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Abstract: We study some topological properties of the class of supermodular n-quasi-copulas
and check that the topological size of the Dedekind–MacNeille completion of the set of n-copulas
is small, in terms of the Baire category, in the Dedekind–MacNeille completion of the set of the
supermodular n-quasi-copulas, and in turn, this set and the set of n-copulas are small in the set of
n-quasi-copulas.
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1. Introduction

The classical procedure in multivariate stochastic models assumes the existence of a suitable (joint)
probability distribution, expressed in terms of the univariate marginals and the copula, that provides
an accurate description of the phenomenon under consideration, and all subsequent computations
(i.e., risk calculations) are based on this model. However, in most practical cases, the joint distribution
is only partially known, and this model uncertainty should be taken into consideration. In particular,
various investigations have considered that we only know the marginal distributions, but do not know
the dependence structure, i.e., we do not know the copula.

These latter studies typically provide dependence uncertainty bounds for the copula and/or for
related functionals of the multivariate distributions. Their origin has a long history going back to
earlier works by Hoeffding and Fréchet (see, for instance, [1] and the references therein), but they have
been extended to many kinds of functionals of the joint distribution, especially related to quantile
estimation and risk calculation in finance and insurance (see, e.g., [2,3] and the references therein).
As a matter of fact, these bounds are in general not copulas, but quasi-copulas. Such objects were
introduced in [4,5] and characterized in analytical terms in [6,7] (for a complete overview, we refer
to [8,9]). Noticeably, the suprema and infima of copulas are actually quasi-copulas, although not all
quasi-copulas can be expressed in terms of lattice operations on copulas in dimensions greater than
three (see [10,11]).

Quasi-copulas have recently appeared in the study of the model-free procedure for pricing
financial instruments (see [3,12–14]). In fact, as underlined in [3], since the bounds on the dependence
structure of a given random vector X may not be copulas, then the results from stochastic order theory
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that translate the bounds on the copula of X into the bounds on the expectation of f (X) do not apply
directly, and some concepts need to be extended into the quasi-copula framework.

Motivated by the study of bounds for special classes of (quasi-)copulas, here, we focus
our attention on copulas, supermodular quasi-copulas (see, for instance, [15]), as well as their
Dedekind–MacNeille completion. In fact, these sets may represent natural frameworks where lattice
operations on copulas naturally lie. Our purpose is, hence, to study the relative size of these sets by
using the concept of the Baire category as considered, for instance, in [16–19]. Specifically, we will
determine the size of the Dedekind–MacNeille completion of the sets of copulas and supermodular
quasi-copulas with respect to the topology induced by the distance (or metric) d∞, i.e., the uniform
convergence in the set of quasi-copulas.

The paper is organized as follows. After recalling some preliminary definitions and notations
(Section 2), in Section 3, we present some properties related to supermodular quasi-copulas and show
that the set of supermodular quasi-copulas is compact under the metric d∞. In Section 4, we show that
the Dedekind–MacNeille completion of the set of copulas is small, in terms of the Baire category, in the
Dedekind–MacNeille completion of the set of the supermodular quasi-copulas, and in turn, this set
and the set of copulas are small in the set of quasi-copulas. Finally, Section 5 concludes.

2. Preliminaries

First, we recall some basic aspects about copulas and quasi-copulas (see, e.g., [20,21]).
Let n ≥ 2 be a natural number. We recall that an n-dimensional quasi-copula (briefly, n-quasi-

copula) is a function Q from [0, 1]n to [0, 1] satisfying:

(Q1) Boundary conditions: For every u = (u1, u2, . . . , un) ∈ [0, 1]n, Q(u) = 0 if at least one
coordinate of u is equal to zero; and Q(u) = uk whenever all coordinates of u are equal to
one, except maybe uk.

(Q2) Monotonicity: Q is nondecreasing in each variable.

(Q3) Lipschitz condition: For every u, v ∈ [0, 1]n, it holds that |Q(u)−Q(v)| ≤
n

∑
i=1
|ui − vi|.

The set of n-quasi-copulas will be denoted by Qn.
Quasi-copulas are generalizations of the concept of a copula, which is recalled here. An n-copula

is a function C from [0, 1]n to [0, 1] that satisfies the condition (Q1) for n-quasi-copulas and, in place of
(Q2) and (Q3), the stronger condition:

(Q4) n-increasing property: VC(B) := ∑(−1)k(c)C(c) ≥ 0 for every n-box B = ×n
i=1[ai, bi] in [0, 1]n,

where the sum is taken over all the vertices c = (c1, c2, . . . , cn) of B (i.e., each ck is equal to either
ak or bk), and k(c) is the number of indices k’s such that ck = ak.

The set of n-copulas will be denoted by Cn.
Every n-copula is an n-quasi-copula, and a proper n-quasi-copula is an n-quasi-copula, which is

not an n-copula—the set of proper n-quasi-copulas will be denoted by Qn\Cn.
If we consider the standard partial order among real-valued functions in the space of

quasi-copulas, then we can provide upper and lower bounds in Qn. In fact, every n-quasi-copula Q
satisfies the following condition:

Wn(u) := max
( n

∑
i=1

ui − n + 1, 0
)
≤ Q(u) ≤ min(u1, u2, . . . , un) =: Mn(u) for all u ∈ [0, 1]n

It is known that: (a) Mn is an n-copula for every n ≥ 2, (b) W2 is a two-copula, and (c) Wn is a
proper n-quasi-copula for every n ≥ 3. For several interesting similarities and differences between
copulas and proper quasi-copulas, see, for example, [22–27].

In the following, we will also consider some notions from lattice theory (see, e.g., [28]), which are
recalled here.
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Given two elements x and y of a partially ordered set (i.e., poset) (P,≤), let x ∨ y denote the join
(or the least upper bound) of x and y (when it exists); similarly for

∨
S, where S is a subset of P; x ∧ y

denotes the meet (or the greatest lower bound) of x and y (when it exists); and similarly for
∧

S. If the
join or meet is found within a particular poset P, we subscript

∨
P S. Given two posets A and B, we say

that A is join-dense (respectively, meet-dense) in B if, for every d in B, there exists a set S ⊆ A such
that d =

∨
B S (respectively, d =

∧
B S). A poset P 6= ∅ is a lattice if for every x, y in P, x ∨ y and x ∧ y

are in P; and P is a complete lattice if, for every S ⊆ P,
∨

S and
∧

S are in P.
If ϕ : P −→ L is an order-embedding (i.e., order-preserving injection) of a poset P into a complete

lattice L, then we say that L is a completion of P. Moreover, if ϕ maps P onto L, then ϕ is referred
to as an order-isomorphism (i.e., order-preserving bijection). We also have the following definition
(see [28]).

Definition 1. A completion P of a lattice L is called a Dedekind–MacNeille completion of L if P is join-dense
and meet-dense in L.

3. Quasi-Copulas and Related Subclasses

Now, we consider the class of quasi-copulas Qn equipped with the standard partial order
among real-valued functions. For any pair Q1 and Q2 of quasi-copulas (or copulas), Q1 ∨ Q2 =

inf{Q ∈ Qn |Q1 ≤ Q, Q2 ≤ Q} and Q1 ∧ Q2 = sup{Q ∈ Qn |Q ≤ Q1, Q ≤ Q2}. As is known
(see [10,11]),Qn is a complete lattice; however, Cn (respectively,Qn\Cn) is not even a lattice. We denote
by DM(Cn) the Dedekind–MacNeille completion of the set of n-copulas in Qn.

It is known that:

• the set of two-quasi-copulas Q2 is order-isomorphic to the Dedekind–MacNeille completion of
the set of two-copulas C2 (see [11]);

• for n ≥ 3, Qn is not order-isomorphic to DM(Cn) (see [10]).

In the quest for a suitable subset of quasi-copulas that may be order-isomorphic to DM(Cn),
supermodular quasi-copulas were considered in [15]. Here, we recall the definition of this concept
(see, e.g., [29]).

Definition 2. A function f : [0, 1]n → [0, 1] is called supermodular if, for all x, y ∈ [0, 1]n, it holds that
f (x ∨ y) + f (x ∧ y) ≥ f (x) + f (y).

The following result is a useful characterization of supermodular functions (see [30,31]). We recall
that for any u ∈ [0, 1]n and any set of indices A ⊂ {1, 2, . . . , n} with 0 < card(A) = k < n,
the k-dimensional section of a function f : [0, 1]n −→ [0, 1] with fixed values given by u at the positions
not in A is the function fu,A : [0, 1]k −→ [0, 1] defined by fu,A(x) = f (y), where yj = xj if j ∈ A and
yj = uj if j /∈ A.

Proposition 1. A function f : [0, 1]n → [0, 1] is supermodular if, and only if, all of its two-dimensional sections
are supermodular.

For n = 2, supermodularity and two-increasingness are equivalent. However, this is no longer
true for n ≥ 3 (see [22]). Furthermore, supermodularity together with the boundary conditions (Q1)
implies increasingness and one-Lipschitz continuity, whence the following result is obtained (see [22]).

Proposition 2. If S : [0, 1]n → [0, 1] is a supermodular function satisfying the condition (Q1) of an
n-quasi-copula, then S is an n-quasi-copula.

Let SQn denote the set of supermodular n-quasi-copulas. As can be easily seen, for n ≥ 3,
Cn ⊂ SQn (see [22]). Moreover, C2 = SQ2. A relevant subset of SQn is formed by all Archimedean



Mathematics 2020, 8, 2238 4 of 11

n-quasi-copulas (see [22]), as introduced in [32]. In particular, Wn is supermodular. For other examples
of supermodular n-quasi-copulas, see [33].

Now, we consider the lattice structure of SQn and its related Dedekind–MacNeille completion,
denoted by DM(SQn). The following result follows from [15].

Proposition 3. For n ≥ 3, the following results hold:

(a) SQn is join-dense in Qn;
(b) SQn is not meet-dense in Qn, i.e., there exists an n-quasi-copula QL such that for any A ⊆ SQn,

QL 6=
∧
Qn A.

Thus, SQn is not a complete lattice.

As a consequence of Proposition 3, for n ≥ 3, Qn is not order-isomorphic to DM(SQn).
Furthermore, in the following example, we show that neither SQn ⊂ DM(Cn) nor DM(Cn) ⊂ SQn hold.

Example 1. Let n ≥ 3. We know that Wn ∈ SQn; however, Wn /∈ DM(Cn) since there does not exist an
n-copula C such that C ≤Wn.

On the other hand, consider the following two n-copulas: C∗i (u) = Ci(u1, u2)∏n
j=3 uj for i = 1, 2

and for all u = (u1, u2, . . . , un) ∈ [0, 1]n, where C1 and C2 are the two-copulas given by C1(u1, u2) =

min(u1, u2, max(0, u1 − 2/3, u2 − 1/3, u1 + u2 − 1)) and C2(u1, u2) = C1(u2, u1), respectively. Then, we
have that Q = C∗1 ∨ C∗2 is a proper n-quasi-copula such that Q ∈ DM(Cn) (see [10]); furthermore, Q is not
supermodular, since C1 ∨ C2 is a proper two-quasi-copula [11], i.e., it is not supermodular.

We conclude this section with two additional properties about the structure of the set SQn.
It is known that the sets Cn and Qn are compact under the metric d∞ (see [20,34]). This is also the

case for the set SQn, as the next result shows.

Proposition 4. The set SQn is compact under the metric d∞.

Proof. Let {Qr}r∈N be a sequence in SQn that converges pointwise to an n-quasi-copula Qn.
Since Qr(x∨ y) + Qr(x∧ y) ≥ Qr(x) + Qr(y) for every r ∈ N and for all x, y ∈ [0, 1]n, taking the limits
on both sides of the inequality, we have:

Q(x ∨ y) + Q(x ∧ y) = lim
r→+∞

Qr(x ∨ y) + lim
r→+∞

Qr(x ∧ y) = lim
r→+∞

(Qr(x ∨ y) + Qr(x ∧ y))

≥ lim
r→+∞

(Qr(x) + Qr(y)) = lim
r→+∞

Qr(x) + lim
r→+∞

Qr(y) = Q(x) + Q(y),

i.e., SQn is closed in Qn. Since Qn is compact under the metric d∞, the set SQn is also compact,
which completes the proof.

For the next result, we need to recall the concept of an ordinal sum for quasi-copulas. Let J be a
finite or countably infinite subset of N, and let Fk : [0, 1]n → [0, 1], k ∈ J , be a collection of functions.
The ordinal sum F of (Fk)k∈J with respect to the family of pairwise disjoint intervals (]ak, bk[)k∈J is
defined, for all u ∈ [0, 1]n, by:

F(u) :=


ak + (bk − ak)Fk

(
min(u1,bk)−ak

bk−ak
, . . . , min(un ,bk)−ak

bk−ak

)
,

if min(u1, . . . , un) ∈]ak, bk[ for some k ∈ J ,
min(u1, . . . , un), otherwise.

The sets Cn and Qn are closed under ordinal sums (see [20,35,36]). In the next result, we study the
ordinal sum of two supermodular n-quasi-copulas in intervals of the form ]0, α[ and ]α, 1[, with α ∈]0, 1[.
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Proposition 5. The ordinal sum of two n-quasi-copulas of SQn with respect to the intervals ]0, α[ and ]α,
1[, with α ∈]0, 1[, is in SQn.

Proof. Let Q be the ordinal sum of Q1, Q2 ∈ SQn with respect to the intervals ]0, α[, ]α, 1[. Let uij :=
(u1, . . . , ui−1, ui+1, . . . , uj−1, uj+1, . . . , un) ∈ [0, 1]n−2 be a fixed point in [0, 1]n−2, with 1 ≤ i < j ≤ n− 2,
and define the function G(x, y) := Q

(
u1, . . . , ui−1, x, ui+1, . . . , uj−1, y, uj+1, . . . , un

)
on [0, 1]2. We check

that G is two-increasing (note that, as a consequence of Proposition 1, we would have G ∈ SQn).
Observe that, for all x1, x2, y1, y2 ∈ [0, 1] such that x1 ≤ x2 and y1 ≤ y2, we have:

G(x2, y2) + G(x1, y1)− G(x2, y1)− G(x1, y2) = Q
(
u1, . . . , ui−1, x2, ui+1, . . . , uj−1, y2, uj+1, . . . , un

)
+ Q

(
u1, . . . , ui−1, x1, ui+1, . . . , uj−1, y1, uj+1, . . . , un

)
−Q

(
u1, . . . , ui−1, x2, ui+1, . . . , uj−1, y1, uj+1, . . . , un

)
−Q

(
u1, . . . , ui−1, x1, ui+1, . . . , uj−1, y2, uj+1, . . . , un

)
= VQ

(
×i−1

h=1[0, uh]× [x1, y1]×
j−1
h=i+1 [0, uh]× [x2, y2]×n

h=j+1 [0, uh]
)

.

Note also that the rectangle [x1, x2] × [y1, y2] can be decomposed into a union of rectangles,
namely Rk := [xk1, xk2] × [yk1, yk2], of disjoint interiors so that, if (]xk1, xk2[×]yk1, yk2[)∩ ]0, α[2 6= ∅
(respectively, (]xk1, xk2[×]yk1, yk2[)∩ ]α, 1[2 6= ∅), then Rk ⊆ [0, α]2 (respectively, Rk ⊆ [α, 1]2).
We consider three cases:

1. Rk ∩
(
]0, α[2 ∪ ]α, 1[2

)
= ∅. We consider two subcases:

1a. Rk ⊆ [0, α]× [α, 1]. Then, we have 0 ≤ xk1 < xk2 ≤ α ≤ yk1 < yk2 ≤ 1; thus:

Q
(
u1, . . . , ui−1, xir, ui+1, . . . , uj−1, yis, uj+1, . . . , un

)
= αQ1

(
min(u1, α)

α
, . . . ,

min(ui−1, α)

α
,

xir
α

,
min(ui+1, α)

α
, . . . ,

min(uj−1, α)

α
, 1,

min(uj+1, α)

α
, . . . ,

min(un, α)

α

)
,

with r, s ∈ {1, 2}, whence VG (Rk) = 0.
1b. Rk ⊆ [α, 1]× [0, α]. In this case, we have 0 ≤ yk1 < yk2 ≤ α ≤ xk1 < xk2 ≤ 1; thus:

Q
(
u1, . . . , ui−1, xir, ui+1, . . . , uj−1, yis, uj+1, . . . , un

)
= αQ1

(
min(u1, α)

α
, . . . ,

min(ui−1, α)

α
, 1,

min(ui+1, α)

α
, . . . ,

min(uj−1, α)

α
,

yis
α

,

min(uj+1, α)

α
, . . . ,

min(un, α)

α

)
,

with r, s ∈ {1, 2}, whence VG (Rk) = 0.

2. Rk ⊆ ]0, α[2. We need to consider two subcases:

2a. min
(
uij
)
≤ α. Then, we have:

Q
(
u1, . . . , ui−1, xir, ui+1, . . . , uj−1, yis, uj+1, . . . , un

)
= αQ1

(
min(u1, α)

α
, . . . ,

min(ui−1, α)

α
,

xir
α

,
min(ui+1, α)

α
, . . . ,

min(uj−1, α)

α
,

yis
α

,

min(uj+1, α)

α
, . . . ,

min(un, α)

α

)
,
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with r, s ∈ {1, 2}. Therefore, VG (Rk) = αVQ1

(
R′k
)
≥ 0, where:

R′k = ×i−1
h=1

[
0,

min(uh, α)

α

]
×
[ xk1

α
,

yk1
α

]
×j−1

h=i+1

[
0,

min(uh, α)

α

]
×
[ xk2

α
,

yk2
α

]
×n

h=j+1

[
0,

min(uh, α)

α

]
.

2b. min
(
uij
)
> α. We separately study the values:

VQ

(
×i−1

h=1 Ih × [xk1, xk2]×
j−1
h=i+1 Ih × [yk1, yk2]×n

h=j+1 Ih

)
,

where Ij ∈ {[0, α], [α, uj]}. Unless Ij = [α, uj] for all j, all the cases correspond to Case 2a;
thus, their Q-volumes are non-negative, and:

VQ

(
×i−1

h=1[α, uh]× [xk1, xk2]×
j−1
h=i+1 [α, uh]× [yk1, yk2]×n

h=j+1 [α, uh]
)
= 0.

3. Rk ⊆ ]α, 1[2. We have two subcases.

3a. min
(
uij
)
≤ α. Then, we have:

Q
(
u1, . . . , ui−1, xir, ui+1, . . . , uj−1, yis, uj+1, . . . , un

)
= αQ1

(
min(u1, α)

α
, . . . ,

min(ui−1, α)

α
, 1,

min(ui+1, α)

α
, . . . ,

min(uj−1, α)

α
, 1,

min(uj+1, α)

α
, . . . ,

min(un, α)

α

)
,

with r, s ∈ {1, 2}. Therefore, VG (Rk) = 0.
3b. min

(
uij
)
> α. This case is similar to Case 2b.

Therefore, we have that G is two-increasing, and the result follows.

Notice that the previous result can be extended to the ordinal sum of a finite (or countable)
set of copulas by using a similar procedure as in [36]. Specifically, the ordinal sum of k copulas,
namely C1, . . . , Ck, can be interpreted as the ordinal sum of two copulas, C1 and C′1, where C′1 is an
ordinal sum of the copulas C2, . . . , Ck (with respect to suitable intervals).

4. Baire Category Results for Subclasses of Quasi-Copulas

In this section, we check that the “size” of the set DM(SQn) is “small”—in terms of the Baire
category—in Qn and, in turn, DM(Cn) is “small” in DM(SQn). We recall that a subset of a (complete)
metric space is called nowhere dense if it is not dense in any open ball B(x, r) of centre x and radius
r > 0 (equivalently, if its closure has an empty interior). Thus, for example, the set C2 is nowhere
dense in the class Q2 (see [18]). Using the same techniques as those used in [18], it can be proven that,
for n ≥ 3, Cn is nowhere dense Qn.

To study the Baire category results for the set DM(SQn) inQn, we need some preliminary results.

Lemma 1. Let Q ∈ Qn. Then, Q ∈ DM(SQn) if, and only if, for every x ∈ [0, 1]n, there exist Qx and Qx in
SQn such that Qx(x) = Qx(x) = Q(x) and Qx(y) ≤ Q(y) ≤ Qx(y) for all y ∈ [0, 1]n.

Proof. Suppose Q ∈ DM(SQn) in Qn. Then, there exists a set A ⊂ SQn such that, for all x ∈ [0, 1]n,
Q(x) = sup {Q∗(x) : Q∗ ∈ A}. Fixing x, there exists a sequence {Qk}k∈N in SQn such that Qk(y) ≤
Q(y) for all y ∈ [0, 1]n and for every k ∈ N, and Qk(x) converges to Q(x) as k goes to ∞.

Since SQn is compact with the topology induced by the metric d∞ (recall Proposition 4),
there exists a subsequence of {Qk}k∈N convergent to Qx ∈ SQn. The n-quasi-copula Qx satisfies that
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Qx(x) = Q(x) and Qx(y) ≤ Q(y) for all y ∈ [0, 1]n. Analogously, we can obtain that Qx(x) = Q(x)
and Q(y) ≤ Qx(y) for all y ∈ [0, 1]n.

Conversely, note that Q(x) = sup
{

Qy(x) : y ∈ [0, 1]n
}

= inf
{

Qy(x) : y ∈ [0, 1]n
}

, so that Q
belongs to DM(SQn), and this completes the proof.

Proposition 6. The set DM(SQn) is compact in Qn with respect to the metric d∞.

Proof. Let Q be an n-quasi-copula in the closure of DM(SQn). Then, there exists a sequence {Qk}k∈N
in DM(SQn) such that ‖Qk −Q‖∞ < 1/k for every k ∈ N. Let x ∈ [0, 1]n be fixed. From Lemma 1,
for every k ∈ N, there exists an n-quasi-copula (Qk)x such that (Qk)x (x) = Qk(x) and (Qk)x (y) ≤
Qk(y) for all y ∈ [0, 1]n. Then, there exists a subsequence

{(
Qσ(k)

)
x

}
k∈N

that converges to Qx such

that
(

Qσ(k)

)
x
(x) = Qσ(k)(x) and

(
Qσ(k)

)
x
(y) ≤ Qσ(k)(y) for all y ∈ [0, 1]n. Therefore, we have

Qx(x) = Q(x), and since
(

Qσ(k)

)
x
(y) ≤ Q(y) + 1/σ (k), then Qx(y) ≤ Q(y) for all y ∈ [0, 1]n.

Since SQn is closed, then Qx is supermodular. From Lemma 1, we conclude that Q ∈ DM(SQn).

In what follows, we will need additional notation. For any Q ∈ Qn, let QL,k denote the ordinal
sum of Q and the n-quasi-copula QL given in Proposition 3, with intervals ]0, 1− 1/k[ and ]1− 1/k,
1[, where k ∈ N, k ≥ 2.

Lemma 2. For any Q ∈ Qn, we have QL,k /∈ DM(SQn). Moreover, QL,k converges pointwise to Q as k
goes to ∞.

Proof. Suppose QL,k ∈ DM(SQn). Then, from Lemma 1, for every x ∈ [1− 1/k, 1]n, there exists
Qx ∈ SQn such that Qx (x) = QL,k (x) and Qx (y) ≥ QL,k (y) for all y ∈ [0, 1]n. This implies:

Qx


n︷ ︸︸ ︷

k− 1
k

, . . . ,
k− 1

k

 =
k− 1

k
,

i.e., Qx is an ordinal sum. Thus, the bijection from
[
0, k−1

k

]n
on [0, 1]n defined by:

(x1, . . . , xn) −→
(

kx1

k− 1
, . . . ,

kxn

k− 1

)
provides a family Qx

∗ of supermodular n-quasi-copulas such that, for a fixed x ∈ [0, 1]n, we have
Qx
∗ (x) = QL,k (x) and Qx

∗ (y) ≥ QL,k (y) for all y ∈ [0, 1]n. Therefore, we obtain a contradiction and,
hence, QL,k /∈ DM(SQn).

On the other hand, from the definition of QL,k, we have:

∣∣QL,k(x)−Q(x)
∣∣ ≤ n

∑
i=1

min (1− xi, xi/k) .

This guarantees that QL,k converges pointwise to Q as k goes to ∞.

We are now in a position to provide the main result about the “size” of the set DM(SQn) in Qn.

Theorem 1. The set DM(SQn) is nowhere dense in Qn.

Proof. Suppose the set DM(SQn) is not nowhere dense in Qn. Since, from Proposition 6, DM(SQn)

is closed in Qn, it must contain an open ball B, and the n-quasi-copula Q is in its interior. For a
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sufficiently large k, we have that QL,k ∈ B. However, this is a contradiction since, from Lemma 2,
we have QL,k /∈ DM(SQn). Therefore, DM(SQn) is nowhere dense in Qn.

Since Cn ⊂ SQn, it follows that DM(Cn) is nowhere dense in Qn.
In the sequel, we show that DM(Cn) is nowhere dense in DM(SQn). In order to prove it, we need

some preliminary results.

Lemma 3. Let Q ∈ Qn. Then, Q ∈ DM(Cn) if, and only if, for every x ∈ [0, 1]n, there exist Cx and Cx in Cn

such that Cx(x) = Cx(x) = Q(x) and Cx(y) ≤ Q(y) ≤ Cx(y) for all y ∈ [0, 1].

The proof of Lemma 3 is similar to the proof of Lemma 1, and we omit it.
As a consequence of Lemma 3, we have the following result, whose proof is similar to the proof

of Proposition 6, and we omit it.

Proposition 7. The set DM(Cn) is closed in Qn with respect to the metric d∞, and hence, it is also compact.

For any Q ∈ Qn, let QWn ,k denote the ordinal sum of Q and Wn with respect to the intervals
]0, 1− 1/k[ and ]1− 1/k, 1[, where k ∈ N, k ≥ 2.

Lemma 4. For any Q ∈ Qn, we have QWn ,k /∈ DM(Cn). Moreover, QWn ,k converges pointwise to Q as k
goes to ∞.

Proof. Suppose QWn ,k ∈ DM(Cn). Then, from Lemma 3, there exists Ck ∈ Cn such that:

Ck


n︷ ︸︸ ︷

k− 1
k

, . . . ,
k− 1

k

 = QWn ,k


n︷ ︸︸ ︷

k− 1
k

, · · · ,
k− 1

k

 =
k− 1

k

and Ck (y) ≤ QWn ,k (y) for all y ∈ [0, 1]n, i.e., Ck is an ordinal sum. Thus, there exists n-copulas C, C′

such that Ck can be represented as the ordinal sum of (C, C′) with respect to the intervals ]0, 1− 1/k[
and ]1 − 1/k, 1[. Since Ck (y) ≤ QWn ,k (y), it follows that C′ ≤ Wn, which is absurd for n ≥ 3.
Therefore, QWn ,k /∈ DM(Cn).

In order to prove the convergence of QWn ,k, we just have to follow the same steps as the ones
given in the proof of Lemma 2, which completes the proof.

We are now in a position to check the “size” of the set DM(Cn) in DM(SQn). As a consequence
of Proposition 7 and Lemma 4, we have the following result, whose proof is similar to the proof of
Theorem 1, and we omit it.

Theorem 2. The set DM(Cn) is nowhere dense in DM(SQn).

From the results presented here and mimicking the same arguments used in their proofs, it is
possible to show the following two results, whose proofs are omitted.

Theorem 3. The set Cn is nowhere dense in SQn.

For the next result, we recall that a function F : [0, 1]n −→ [0, 1] is called k-dimensionally-
increasing, with k ∈ {1, . . . , n}, if any of its k-dimensional sections is k-increasing. Let DQn,k
denote the class of all k-dimensionally-increasing n-quasi-copulas. In [22], it was shown that
Cn ⊂ DQn,n−1 ⊂ DQn,n−2 ⊂ · · · ⊂ DQn,3 ⊂ SQn ⊂ Qn. Then, we have:

Theorem 4. For every k = 3, . . . , n− 1, the set DQn,k is nowhere dense in DQn,k−1.
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5. Conclusions

In this paper, we considered the set of quasi-copulas Qn equipped with the natural ordering
among real functions and the metric d∞. As is known, Qn is compact, and it is a complete lattice.
We consider the subsets given by the class of copulas Cn and of supermodular quasi-copulas SQn,
with Cn ⊂ SQn. The following results hold:

• Cn and SQn are compact (see, respectively, [20], Theorem 1.7.7, and Proposition 4;
• Cn is nowhere dense in SQn (see Theorem 3);
• SQn is nowhere dense in Qn (it is an immediate consequence of Theorem 1).

Moreover, by considering the Dedekind–MacNeille completion DM(Cn) and DM(SQn),
we have that:

• DM(Cn) and DM(SQn) are compact (see, respectively, Propositions 6 and 7);
• DM(Cn) is nowhere dense in DM(SQn) (see Theorem 2);
• DM(SQn) is nowhere dense in Qn (see Theorem 1).

In brief, both the sets of copulas and supermodular quasi-copulas (and their Dedekind–MacNeille
completions) are small, in the sense of the Baire category, in the set of n-quasi-copulas.
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