
4

∑
k=1

xk fk(a, b) and y =
4

∑
k=1

yk fk(a, b) (20)

where the quadratic switching polynomial functions, fk, (a, b), have the following expressions,

f1(a, b) =
1
4
(1− a − b + a b)

f2(a, b) =
1
4
(1 + a − b− a b)

f3(a, b) =
1
4
(1 + a + b + a b)

f4(a, b) =
1
4
(1− a + b− a b)

(21)

Figure 8 shows the direct mapping to the quadrangular polygonal domain defined by the four
points (center figure), xk = [0, 1, 0, −1] and yk = [−1, 0, 1, 0], and to a domain obtained by rotating
clockwise by 30 deg. the Z control points (right figure). This has been done using a grid of 400 points.

Since this mapping transform lines to lines, the generic polygon side can be obtained simply by,

wij(t) = wi + t (wj −wi) where t ∈ [0,+1] (22)

Figure 8. Polynomial mapping examples with four control points.

4.2. 4-Points Inverse Mapping

The inverse mapping, (x, y)→ (a, b), can be obtained using the four boundary lines,{
w12(t1) = w1 + t1 (w2 −w1)

w43(t1) = w4 + t1 (w3 −w4)
and

{
w14(t2) = w1 + t2 (w4 −w1)

w23(t2) = w2 + t2 (w3 −w2)
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to obtain the two lines passing through the point (x, y),{
x
y

}
= w12(t1) + t2[w43(t1)−w12(t1)] = w14(t2) + t1[w23(t2)−w14(t2)]

or in a scalar form,

t1

{
x2 − x1

y2 − y1

}
+ t2

{
x4 − x1

y4 − y1

}
+ t1t2

{
x3 − x4 + x1 − x2

y3 − y4 + y1 − y2

}
=

{
x− x1

y− y1

}

which can be written as,

t1

{
Cx1

Cy1

}
+ t2

{
Cx2

Cy2

}
+ t1t2

{
Cx3

Cy3

}
=

{
Cx4

Cy4

}

Setting, 
A = Cx3 Cy2 − Cx2 Cy3

B = Cx1 Cy2 − Cx2 Cy1 + Cx4 Cy3 − Cx3 Cy4

C = Cx4 Cy1 − Cx1 Cy4

allows to write the solution in terms of a quadratic equation,

t2 =
−B +

√
B2 − 4AC

2 A
and t1 =

x− x1 − Cy2 t2

Cy1 + Cy3 t2

and finally,
a = 2 t1 − 1 and b = 2 t2 − 1

Please note that if Cx3 Cy2 = Cx2 Cy3, i.e., when A = 0, the problem becomes linear. For instance,
if Cx3 = Cy3 = 0, then the solution is simply provided by,[

Cx1 Cx2

Cy1 Cy2

]{
t1

t2

}
=

{
Cx4

Cy4

}
.

As it can be easily verified, this degeneration to a linear problem occurs when the W-domain is
rectangular and rotated by any angle.

4.3. 8-Points Polynomial Mapping

Constrained expressions for cubic quadrangular domains can be obtained by mapping the domain
(a, b) ∈ (−1, 1) × (−1, 1) unit-square domain to a cubic quadrangular domain (x, y), where each
quadrangular side is identified by three points. This non-linear mapping is given by,

x =
8

∑
k=1

xk fk(a, b) and y =
8

∑
k=1

yk fk(a, b) (23)
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where the cubic polynomials functions fk, (a, b) are the switching ( fi(aj, bj) = δij) functions,

f1(a, b) =
1
4
(a− 1)(1− b)(a + b + 1)

f2(a, b) =
1
2
(1− a2)(1− b)

f3(a, b) =
1
4
(a + 1)(1− b)(a− b− 1)

f4(a, b) =
1
2
(a + 1)(1− b2)

f5(a, b) =
1
4
(a + 1)(b + 1)(a + b− 1)

f6(a, b) =
1
2
(1− a2)(b + 1)

f7(a, b) =
1
4
(a− 1)(b + 1)(a− b + 1)

f8(a, b) =
1
2
(1− a)(1− b2)

(24)

The quadrangular boundaries can be obtained by setting a = ±1 and b = ±1, respectively.

c1(a) =
1
2
(a− 1)a

{
−1

−1

}
+ (1− a2)

{
0

−1

}
+

1
2
(a + 1)a

{
1

−1

}

c2(b) =
1
2
(b− 1)b

{
1

−1

}
+ (1− b2)

{
1

0

}
+

1
2
(b + 1)b

{
1

1

}

c3(a) =
1
2
(a− 1)a

{
−1

1

}
+ (1− a2)

{
0

1

}
+

1
2
(a + 1)a

{
1

1

}

c4(b) =
1
2
(b− 1)b

{
−1

−1

}
+ (1− b2)

{
−1

0

}
+

1
2
(b + 1)b

{
−1

1

}
(25)

Figure 9 shows the transformation of 900 points from the Z domain (top-left) to five different
domains in W defined by the boundary control points,

Top-center→

xk =
{

0, 5, 6, −2, 2, 4, 2, 1
}T

yk =
{

0, −2, 8, 4, −2, 4, 7, 2
}T (26)

Top-right→
{

xk = 3 cos((k− 1)π/4)

yk = 3 sin((k− 1)π/4)
where k = 1, · · ·, 8

Bottom-left→

xk =
{
−3, 0, 3, 3, 3, 0 −3, −3

}T

yk =
{
−3, −1, −3, −1, 1, 3, 1, −1

}T

Bottom-center→ Bottom-left points rotated by 5π/6 rad

Bottom-right→

xk =
{
−4, −2, 0, 2, 4, 4 cos(π/4), 0, −4 cos(π/4)

}T

yk =
{

0, 0, 0, 0, 0, 4 cos(π/4), 4, 4 cos(π/4)
}T

Specifically, the points in the top-right figure are selected as counter-clockwise points rotated by
45 deg. The (cubic) boundary is not analytically circular, but it differ from it by roughly 1%. Using more
points a circular domain can be approximated with higher level of accuracy.
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Figure 9. Polynomial mapping examples with 8 control points.

Unfortunately, the inverse of the polynomials mapping using 8 points has not been found.
Because of this, the following section provides a least-squares procedure to estimate an approximated
inverse mapping for the 8 (or more) points polynomial mapping as well as for complex conformal
mapping with no inverse mapping.

5. Approximate Least-Squares Inverse Mapping

Inverse mappings always exist for the projection mapping, only. In fact and in general,
complex and polynomial mappings do not admit closed-form inverse. However, when the direct
mapping considered is bijective, then an approximated least-squares inverse mapping is proposed in
this section. The inverse mapping is needed because the existing TFC methodology has been developed
for any dimensional space and for a wide set of constraint types, but for rectangular domains,
only. Therefore, in order to apply the TFC framework to generic domains, an inverse mapping
function is required to map the problem domain into the Z rectangular domain where to apply the
TFC framework.

To that end, a least-squares approximate inverse mapping is proposed as a linear combination of
orthogonal polynomials,

ẑ = ξk ψk(w) (27)

where ψk(w) is the k-th orthogonal polynomial and where z and w are the complex coordinates that
can be used, for real mapping, as z = a + i b and w = x + i y.

Let z be the vector of N discretized points (e.g., grid or uniformly distributed) in the Z domain
and w = f (z) be the direct mapping. Then, Equation (27) can be specified for all the points and
a least-squares solution of the unknown coefficients vector, ξ, can be estimated. It is important to
outline that before applying this least-squares approach, translation and scaling might be necessary to
contain all the w points in a scaled domain in which the polynomial basis functions are defined as, for
instance, in the [−1,+1] range for Legendre or Chebyshev orthogonal polynomials.

Figure 10 shows the accuracy results for the proposed approximate inverse mapping using the
least-squares estimate. In this example, the same control points defined in Equation (4) have been used
with N = 121 grid points in the (−1,+1)× (−1,+1) Z-domain. The left figure shows the zi grid of
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points as little black dots. The mapping points set, [zi, wi], are then used to generate the approximate
inverse mapping using Equation (27). The inverse mapping estimates, ẑi, were obtained using 20
Chebyshev orthogonal polynomial functions, ψk(w). The ẑi estimates are shown, as small red circles,
in the left figure.

Figure 10. Approximate inverse function tests result.

To numerically validate the accuracy of this approximated inverse mapping, 100,000 Monte Carlo
tests were made with (uniformly distributed) random points in the Z domain. The histogram of the
error, |zi − ẑi| is shown in the right figure. The mean error, µ = 8.6464× 10−6, and 3σ = 4.0756× 10−5

error can be considered pretty good for most of the accuracy requirements in practical applications.
Please note that the approximate inverse transformation must be computed just once.

Also, various distributions of points can be selected by embedding the W domain into a slightly
larger rectangular domain. A grid distribution of points can be easily obtained for any convex W
domains and, using a more complex algorithm, for non-convex domains. Note also that, in general,
the bijection property of the transformation has to be checked for each particular mapping defined.
This is due to the impossibility to derive a general proof for all possible transformations that can be
generated using these approaches.

Figure 11 shows, for 57, 162, 488, and 1453 points, respectively, the selection of grid of points for the
top-center domain shown in Figure 2. Using a simple algorithm it is possible to obtain collocation-type
of points. This is show in the bottom plots of Figure 11 using the same number of points.

Figure 11. Points selection examples in the W domain: grid (top) and collocation (bottom).
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6. Procedure to Apply the Theory of Functional Connections to Non Rectangular Domain

This section summarizes, step-by-step, how to derive a constrained expression in the W domain
using the direct mapping function, w = f (z). In this section, z and w indicate either, the complex or
the (z ≡ [a, b] and w ≡ [x, y]) real coordinates in the Z and W domains.

1. The W domain (or subdomain, as those shown in Figure 4) is identified by four boundaries,
ci(w) = 0, along which the Dirichlet constraints are defined by the four functions, vi(w).

2. A set of Ng grid (or collocation-type) points within the W domain, wk, is computed (see Figure 11),
3. If the inverse function, z = f−1(w), is available (as, for instance, when using the projection

mapping or an invertible complex mapping) then the wk points are mapped back to the Z domain,
zk = f−1(wk). In the case the inverse mapping function is not available, then a least-squares
approximated inverse function, z = f̂−1(w), can be derived as described in Section 5.

4. A set of points, wb, belonging to the boundary, ci(wb) = 0, are computed. At these
points/coordinates the Dirichlet constraint has value vi(wb).

5. Using the inverse (or the approximated inverse) mapping function, zb = f−1(wb), the boundary
coordinates in the Z domain are computed. At these corresponding points the constraint values
are vi(wb).

6. The boundary constraints in the Z domain are obtained by interpolating the points [zb, vi(wb)]

and using a constrained expression to guarantee the continuity at the four corners, as explained
in [1].

7. A Coons patch [20] is then used to obtain the simplest interpolating surface satisfying the Dirichlet
boundary constraints in the Z domain. This means obtaining the surface, Sc(z), providing the
value at coordinate z.

8. A grid of points of the Sc(z) surface is then mapped to the W domain, wc = f (zc)

9. Finally, the TFC functional in the W domain is then given by,

S(w, g(w)) = Sc

(
f−1(w)

)
+ g(w)

4

∏
i=1

ci(w) (28)

Figure 12 presents an example using the W domain shown in the top-center of Figure 10 and
defined by Equation (26). To guarantee continuity at the W-domain corners, the four boundary
functions, ci(x, y) = 0, were derived using the surface,

V(x, y) = sin(π(x− y)/6) + cos(π(x− y)/5) + 2

This means that the equations, ci(x, y) = 0, describing the boundaries of the W-domain defined
by Equation (26) were used to derive the boundary constraints using the V(x, y) surface. For this
specific case, g(x, y) = 0, was used as free function.
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Figure 12. Example of the surfaces in the Z-domain (left) and in the W-domain (right).

7. Conclusions

This study consists of an initial investigation on how to apply the Theory of Functional
Connections, which was developed for rectangular domains in any dimensional space, to generic
domains in 2-dimensional spaces. This has been done by three distinct approaches: (1) complex
(conformal) mapping, (2) projection mapping, and (3) polynomial mapping. Discussions and examples
are provided to highlight the features of each one of these three mappings, such as, conformal property,
invertible property, or flexibility to describe different domains.

For the cases of bijective mappings where no analytical inversion is known, such as for some
complex mapping and for the polynomial mapping, a method to derive least-squares approximate
inverse mapping is provided. In addition, this study also describes how to replace constraint
boundaries defined by a sequence of different functions by a single equation. This is required to
derive a Coons patch in the Z domain.

This manuscript represents the first generalization of the Theory of Functional Connections
for non rectangular domains. As such, there is additional research to be performed to better clarify
details and to extend the methodology even more and to study its potential applications. For instance,
given a generic W domain (typically, polygonal or circular) of a real application, it would be interesting
to derive a general methodology to obtain the mapping that approximates the W domain boundaries
by least-squares or by some other optimization techniques. Another possible future research includes
the study of optimization techniques to search for the free function, g(w), which allows describing the
set of four Dirichlet boundary constraints.

In other word, this incomplete study has the purpose to initiate the extension of the Theory of
Functional Connections to non-rectangular domains.
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Abbreviations

The following abbreviations are used in this manuscript:

ODE Ordinary Differential Equation
PDE Partial Differential Equation
TFC Theory of Functional Connections
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