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Abstract: Blood cell platelets form aggregates upon vessel wall injury. Under certain conditions, a
disintegration of the platelet aggregates, called “reversible aggregation”, is observed in vitro. Previ-
ously, we have proposed an extremely simple (two equations, five parameters) ordinary differential
equation-based mathematical model of the reversible platelet aggregation. That model was based on
mass-action law, and the parameters represented probabilities of platelet aggregate formations. Here,
we aimed to perform a nonlinear dynamics analysis of this mathematical model to derive the biomed-
ical meaning of the model’s parameters. The model’s parameters were estimated automatically from
experimental data in COPASI software. Further analysis was performed in Python 2.7. Contrary
to our expectations, for a broad range of parameter values, the model had only one steady state of
the stable type node, thus eliminating the initial assumption that the reversibility of the aggregation
curve could be explained by the system’s being near a stable focus. Therefore, we conclude that
during platelet aggregation, the system is outside of the influence area of the steady state. Further
analysis of the model’s parameters demonstrated that the rate constants for the reaction of aggre-
gate formation from existing aggregates determine the reversibility of the aggregation curve. The
other parameters of the model influenced either the initial aggregation rate or the quasi-steady state
aggregation values.

Keywords: platelet aggregation; phase plane; bifurcation analysis; parameter estimation; ordinary
differential equations

1. Introduction

Platelets are anuclear cell fragments of size approximately 3 × 0.5 µm. Their main task
is to form aggregates, thereby stopping bleeding in the right place and at the right time.
To aggregate with each other, platelets must be activated, when their membrane adhesives
glycoproteins and integrins acquire high affinity to blood plasma protein fibrinogen [1].
In some cases, the formation of platelet aggregates can be reversible depending on the
strength of platelet activation [2]; for example, reversible aggregation is observed in vitro
in response to a weak activator, adenosine diphosphate (ADP), in the presence of calcium
ions in the solution [3]. Another example of reversible platelet aggregation is the fluidity of
the thrombus shell observed in in vivo experiments [4].

Light transmission platelet aggregometry (LTA) is a widely used clinical test to study
the response of platelets to activation. This method was developed in 1962 by Born and
O’Brien. [3]. During this test, a ray of light after passing through a cuvette with a suspension
of platelets enters a photocell. After the addition of an activator, the total light transmission
of the suspension increases due to the formation of large local light scattering centers,
platelet aggregates (Figure 1a). Results of LTA are known to vary greatly between different
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donors, thus making the LTA test qualitative rather than quantitative [5]. To move closer
to developing a more reliable platelet activity test, we proposed the utilization of the
reversible aggregometry phenomenon in conjunction with the automatic estimation of
aggregation parameters using a mathematical model [2].
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Figure 1. Schemes of experimental (a) and theoretical (b) processes of platelet aggregation in
suspension. (a) Conventional light transmission aggregometry. A ray of light after passing through
a cuvette with a suspension of platelets enters the photocell. Due to the formation of large local
light scattering centers—platelet aggregates—the total light transmission of the suspension increases.
The light transmission measured by the aggregometry determines the degree of platelet aggregation.
(b) Illustration of a mathematical model of platelet aggregation based on the law of mass action
between aggregates (n) and single platelets (p) [2].

The model proposed in our previous study [2] was based on the assumption of mass
action kinetics applied to platelet aggregate formation (Figure 1b) [2]. The model consisted
of two equations: {

dp
dt = −2k1 p2 − k2np + (k−1 + k−2)n

dn
dt = k1 p2 − k3n2 + (k−3 − k−1)n

, (1)

where p denotes single platelet concentration, n is the concentration of platelet aggregates,
parameters k1 and k−1 are kinetic rate constants for the reversible reaction of aggregate
formation from two platelets, k2 and k−2 are kinetic rate constants for the reversible
reaction of single platelet attachment to the existing aggregate, and k3 and k−3 are kinetic
rate constants for the reversible reaction of an aggregate formation from two existing
aggregates—see Figure 1b. A typical result of LTA is a time curve of the relative changes
in the optical density (OD) of the suspension or percentage of aggregation (aggregation
equals (1 − OD) ∗ 100%). Equation (1) describes this parameter as 100% ∗ exp

(
p+n−p0

p0

)
,

where p0 denotes the initial concentration of single platelets in the suspension.
It should be noted that simulations of the aggregation curves by Equation (1) do not

start from a steady state of the system. The simulation starts from the condition when
all platelets are single (n0 = 0), and at time t = 0 they are assumed to become “sticky”,
i.e., the platelets assume an ability to form aggregates. The relationship between the
concentration of activator and the “stickiness” of platelets (parameter values) was not
investigated previously [2]. Another unconventional feature of Equation (1) is that the
mass conservation law does not hold (one aggregate could be formed from two aggregates
and vice versa). The addition of another variable, the average size of aggregates, restores
the mass conservation law [2]. However, for a description of the aggregation curve with as
a low number of parameters as possible, the two variables are sufficient.

Despite its simplicity, the model was capable of accurately simulating LTA data for
experimental ADP concentration ranging from 1.25 µM to 40 µM as was shown previ-
ously [2]. Additionally, it was shown that the parameters (ki) of the model depend on the
concentration of activator (ADP) with a Pearson’s correlation coefficient of 0.9 for the k1
parameter [2]. However, conventional analysis utilizing nonlinear dynamics for this model
was not performed.

In general, platelet aggregation models could be divided into two subgroups: the mech-
anistic models and the Smoluchowski equation-based models. The mechanistic models
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take into account the mechanical forces of platelet interactions and the Navier–Stokes equa-
tion for the interaction between platelets and blood plasma. Typically, these models are
two-dimensional [6–9], and even then they have a large set of required parameters (31 [6],
>10 [7], >50 [9]). The first three-dimensional model of platelet aggregation published in
2019 also had a large number of parameters (>28) [10]. In these models, the computational
cost is high (e.g., 72 × 1072 × 10 core-hours for running a typical simulation [10]) even with
the amount of described ligand–receptor interactions being reduced. The second subgroup
of the mathematical models utilizes the Smoluchowski equation [11] and mass action
kinetics [12,13]. Generally, they have similar problems, although on a smaller scale [13].
An additional drawback of such modeling lies in the assumption of the system’s homo-
geneity, which is not valid for the thrombus growth setting but could be valid for platelet
aggregometry [2].

The large number of model parameters has its pros and cons. From one point of
view, this allows the model to be more flexible and customized [14]. However, there is
a certain risk of overparametrization [15], when several sets of parameters describe the
experimental data correctly, thus leading to a loss in the biophysical meaning of individual
parameters [10,15,16].

Due to the high demand for a simple mathematical model of platelet aggregation,
here we aimed at further investigation of Equation (1). We performed a transformation of
the model variables into dimensionless ones to avoid the dependence of parameters on the
initial concentration of platelets (p0). We demonstrated that in most cases for positive values
of parameters and variables only one singular point exists, and its type is always the stable
node. For the first and second methods of bifurcation analysis, the possible bifurcations
occur only for negative and zero values of parameters for the probabilities of the aggregate
dissociation. However, after conducting a five-dimensional analysis, we found bifurcation
points in a positive range of parameters. Additionally, we performed an explicit sensitivity
analysis to evaluate the impact of parameter values on the aggregation curves.

2. Materials and Methods
2.1. Computational Methods

A “Particle swarm” method [17] implemented in COPASI software [18] was utilized for
parameter estimation, as described previously [2]. Numerical integration and bifurcation
analysis were performed using PyDSTool utility from Python 2.7 [19]. The integrator VODE
was used with fixed integration step dt = 0.1. The integration was performed with backward
differentiation formulas (BDFs) with a configuration for stiff systems. Although the choice
of integration method might be critical in some cases [20], the studied system (Equation (1))
is expected to be smooth enough; therefore, the choice of integration method is not of great
importance in this study. However, to verify this statement, the numerical integration
using the implicit Adams method with dt = 0.01 was conducted and the simulation results
were the same within the machine accuracy.

Two approaches for bifurcation analysis were used. The first method was based
on fixing four parameters of the system and varying the fifth. The eigenvalues of the
Jacobian of the system were calculated for each new parameter value. According to the
corresponding changes in the eigenvalues, the bifurcation point was determined. In the
second method, three parameters of the system were fixed, several fixed values of the fourth
parameter were selected, and the fifth parameter varied for each of the sets. Bifurcation
points were determined similarly to the first method. When constructing bifurcation
diagrams, it was assumed that the system was smooth, i.e., the calculated points could be
connected by a continuous curve.

2.2. Reagents

The sources of the materials were as follows: ADP, apyrase grade VII (Sigma-Aldrich,
St Louis, MO, USA). Hirudin-containing blood collection tubes (Vacuette®, Greiner Bio-One
GmbH, Kremsmünster, Austria).
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2.3. Blood Collection and Aggregometry

Healthy volunteers, both men and women aged between 18 and 35 years, were
recruited into the study. Investigations were performed in accordance with the Declaration
of Helsinki and approved by the Independent Ethics Committee at CTP PCP RAS (1_2018-
1 from 1 December 2018), and written informed consent was obtained from all donors.
For platelet-rich plasma, blood was collected into 1.6 ml tubes containing hirudin. Platelet-
rich plasma was obtained by centrifugation at 150× g for 8 min without brake. Platelet-
poor plasma for reference was obtained from the same sample by further centrifugation
at 2000× g for 15 min as described previously [2]. Platelet aggregation was performed
using Chrono-Log 490 and Biola LA-230 turbo-diametric aggregometer. Experiments were
conducted in 250 µL (Chrono-Log) or 300 µL (Biola) aliquots of PRP. The platelet suspension
was mixed by a stirrer with 800 rpm. ADP was added at various concentrations as the
platelet activator. An optical signal was recorded every 0.5 s for Chrono-Log and 1s for
Biola. All steps of the procedure were conducted at 37 ◦C.

3. Results
3.1. Transformation of the Model

In order to compare the values of model parameters and variables with each other
and perform model analysis, the initial model (Equation (1), Figure 1b) was transformed
into Equation (3) by means of the following variable replacements (Equation (2)):{

a = p+n
p0

y = n
p0

, (2)

where p denotes the single platelet concentration, p0 denotes the initial platelet concentra-
tion, and n denotes the concentration of platelet aggregates; therefore, y is the dimensionless
concentration of aggregates and a is the ln of optical density of the solution. The system of
Equation (1) with the application of Equation (2) becomes the following system:{ .

a = −p0k1a2 + (2k1 − k2)p0ay + (k−1 + k−2 + k−3)y + (k2 − k1 − k3)p0y2
.
y = p0k1a2 − 2k1 p0ay + (k1 − k3)p0y2 + (−k−1 + k−3)y

. (3)

It can be seen that the system in Equation (3) has five parameter values, which could
be assessed from the experiment. These are the probabilities of aggregate formation:
p0k1, p0k2 and p0k3, which have dimensions of 1/s and will be replaced with k1, k2 and
k3 for simplification, and the probabilities of the aggregate dissociation k−1 + k−2 + k−3
and −k−1 + k−3, which also have dimensions of 1/s and will be replaced with k−1 + k−3
and k−3 for simplification. The further analysis will be performed for the modified system,
Equation (4):{ .

a = −k1a2 + (2k1 − k2)ay + (k−1 + k−3)y + (k2 − k1 − k3)y2
.
y = k1a2 − 2k1ay + (k1 − k3)y2 + k−3y

, (4)

where k1 is the probability of new aggregate formation from two single platelets, k2 is the
probability of another platelet attachment to an existing aggregate, k3 is the probability of
formation of one aggregate from two existing ones, and k−1 and k−3 are the probabilities of
an aggregate fragmenting (Figure 1b).

The Jacobian of Equation (4) will be:(
−2ak1 + y(2k1 − k2) a(2k1 − k2) + k−1 + k−3 + 2y(−k1 + k2 − k3)

2ak1 − 2k1y −2ak1 + k−3 + 2y(k1 − k3)

)
. (5)
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Analysis of the matrix in Equation (5) [2] demonstrates that the singular points of the
system could be of focus or node type. Additionally, positive coordinates of the singular
point are: 

a =
y(2k1 − k2) +

√
y(−4k1k3y + 4k1k−1 + 4k1k−3 + k2

2y)
2k1

y =
4k1k3k−1 + 8k1k3 k−3 − k2

2 k−3 − k2

√
4k1k3k2

−1 + 8k1k3k−1 k−3 + k2
2k2

−3

2k3(4k1k3 − k2
2)

, (6)

Therefore, depending on the parameters, there could be only one positive (physiologi-
cally meaningful) singular point of focus or node type.

The parameter values used previously [2] were assessed utilizing five different param-
eter estimation methods based on experimental data on platelet aggregation. Here, we fol-
lowed the same route. The parameter values were assessed utilizing the “particle swarm”
method [17] based on original experimental data on reversible platelet aggregation in
response to ADP (Figure 2). Equation (4) described experimental data as successfully as
Equation (1). The corresponding parameter values are given in Table 1. Previously [2],
it was speculated that the parameter values should depend on the initial concentration of
platelets (p0) and the activation strength. Here, p0 is already incorporated in the values of
k1, k2, and k3. However, the dependence on the concentration of ADP is not obvious.
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Table 1. Estimated parameter values for Equation (3) for experimental datasets presented in Figure 
2. 

 2.5 μM 1 5 μM 10 μM 
k−1 0.5027 1.73E-11 0.1995 
k−3 0.0262 0.02778 0.01329 
k1 0.004933 0.01469 0.003955 
k2 0.6757 0.1617 0.86886 
k3 0.1042 0.02627 0.01731 

1 ADP concentrations for the corresponding experimental data. 

  

Figure 2. Fitting of Equation (3) to experimental data on platelet aggregometry in response to ADP.
(a–c) Five parameters of Equation (3) were fitted by means of the “Particle Swarm” parameter
estimation method to describe experimental data of platelet aggregation in response to ADP at
2.5 µM (a), 5 µM (b), or 10 µM (c). Blue lines denote variable y, black lines denote variable a, red
squares denote the logarithm of experimental OD values. Experimental data are typical curves from
n = 10.

Table 1. Estimated parameter values for Equation (3) for experimental datasets presented in Figure 2.

2.5 µM 1 5 µM 10 µM

k−1 0.5027 1.73 × 10−11 0.1995
k−3 0.0262 0.02778 0.01329
k1 0.004933 0.01469 0.003955
k2 0.6757 0.1617 0.86886
k3 0.1042 0.02627 0.01731

1 ADP concentrations for the corresponding experimental data.

3.2. Bifurcation Analysis of the System

To determine the impact of the parameters ki on the behavior of the system, we have
determined the types of singular points for different sets of parameters and looked for the
bifurcation points. For all three ADP concentrations, the type of singular point was a stable
node (see Figure 3 legend for the eigenvalues of Jacobian). For each set of parameters,
the coordinates of the singular point were calculated using the analytical Equation (6).
The set of coordinates of the singular point corresponds to the eigenvalues of the Jacobian
of Equation (5). For each of the parameter sets, the eigenvalues are negative real numbers;
therefore, the type of the singular point is a stable node. The characteristic form of the
phase plane for this type of singular point is given in Figure 3. It was surprising because
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the aggregation curves were reversible in all cases, and the same values of the variable a
were achieved for different values of the variable y (Figure 3).
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Figure 3. Phase planes for the models, presented in Figure 2. The models were fitted to experimental
data of platelet aggregation in response to ADP at 2.5 µM (a), 5 µM (b), or 10 µM (c). Nullclines are
given in grey, trajectories from point {a,y} = {1,0} into steady state (same as in Figure 2) are given
in black. Steady state parameters (the asterisk(*) denotes the stationary values of the variables):
(a) a * = 1.047, y * = 0.327, λ1 = −0.24, λ2 = −0.041; (b) a * = 1.06, y * = 1.06, λ1 = −0.17, λ2 = −0.028;
(c) a *= 1.012, y *= 0.78, λ1 = −0.68, λ2 = −0.014.

Using the first method of bifurcation analysis, only one “node-focus” transition point
was found (Figure 4a). For k−3 = 0 for curve ADP = 5 µM, the type of singular point
changed from «stable node» to «stable focus». The corresponding real eigenvalue of the
Jacobian remained negative (Figure S1a,b).
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Figure 4. Bifurcation diagrams. Singular point values of a and y for Equation (4) as a function of
parameter k−3 from {−1, −0.9, −0.8, . . . , −0.1, −0.01, −0.0001, 0, 0.0001, 0.001, 0.01, 0.1, . . . , 0.9, 1}.
(a) Parameter k−3 is varied, other parameters are given in Table 1 for ADP = 5 µM; (b) parameter
k−3 is varied, k1 = 1, other parameters are given in Table 1 for ADP = 2.5 µM; (c) parameter k−3

is varied, k−1 = 0.01, other parameters are given in Table 1 for ADP = 5 µM; (d) parameter k−3 is
varied, k3 = 0.0001, other parameters are given in Table 1 for ADP = 5 µM; (e) parameter k−3 is
varied, k1 = 1, other parameters are given in Table 1 for ADP = 10 µM.

The second method of bifurcation analysis was a pairwise study of the parameters for
each of the three sets. All variations of parameters were performed for parameter values
from the range {0,10}, except for k−3, which was varied in the range {−1000, 1000}. For most
sets of parameters, only singular points of the type “stable node” were found. The type
“stable focus” was found for 2.5 µM ADP (Figure 4b) and 10 µM ADP (Figure 4e) model
with both k−3 and k1 varied, and for 5 µM the ADP models with k−3 and k−1 (Figure 4c),
or k−3 and k3 (Figure 4d) varied. Unstable singular points were also found for 2.5 µM ADP
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and 10 µM ADP models with both k−3 and k1 varied (Figure S1), the type “saddle” was
not found.

Therefore, the variation in the values of parameters in their positive range did not
give any bifurcation points. “Node-focus” transition points were found at k−3 = 0 for the
system for 5 µM ADP, and k−3 < 0 for other concentrations of ADP. For greater negative
values of the parameters, a loss of stability of the singular point could occur (Figure S1).
The negative values of the parameters do not bear any physiological meaning, because the
reverse reactions are described by different equations (Figure 1b). Thus, we can conclude
that during the reversible platelet aggregation, the system is outside of the influence area
of the steady state.

The main drawback of the performed analysis consists of the choice of parameter values.
To look for bifurcation points further from the estimated parameter sets, we have conducted a
5D numerical analysis and calculated values for all four singular points described by Equation
(6), starting with the parameter set for 2.5 µM ADP. This analysis revealed that there are
large areas of the parameter space where at least two singular points are “stable nodes” (with
negative real part and zero imaginary part of the first eigenvalue of Jacobian) with positive
values for both variables (Figure 5). On the boundaries of these areas there are bifurcations
“stable node”–“unstable node” (Figure 5b,c). A typical phase plane for systems with four
singular points (two “stable nodes” and two “unstable nodes”) is given in Figure 5d. However,
the “node-focus” transition points were not found during the analysis. It should be noted
that, although the system in the area depicted in Figure 5 appears to be bistable, the model
was devised to describe platelet aggregation starting from fixed initial conditions (a = 1, y = 0).
Thus, if no variations in the platelets state happen during the experiment, the second stable
point will never be achieved.

3.3. Effects of Parameter Variation

To investigate the impact of parameters on the aggregation curve, we have performed
a variation of each parameter around its estimated value (Figure 6 and Figure S2). Based on
the dependence of the initial aggregation rate (the first derivative of the variable a) and the
minimum value of the variable a on the parameter values, we have supposed the following
meaning for the parameter values.

The parameters k1 and k−1 (Figure 1b) determine di-aggregate formations. Variation
of k1 determines the time before aggregation maximum (Figure 6a–c), while variations in
k−1 lead to changes in the steady state values (Figure S2a–c). These results are in good
correspondence with the physiological meaning of the model parameters. Indeed, k1 is
the probability of new aggregate formation from two single platelets, and thus with the
increase in this parameter, initial aggregation should occur faster, and so the time before
the achievement of maximum aggregation should decrease.

The parameter k2 (and k−2 as part of k−1 ) determines the stability of a single platelet
inside an aggregate (Figure 1b). Variations in k2 lead to some “scaling” of the aggregation
curve, when both the initial aggregation rate and the steady state values of parameters
shift. k2 is the probability of another platelet attachment to an existing aggregate; there-
fore, it accelerates aggregation and makes it more intense in the beginning, so with the
increase in this parameter, the aggregation maximum shifts to the left on the time axis and
becomes deeper.
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3.3. Effects of Parameter Variation 
To investigate the impact of parameters on the aggregation curve, we have per-

formed a variation of each parameter around its estimated value (Figures 6 and S2). Based 
on the dependence of the initial aggregation rate (the first derivative of the variable a) and 
the minimum value of the variable a on the parameter values, we have supposed the fol-
lowing meaning for the parameter values.  

Figure 5. Numerical investigation of the parameter space for ADP = 2.5 µM. (a) Typical bifurcation
diagrams demonstrating an area with 4 singular points (log10(a) as a function of k−1 and k3, other
parameters were set at 0.49 (k1), 0.067 (k2), 0.026 (k−3). It can be seen that all four singular points
exist for almost any combination of parameters. However, the third and fourth points are always
“unstable”, while the second is always stable and positive, and the first could be either stable or
unstable. (b,c) Bifurcation diagrams for the values of a (b), inset show the value of k3 for which 4
singular points with positive values of a exist) and the real part of the first eigenvalue of Jacobian (c),
inset shows a close up view near Re(λ) = 0), k3 is varied, k−1 = 5, k1 = 0.49, k2 = 0.067, k−3 = 0.026.
Together, (b,c) demonstrate the existence of two “stable nodes” (first and second) with positive values
of a for a subspace of parameter space. At k3 = 0.0025, a “stable node”–“unstable node” bifurcation
happens for the second singular point (black lines). (d) Phase plane for the system with the following
parameter set: k−1 = 0.05, k1 =4.93, k2 = 0.675, k3 = 0.1, k−3 = 0.026. Nullclines are given in red,
trajectories from point {a,y} = {1,0} into steady state are given in blue. Stable singular points are given
in blue, unstable singular points are given in red, directions of phase trajectories are shown in grey.

The parameters k3 and k−3 (Figure 1b and Figure S2d–f) determine intrinsic aggregate
stability. Consequently, both k3 and k−3 impact the steady state values. k3 is the probability
of forming one aggregate from two existing ones, and so with the increase in the parameter
aggregation becoming more intense in the late period when there is a significant amount of
aggregate, the height of the steady state thus decreases. The parameters k−1 and k−3 are
the probabilities of an aggregate fragmenting, and so with the increase in these parameters,
the height of steady state is increased because of more intense disaggregation.
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4. Discussion

In the present study, we analyzed our previously published model of reversible platelet
aggregation [2] using nonlinear dynamic methods. We modified the model to avoid the
previously demonstrated dependence of the parameters on the initial platelet concentration.
The modified system is still capable of describing experimental data (Figure 2) with the same
number of parameters (5), thus avoiding excessive parameterization. The computational cost
of this model is much lower than that of mechanistic models (about 1.4 s/core/calculation).

The reversible character of the aggregation curve on the phase plane makes us expect
that the system will have a singular point of a certain type—a stable focus—as in other
models of biological systems [21–23]. However, we analyzed and found that the system
has only one singular point of the “stable node” type at physiologically significant values
of the parameters (Figure 3). In a study by Cai et al. [24], similar behavior of a model of a
biological system was observed. Namely, a phase plane similar to that shown in Figure 3,
with a “returning” phase trajectory near the “stable node”, was obtained for a system of
two ordinary differential equations.

Here, we performed bifurcation analysis for the system in two modes. The first mode
consisted of the variation of one parameter at a time. In this mode, only one “node-focus”
transition point was found at k−3 = 0 for the set of parameters corresponding to 5 µM
ADP (Table 1, Figure 4a). The “stable focus” type of the singular point corresponds to the
non-physiological type of aggregation curve. The second mode of bifurcation analysis
consisted of the simultaneous variation of two parameters. In most cases, bifurcations in
this mode were also not found. Negative values of the bifurcation parameters correspond
to the opposite directions of reactions; therefore, in most cases, negative values of constant
rates represent an experimental or procedural artifact [25]. However, in the present study,
it is notable that bifurcations were found while varying the parameter k-3 which equals
k-3 - k-1 of the original model (Equation (1)), thus bifurcations in the negative values have
physiological meaning, corresponding to the high probability of the aggregate disintegra-
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tion into two platelets. We have performed an additional numerical investigation of the
five-dimensional parameter space (Figure 5). Although there are no bifurcations close to
the points given in Table 1, in distant areas of the parameter space, a bi-stable behavior
could be observed (Figure 5b,c).

According to the behavior of aggregation curves in response to the variation of the
model parameters, we suppose the following roles of parameters in the shape of the
curve view. Parameters k1 and k2 determine the initial aggregation rate (Figure 6), while
the parameter k3 does not have an impact on it. This effect is more noticeable for small
concentrations of ADP (Figure 6a,d). Therefore, this part of the aggregation curve is mostly
dependent on the formation of small aggregates, most probably on the initial activation of
integrins [26,27]. This result is consistent with the experimental data on platelet aggregate
formation in diluted solutions [28].

Parameters k3, k−1, k−2 and k−3 determine the steady state level and thus the stability
of aggregates (Figure 6). This finding lies in line with our previous statement [2], and ex-
perimental results obtained in previous studies [29], that reversible platelet aggregation is
the process of destabilization of large aggregates formed in the first phase. Although in this
study the dependence of the model parameters on ADP concentration was not observed,
we expect the parameters k1 and k2 to be linearly proportional to the logarithm of reagent
concentration as was described earlier by Babakhani et al. [30].

The platelet aggregation model (Equation (4)) has the following differences from the
previously proposed ones. Compared to a model where aggregation occurs as a result of the
collision of platelets with some probability [31], and compared with the mechanistic models,
where direct platelet interactions with each other are considered [32–34], Equation (4)
allows the direct determination of individual parameters from an experimental curve
obtained from a patient. This will allow quantifying the LTA-based diagnostics in the future.
Compared to models [7,35,36], where a supercomputer was used, the present model could
be run on a personal computer and might be implemented in the LTA software. However,
compared to a model, where platelet aggregation in diabetic retinal microaneurysms was
investigated [37], our model (Equation (4)) cannot describe important specific information
for medical application such as thrombi size and shape.

It should be noted that the analysis performed here is limited to the positive values of
parameters near the physiologically meaningful values obtained from the experimental
data. The mathematical model (Equation (1)), which was shown to be capable of a de-
scription of other biological processes such as polymerization and clustering [13], could
demonstrate other types of behavior. For the most of the study, only two parameters were
varied simultaneously (Figure 4). However, it is known that if a bifurcation was not found
in the second mode performed in our study, varying all the parameters will not add new
bifurcations [38]. Finally, although the sensitivity analysis has shown the preliminary
physiological meaning of the parameters, more experimental data with different inhibitors
usage are required to verify the obtained data similar to the previous study [39].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/math9070759/s1, Figure S1: Bifurcation diagrams for eigenvalues of Jacobian (λ). Figure S2:
The effects of variations of the parameter values on the model responses.
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