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Abstract: A goodness-of-fit test is a frequently used modern statistics tool. However, it is still unclear
what the most reliable approach is to check assumptions about data set normality. A particular data
set (especially with a small number of observations) only partly describes the process, which leaves
many options for the interpretation of its true distribution. As a consequence, many goodness-of-fit
statistical tests have been developed, the power of which depends on particular circumstances (i.e.,
sample size, outlets, etc.). With the aim of developing a more universal goodness-of-fit test, we
propose an approach based on an N-metric with our chosen kernel function. To compare the power of
40 normality tests, the goodness-of-fit hypothesis was tested for 15 data distributions with 6 different
sample sizes. Based on exhaustive comparative research results, we recommend the use of our test
for samples of size n ≥ 118.

Keywords: goodness of fit test; normal distribution; power comparison

1. Introduction

A priori information about data distribution is not always known. In those cases,
hypothesis testing can help to find a reasonable assumption about the distribution of
data. Based on assumed data distribution, one can choose appropriate methods for further
research. The information about data distribution can be useful in a number of ways,
for example:

• it can provide insights about the observed process;
• parameters of model can be inferred from the characteristics of data distributions; and
• it can help in choosing more specific and computationally efficient methods.

Statistical methods often require data to be normally distributed. If the assumption of
normality is not satisfied, the results of these methods will be inappropriate. Therefore,
the presumption of normality is strictly required before starting the statistical analysis.
Many tests have been developed to check this assumption. However, tests are defined in
various ways and thus react to abnormalities, present in a data set, differently. Therefore,
the choice of goodness-of-fit test remains an important problem.

For these reasons, this study examines the issue of testing the goodness-of-fit hypothe-
ses. The goodness-of-fit null and alternative hypotheses are defined as:

H0 : The distribution is normal,
HA : The distribution is not normal.

(1)

A total of 40 tests were applied to analyze the problem of testing the goodness-of-
fit hypothesis. The tests used in this study were developed between 1900 and 2016. In
the early 19th century, Karl Pearson published an article defining the chi-square test [1].
This test is considered as the basis of modern statistics. Pearson was the first to examine
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the goodness-of-fit assumption that the observations xi can be distributed according to
the normal distribution, and concluded that, in the limit as n becomes large, X2 follows
the chi-square distribution with k− 1 degrees of freedom. The statistics for this test are
defined in Section 2.1. Another popular test for testing the goodness-of-fit hypothesis is
the Kolmogorov and Smirnov test [2]. This test statistic quantifies a distance between the
empirical distribution function of the sample and the cumulative distribution function
of the reference distribution [3]. The Anderson and Darling test is also often used in
practice [4]. This test assesses whether a sample comes from a specified distribution [3].
The end of 19th century and the beginning of 20th century was a successful period for the
development of goodness-of-fit hypothesis test criteria and their comparison studies [5–19].

In 2010, Xavier Romão et al. conducted a comprehensive study comparing the power
of the goodness-of-fit hypothesis tests [20]. In the study, 33 normality tests were applied to
samples of different sizes, taking into account the significance level α and many symmetric,
asymmetric, and modified normal distributions. The researchers found that the most
powerful of the selected normality tests for the symmetric group of distributions were
Coin β2

3, Chen–Shapiro, Bonett–Seier, and Gel–Miao–Gastwirth tests; for the asymmetric
group of distributions, Zhang–Wu ZC and ZA, and Chen–Shapiro; while the Chen–Shapiro,
Barrio–Cuesta-Albertos–Matrán–Rodríguez-Rodríguez, and Shapiro–Wilk tests were the
most powerful for the group of modified normal distributions.

In 2015, Adefisoye et al. compared 18 normality tests for different sample sizes for
symmetric and asymmetric distribution groups [3]. The results of the study showed that
the Kurtosis test was the most powerful for a group of symmetric data distributions and
the Shapiro–Wilk test was the most powerful for a group of asymmetric data distributions.

The main objective of this study is to perform a comparative analysis of the power of
the most commonly used tests for testing the goodness-of-fit hypothesis. The procedure
described in Section 3 was used to calculate the power of the tests.

Scientific novelty—the comparative analysis of test power was carried out using
different methods for goodness-of-fit in the case of many different types of challenges
to curve tests. The goodness-of-fit tests have been selected as representatives of popular
techniques, which have been analyzed by other researchers experimentally. We have
proposed a new kernel function and its usage in an N-metric-based test. The uniqueness
of the kernel function is that its shape is chosen in such a way that the shift arising in the
formation of the test is eliminated by using sample values.

The rest of the paper is organized as follows. Section 2 provides descriptions of the 40
goodness-of-fit hypothesis tests and the procedure for calculating the power of the tests.
The samples generated from 15 distributions are given in Section 4. Section 5 presents
and discusses the results of a simulation modeling study. Finally, Section 6 concludes the
results.

2. Statistical Methods

In this section, the most popular tests for normality are overviewed.

2.1. Chi-Square Test (CHI2)

In 1900, Karl Pearson introduced the chi-square test [1]. The statistic of the test is
defined as:

χ2 =
k

∑
i=1

(Oi − Ei)
2

Ei
, (1)

where Oi is the observed frequency and Ei is the expected frequency.
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2.2. Kolmogorov–Smirnov (KS)

In 1933, Kolmogorov and Smirnov proposed the KS test [2]. The statistic of the test is
defined as:

χ2 = D+ = max
{(

i
n

)
− zi

}
, 1 ≤ i ≤ n;

D− = max
{

zi − i−1
n

}
, 1 ≤ i ≤ n;

D = max(D+, D− ),

(2)

where zi is the cumulative probability of standard normal distribution and D is the differ-
ence between observed and expected values.

2.3. Anderson–Darling (AD)

In 1952, Anderson and Darling developed a variety of the Kolmogorov and Smirnov
tests [4]. This test is more powerful than the Kolmogorov and Smirnov test. The statistic of
the test is defined as:

A2 = −n−
n

∑
i=1

2i− 1
n

(ln(F(xi)) + ln(1− F(xn+1−i))), (3)

where F(xi) is the value of the distribution function at point xi and n is the empirical
sample size.

2.4. Cramer–Von Mises (CVM)

In 1962, Cramer proposed the Cramer–von Mises test. This test is an alternative to the
Kolmogorov and Smirnov test [21]. The statistic of the test is defined as:

CM =
1

12n
+

n

∑
i=1

(
Zi −

2i− 1
2n

)2
, (4)

where Zi is the cumulative distribution function of the specified distribution Zi = X(i) −
X/S, and X and S are the sample mean and sample standard deviation.

2.5. Shapiro–Wilk (SW)

In 1965, Shapiro and Wilk formed the original test [22]. The statistic of the test is
defined as:

W =

(
∑n

i=1 aix(i)
)2

(∑n
i=1 xi − x)2 , (5)

where x(i) is the ith order statistic, x is the sample mean, and ai constants obtained:

ai = (a1, . . . , an) =
mTV−1

(mTV−1V−1m)
1/2 ,

where m = (m1, . . . , mn) T are the expected values of the order statistics of independent and
identically distributed random variables sampled from the standard normal distribution
and V is the covariance matrix of those order statistics.

2.6. Lilliefors (LF)

In 1967, Lilliefors modified the Kolmogorov and Smirnov test [23]. The statistic of the
test is defined as:

T = sup
x
|F∗(x)− S(x)|, (6)

where F∗(x) is the standard normal distribution function and S(x) is the empirical distri-
bution function of the zi values.
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2.7. D’Agostino (DA)

In 1971, D’Agostino introduced the test for testing the goodness-of-fit hypothesis,
which is an extension of the Shapiro–Wilk test [8]. The test proposed by D’Agostino does
not need to define a weight vector. The statistic of the test is defined as:

D =
∑n

i=1(i− (n + 1)/2)·x(i)
n2·√m2

, (7)

where m2 is the second central moment that is defined as:

m2 = n−1
n

∑
i=1

(xi − x)2.

2.8. Shapiro–Francia (SF)

In 1972, Shapiro and Francia simplified the Shapiro and Wilk test and developed the
Shapiro and Francia test, which is computationally more efficient [24]. The statistic of the
test is defined as:

WSF =
(∑n

i=1 mixi)
2

(∑n
i=1 xi − x)2 ∑n

i=1 m2
i

, (8)

where mi is the expected values of the standard normal order statistics.

2.9. D’Agostino–Pearson (DAP)

In 1973–1974, D’Agostino and Pearson proposed the D’Agostino and Pearson test [25].
The statistic of the test is defined as:

DP =
∑n

i=1(i− (n + 1)/2)x(i)
n2√m2

, (9)

where n is the size of sample and m2 is the sample variance of order statistics.

2.10. Filliben (Filli)

In 1975, Filliben defined the probabilistic correlation coefficient r as a test for the
goodness-of-fit hypothesis [26]. This test statistic is defined as:

r =
∑n

i=1 x(i)· M(i)√
∑n

i=1 M2
(i)·
√
(n− 1)·σ2

, (10)

where σ2 is the variance, M(i) = Φ−1
(

m(i)

)
, when m(i) is the estimated median values of

the order statistics, each m(i) is obtained by:

m(i) =


1− 0.5(

1
n ) i = 1,

(i−0.3175)
(n+0.365) 1 < i < n,

0.5(
1
n ) i = n.

2.11. Martinez–Iglewicz (MI)

In 1981, Martinez and Iglewicz proposed a normality test based on the ratio of two
estimators of variance, where one of the estimators is the robust biweight scale estimator
S2

b [27]:

S2
b =

n·∑|z̃i |<1(xi −M)2(1− z̃2
i
)4[

∑|z̃i |<1
(
1− z̃2

i
)(

1− 5z̃2
i
)]2 ,

where M is the sample median, z̃i = (xi −M)/(9A), with A being the median of |xi −M|.
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This test statistic is then given by:

In =
∑n

i=1(xi −M)2

(n− 1)·S2
b

. (11)

2.12. Epps–Pulley (EP)

In 1983, Epps and Pulley proposed a test statistic based on the following weighted
integral [28]:

TEP =
∫ ∞

−∞
|ϕn(t)− ϕ̂0(t)|2dG(t),

where ϕn(t) is the empirical characteristic function and G(t) is an adequate function chosen
according to several considerations. By setting dG(t) = g(t)dt and selecting:

g(t) =
√

m2/2π·exp
(
−0.5m2t2

)
the following statistic is obtained:

TEP = 1 +
n√
3
+

2
n

n

∑
k=2

k−1

∑
j=1

exp
((
−
(

xj − xk
)2
)

/2m2

)
−
√

2
n

∑
j=1

exp
((
−
(
xj − x

)2
)

/4m2

)
, (12)

where m2 is the second central moment.

2.13. Jarque–Bera (JB)

In 1987, Jarque and Bera proposed a test [29] with statistic defined as:

JB =
n
6

(
s +

(k− 3)2

4

)
, (13)

where s = m2
3

m3
2

and k = m4
m3

2
are the sample skewness and kurtosis.

2.14. Hosking (H1 − H3)

In 1990, Hosking and Wallis proposed the first Hosking test [5]. This test statistic is
defined as:

Hi =
Vi − µV

σV
, (14)

where µV and σV are the mean and standard deviation of number of simulation data values
of V. Vi is calculated as:

V1 =

√√√√∑N
i=1 ni

(
t(i) − tR

)2

∑N
i=1 ni

, V2 =
N

∑
i=1

ni

√(
t(i) − tR

)2
+
(
t3 − tR

3
)2

∑N
i=1 ni

,

V3 =
N

∑
i=1

ni

√(
t(i)3 − tR

3

)2
+
(

t(i)4 − tR
4

)2

∑N
i=1 ni

, tR =
∑N

i=1 nit(i)

∑N
i=1 ni

,

where t(i) is the coefficient of variation of the L-moment ratio, t(i)3 is the coefficient of

skewness of the L- moment, and t(i)4 is the coefficient of kurtosis of the L- moment.

2.15. Cabaña–Cabaña (CC1-CC2)

In 1994, Cabaña and Cabaña proposed the CC1 and CC2 tests [6]. The CC1 (TS,l) and
CC2 (TK,l), respectively, are defined as:

TS,l = max
∣∣ wS,l(x)

∣∣, TK,l = max
∣∣ wK,l(x)

∣∣, (15)



Mathematics 2021, 9, 788 6 of 20

where wS,l(x) and wK,l(x) approximate transformed estimated empirical processes sensi-
tive to changes in skewness and kurtosis and are defined as:

wS,l = Φ(x)·H3 − φ(x)·
l

∑
j=1

1√
j
Hj−1(x)·H j+3,

wK,l = −φ(x)·H3 + [Φ(x)− x·φ(x)]·H4 − φ(x)·
l

∑
j=2

(√
j

j−1 Hj−2(x)·Hj(x)
)
·H j+3,

where l is a dimensionality parameter, Φ(x) is the probability density function of the
standard normal distribution, Hj(·) is the jth order normalized Hermite polynomial,
and H j is the jth order normalized mean of the Hermite polynomial defined as: H j =

1√
n

n
∑

i=1
Hj(xi).

2.16. The Chen–Shapiro Test (ChenS)

In 1995, Chen and Shapiro introduced an alternative test statistic based on normalized
spacings and defined as [9]:

CS =
1

(n− 1)·s
n−1

∑
i=1

x(i+1) − x(i)
Mi+1 − Mi

, (16)

where Mi is the ith quantile of a standard normal distribution.

2.17. Modified Shapiro-Wilk (SWRG)

In 1997, Rahman and Govindarajulu proposed a modification to the Shapiro–Wilk
test [8]. This test statistic is simpler to compute and relies on a new definition of the weights
using the approximations to m and V. Each element ai of the weight vector is given as:

ai = −(n + 1)(n + 2)φ(mi)[mi−1φ(mi−1)− 2miφ(mi) + mi+1φ(mi+1)], (17)

where it is assumed that m0φ(m0) = mn+1φ(mn+1) = 0. Therefore, the modified test
statistic assigns larger weights to the extreme order statistics than the original test.

2.18. Doornik–Hansen (DH)

In 1977, Bowman and Shenton introduced the Doornik–Hansen goodness-of-fit test [9].
This test statistic is obtained using transformations of skewness and kurtosis:

s =
m3√
m2

3 and k =
m4

m2
2

(18)

where mi =
1
n

n
∑

i=1
(xi − x)ix = 1

n

n
∑

i=1
xi and n is sample size.

The DH test statistics have a chi-square distribution with two degrees of freedom. It is
defined as:

DH = z2
1 + z2

2 ∼ χ2(2),

where z1 = δ log
(

y +
√

y2 − 1
)

, δ = 1√
log(w2)

, w2 = −1 +
√

2(β− 1),

β =
3(n2+27n−70)(n+1)(n+3)
(n−2)(n+5)(n+7)(n+9) , y = s

√
(w2−1)(n+1)(n+3)

12(n−2) ,

s = z2 =
√

2α
(

1
9α − 1 + 3

√
χ
2α

)
, α = a + c× s2, a =

(n−2)(n+5)(n+7)(n2+27n−70)
6δ ,

c =
(n−7)(n+5)(n+7)(n2+2n−5)

6δ , δ = (n− 3)(n + 1)
(
n2 + 15n− 4

)
, χ = 2l

(
k− 1− s2),

l =
(n+5)(n+7)(n3+37n2+11n−313)

12δ .
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2.19. Zhang Q (ZQ), Q∗(ZQstar), Q−Q∗ (ZQQstar)

In 1999, Zhang introduced the Qtest statistic based on the ratio of two unbiased
estimators of standard deviation, q1 and q2, given by Q = ln(q1/q2) [10]. The estimators

q1 and q2 are calculated by q1 =
n
∑

i=1
aix(i) and q2 =

n
∑

i=1
bix(i), where the ith order linear

coefficients ai and bi are:

ai = [(ui − u1)(n− 1)]−1, given i 6= 1, a1 = ∑n
i=2 ai,

bi =

{
−bn−i+1 = [(ui − ui+4)(n− 4)]−1 i = 1, . . . , 4,

(n− 4)−1·
[
(ui − ui+4)

−1 − (ui−4 − ui)
−1
]

i = 5, . . . , n− 4,
(19)

where ui is the ith expected value of the order statistics of a standard normal distribution,
ui = Φ−1[(i− 0.375)/(n + 0.25)].

Zhang also proposed the alternative statistic Q∗ by switching the ith order statistics
x(i) in q1 and q2 by x∗(i) = −x(n−i+1).

In addition to those already discussed, Zhang proposed joint test Q−Q∗, based on
the fact that Q and Q∗ are approximately independent.

2.20. Barrio–Cuesta-Albertos–Matran–Rodriguez-Rodriguez (BCMR)

In 1999, Barrio, Cuesta-Albertos, Matrán, and Rodríguez-Rodríguez proposed a new
BCMR goodness-of-fit test [11]. This test is based on L2-Wasserstein distance and is defined
as:

BCMR =
m2 −

[
∑n

i=1 x(i)·
∫ i/n
(i−1)/n Φ−1(t)dt

]2

m2
, (20)

where the numerator represents the squared L2-Wasserstein distance.

2.21. Glen–Leemis–Barr (GLB)

In 2001, Glen, Leemis, and Barr extended the Kolmogorov–Smirnov and Anderson–
Darling test to form the GLB test [12]. This test statistic is defined as:

PS = −n− 1
n
·

n

∑
i=1

[(2n + 1− 2i)· ln
(

p(i)
)
+ (2i− 1)· ln

(
1− p(i)

)
], (21)

where p(i) is the elements of the vector p containing the quantiles of the order statistics
sorted in ascending order.

2.22. Bonett–Seier Tw (BS)

In 2002, Bonett and Seier introduced the BS test [13]. The statistic for this test is defined
as:

Tw =

√
n + 2·(ω̂− 3)

3.54
, (22)

where ω̂ = 13.29
[

ln
√

m2 − ln
(

n−1
n
∑

i=1
|xi − x|

)]
, m2 = 1

n

n
∑

i=1
(xi − x)2.

2.23. Bontemps–Meddahi (BM1–BM3−4, BM2–BM3−6)

In 2005, Bontemps and Meddahi proposed a family of normality tests based on mo-
ment conditions known as Stein equations and their relation with Hermite polynomials [24].
The statistic of the test is defined as:

BM3−p =
p

∑
k=3

(
1√
n

n

∑
i=1

Hk(zi)

)2

, (23)
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where zi = (xi − x)/s and Hk(·) is the kth order normalized Hermite polynomial having
the general expression given by:

∀i > 1 : Hi(u) =
1√

i

[
u· Hi−1(u)−

√
i− 1· Hi−2(u)

]
, H0(u) = 1, H1(u) = u.

2.24. Zhang–Wu (ZW1–ZC, ZW2–ZA)

In 2005, Zhang and Wu presented the ZW1 and ZW2 goodness-of-fit tests [15]. The ZC
and ZA statistics are similar to the Cramér–von Mises and Anderson–Darling tests statistics
based on the empirical distribution function. The statistic of the test is defined as:

ZC =
n
∑

i=1

[
ln

Φ(z(i))
−1−1

n−0.5
i−0.75−1

]2

,

ZA = −
n
∑

i=1

[
ln Φ(z(i))
n−i+0.5 +

ln[1− Φ(z(i))]
i−0.5

]
,

(24)

where Φ
(

z(i)
)
= (i− 0.5)/n.

2.25. Gel–Miao–Gastwirth (GMG)

In 2007, Gel, Miao, and Gastwirth proposed the GMG test [16]. The statistic of the test
is defined as:

RsJ =
s
Jn

, (25)

where Jn is the ratio of the standard deviation and the robust measure of dispersion is
defined as:

Jn =

√
π/2
n

n

∑
i=1
|xi −M|,

where M is the median of the sample.

2.26. Robust Jarque–Bera (RJB)

In 2007, Gel and Gastwirth modified the Jarque–Bera test and got a more powerful
Jarque–Bera test [16]. RJB test statistic is defined as:

RJB =
n
6

(
m3

J3
n

)2
+

n
64

(
m4

J4
n
− 3
)2

, (26)

where m3, m4 are the third and fourth moments, respectively, and Jn is the ratio of the
standard deviation.

2.27. Coin β2
3

In 2008, Coin proposed a test based on polynomial regression to determine the group
distributions of symmetric distributions [17]. The type of model for this test is:

z(i) = β1·αi + β3·α3
i , (27)

where β1 and β3 are fitting parameters and αi is the expected values of standard normal
order statistics.

2.28. Brys–Hubert–Struyf TMC−LR (BHS)

In 2008, Brys, Hubert, and Struyf introduced the BHS tests [3]. This test is based on
skewness and long tails. The statistics for this test TMC−LR is defined as:

TMC−LR = n(w−ω)TV−1(w−ω), (28)
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where w is set as [MC, LMC, RMC]T , MC is medcouple, LMC is left medcouple, RMC is right
medcouple, and ω and V are obtained based on the influence function of the estimators in
ω. In the case of a normal distribution:

ω = [0, 0.199, 0.199]T , V =

 1.25 0.323 −0.323
0.323 2.62 −0.0123
−0.323 −0.0123 2.62

.

2.29. Brys–Hubert–Struyf–Bonett–Seier TMC−LR & Tw (BHSBS)

In 2008, Brys, Hubert, Struyf, Bonett, and Seier introduced the combined BHSBS
test [3]. This test statistic is defined as:

TMC−LR & Tw = n(w−ω)TV−1(w−ω)&
√

n + 2·(ω̂− 3)
3.54

, (29)

where ω is asymptotic mean and V is covariance matrix.

2.30. Desgagné–Lafaye de Micheaux–Leblanc Rn (DLDMLRn), Xa
APD (DLDMXAPD), Za

EPD
(DLDMZEPD)

In 2009, Desgagné, Lafaye de Micheaux, and Leblanc introduced the Rn and Xa
APD

tests [18]. The statistic Rn(µ, σ) for this test is defined as:

Rn(µ, σ) =
1
n

n

∑
i=1

dθ(Yi) =

 −2
[

1
n

n
∑

i=1
Y2

i sign(Yi)

]
−2−1

[
1
n

n
∑

i=1
Y2

i log|Yi| − (2− log2− γ)/2
]
, (30)

where Yi = σ−1(Xi − µ). When µ and σ are unknown, the following maximum-likelihood
estimators can be used:

µ̂n = Xn =
1
n

n

∑
i=1

Xi, σ̂n = Sn =

[
1
n

n

∑
i=1

(Xi − Xn)
2
]1/2

.

The DLDMXAPD test is based on skewness and kurtosis which are defined as:

s =
1
n

n

∑
i=1

Z2
i sign(Zi), k =

1
n

n

∑
i=1

Z2
i log|(Zi)|, (31)

where Zi = S−1
n
(
Xi − Xn

)
, Xn, Sn are defined above.

The DLDMXAPD test is suitable for use when the sample size is greater than 10. The
statistic Xa

APD for this test is defined as:

Xa
APD =

ns2

3− 8/π
+

n(k− (2− log2− γ)/2)2

(3π2 − 28)/8
, XAPD = Z2(s) + Z2

(
k− s2

)
, (32)

where γ = 0.577215665 is the Euler–Mascheroni constant and s, k are skewness and
kurtosis, respectively.

In 2016, Desgagné, Lafaye de Micheaux, and Leblanc presented the DLDMZEPD test
based on the skewness [18]. The statistic Za

EPD for this test is defined as:

Za
EPD =

n1/2(k− (2− log2− γ)/2)

[(3π2 − 28)/8]1/2 , ZEPD = ZEPD(k). (33)

2.31. N-Metric

We improved the Bakshaev [30] goodness-of-fit hypothesis test based on N-metrics.
This test is defined in the following way.
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Under the null hypothesis statistic, Tn = −n
∫ 1

0

∫ 1
0 K(x)d(F∗n (x)− x) has the same

asymptotic distribution as quadratic form:

Tn =
∞

∑
k=1

∞

∑
j=1

akj

π2kj
ξkξ j, (34)

where ξk are independent random variables from the standard normal distribution and:

akj = −2
∫ 1

0

∫ 1

0
K(x)dsin(πkx).

In this case, Bakshaev applied the kernel function K(x) = |x− y|, and we propose to
apply another kernel function (Figure 1):

K(x) = ϕ(g(x))g′(x), (35)

where ϕ(x) = 1√
2π

e−
x2
2 .
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An additional bias is introduced when the kernel function is calculated at the sample
values (i.e., for x = X(t)). Therefore, to eliminate this bias, the shape of the kernel function
is chosen so that the influence in the environment of the sample values is as small as
possible.

Let X be the standard normal random variable, Φ and ϕ be its distribution and
density functions, respectively, and g : R → R is an odd strictly monotonically increasing
function. Then the distribution function FY of the random variable Y = g(X) is Φ(g(x)),
where g is the inverse of the function g. The distribution density fY of a random variable
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Y is ϕ(g(x))g′(x). Let us consider the parametric class of functions g, which depends on
three parameters:

g = x
(

c + |x|b
)a

, a, b, c > 0,

g′ =
(

c + |x|b
)a

+ a|x|
(

c + |x|b
)a−1

b|x|b−1

where a is variance, b is trough, and c is peak shape parameter.

3. The Power of Test

The power of the test is defined as the probability of rejecting a false H0 hypothesis.
Power is the opposite of type II error. Decreasing the probability of type I error α increases
the probability of type II error and decreases the power of the test. The smaller the error is,
the more powerful test is. In practice, the tests are designed to minimize the type II error
for a fixed type I error. The most commonly chosen value for α is 0.05. The probability of
the opposite event is calculated as 1− β, i.e., the power of the test (see in Figure 2) β is
the probability of rejecting hypothesis H0 when it is false. The power of the test makes it
possible to compare two tests significance level and sample sizes. A more powerful test
has a higher value of 1− β. Increasing the sample size usually increases the power of the
test [31,32].
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Figure 2. Illustration of the power.

When exact null distribution of a goodness-of-fit test statistic is a step function created
by the summation of the exact probabilities for each possible value of the test statistic, it is
possible to obtain the same critical value for a number of different adjacent significance
levels α. Linear interpolation of the power of the test statistic using the power for a
significance levels (see in Figure 3) less than (denoted α1) and greater than (denoted α2)
the desired significance level (denoted as α) is preferred by many authors to overcome this
problem (see, for example, [33]). Linear interpolation gives a weighting to the power based
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on how close α1 and α2 are to α. In this case, the power of the test is calculated according to
the formula [19]:

Power =
(α− α1)P(T ≥ γ2(α)|H1 ) + (α2 − α)P(T ≥ γ1(α)|H1 )

α2 − α1
, (36)

where γ1(α) and γ2(α) are the critical values immediately below and above the significance
level α. α1=P(T ≥ γ1(α)|H0 ) and α2=P(T ≥ γ2(α)|H0 ) are the significance levels for γ1(α)
and γ2(α), respectively.
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The power of test statistics is determinate by the following steps [19]:

1. The distribution of the analyzed data x1, x2, . . . , xn is formed.
2. Statistics of the compatibility hypothesis test criteria are calculated. If the obtain

value of statistic is greater than the corresponding critical value (α = 0.05 is used),
then hypothesis H0 is rejected.

3. Steps 1 and 2 are repeated for k (in our experiments, k = 1, 000, 000) times.
4. The power of a test is calculated as count/k, where count is the number of false

hypotheses rejections.

4. Statistical Distributions

The simulation study considers fifteen statistical distributions for which the perfor-
mance of the presented normality tests are assessed. Statistical distributions are grouped
into three groups: symmetric, asymmetric, and modified normal distributions. A descrip-
tion of these distribution groups is presented in the following.

4.1. Symmetric Distributions

Symmetric distributions considered in this research are [20]:

• three cases of the Beta(a, b) distributionBeta(0.5; 0.5), Beta(1; 1), and Beta(2; 2), where
a and b are the shape parameters;

• three cases of the Cauchy(t, s) distribution—Cauchy(0; 0.5), Cauchy(0; 1), and
Cauchy(0; 2), where t and s are the location and scale parameters;
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• one case of the Laplace(t, s) distributionLaplace(0; 1), where t and s are the location
and scale parameters;

• one case of the Logistic(t, s) distributionLogistic(2; 2), where t and s are the location
and scale parameters;

• four cases of the t− Student(ν) distributiont(1), t(2), t(4), and t(10), where ν is the
number of degrees of freedom;

• five cases of the Tukey(λ) distributionTukey(0.14), Tukey(0.5), Tukey(2), Tukey(5),
and Tukey(10), where λ is the shape parameter; and

• one case of the standard normal N(0; 1) distribution.

4.2. Asymmetric Distributions

Asymmetric distributions considered in this research are [20]:

• four cases of the Beta(a, b) distributionBeta(2; 1), Beta(2; 5), Beta(4; 0.5), and Beta(5; 1);
• four cases of the Chi-squared(ν) distributionχ2(1), χ2(2), χ2(4), and χ2(10), where ν

is the number of degrees of freedom;
• six cases of the Gamma(a, b) distribution—Gamma(2; 2), Gamma(3; 2), Gamma(5; 1),

Gamma(9; 1), Gamma(15; 1), and Gamma(100; 1), where a and b are the shape and
scale parameters;

• one case of the Gumbel(t, s) distributionGumbel(1; 2), where t and s are the location
and scale parameters;

• one case of the Lognormal(t, s) distributionLN(0; 1), where t and s are the location
and scale parameters; and

• four cases of the Weibull(a, b)distributionWeibull(0.5; 1), Weibull(1; 2), Weibull(2; 3.4),
and Weibull(3; 4), where a and b are the shape and scale parameters.

4.3. Modified Normal Distributions

Modified normal distributions considered in this research are [20]:

• six cases of the standard normal distribution truncated at a and b Trunc(a; b)Trunc(−1; 1),
Trunc(−2; 2), Trunc(−3; 3), Trunc(−2; 1), Trunc(−3; 1), and Trunc(−3; 2), which are
referred to as NORMAL1;

• nine cases of a location-contaminated standard normal distribution, hereon termed
LoConN(p; a)LoConN(0.3; 1), LoConN(0.4; 1), LoConN(0.5; 1), LoConN(0.3; 3),
LoConN(0.4; 3), LoConN(0.5; 3), LoConN(0.3; 5), LoConN(0.4; 5),
and LoConN(0.5; 5), which are referred to as NORMAL2;

• nine cases of a scale-contaminated standard normal distribution, hereon termed
ScConN(p; b)ScConN(0.05; 0.25), ScConN(0.10; 0.25), ScConN(0.20; 0.25),
ScConN(0.05; 2), ScConN(0.10; 2), ScConN(0.20; 2), ScConN(0.05; 4),
ScConN(0.10; 4),
and ScConN(0.20; 4), which are referred to as NORMAL3; and

• twelve cases of a mixture of normal distributions, hereon termed MixN(p; a; b)
MixN(0.3; 1; 0.25), MixN(0.4; 1; 0.25), MixN(0.5; 1; 0.25), MixN(0.3; 3; 0.25),
MixN(0.4; 3; 0.25), MixN(0.5; 3; 0.25), MixN(0.3; 1; 4), MixN(0.4; 1; 4),
MixN(0.5; 1; 4), MixN(0.3; 3; 4), MixN(0.4; 3; 4), and MixN(0.5; 3; 4), which are re-
ferred to as NORMAL4.

5. Simulation Study and Discussion

This section provides a comprehensive modeling study that is designed to evaluate
the power of selected normality tests. This modeling study takes into account the effects
of sample size, the level of significance (α = 0.05) chosen, and the alternative type of
distribution (Beta, Cauchy, Laplace, Logistic, Student, Chi-Square, Gamma, Gumbel, Log-
normal, Weibull, and modified standard normal). The study was performed by applying
40 normality tests (including our proposed normality test) for the generated 1,000,000
standardized samples of size 32, 64, 128, 256, 512, and 1024.
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The best set of parameters (a, b, c) was selected experimentally: the value of a was
examined from 0.001 to 0.99 by step 0.01, the value of b was examined from 0.01 to 10 by
step 0.01, and the value of c was examined from 0.5 to 50 by step 0.25. The N-metric test
gave the most powerful results with the parameters: a = 0.95, b = 0.25, c = 1. In those
cases, a test has several modifications, we present results only for the best variant. The
Tables 1–3 present average power obtained for the symmetric, asymmetric, and modified
normal distribution sets, for samples sizes of 32, 64, 128, 256, 512, and 1024. By comparing
Tables 1–3, it can be seen that the most powerful test for small samples was Hosking1 (H1),
the most powerful test for large sample sizes was our presented test (N-metric). According
to Tables 1–3, it is observed that for large sample sizes, most tests’ power is approaching 1
except for the D’Agostino (DA) test, the power of which is significantly lower.

Table 1. Average empirical power obtained for a group of symmetric distributions.

Sample Size

32 64 128 256 512 1024

Tests

AD 0.714 0.799 0.863 0.909 0.939 0.955
BCMR 0.718 0.809 0.875 0.920 0.947 0.947
BHS 0.431 0.551 0.663 0.752 0.818 0.868

BHSBS 0.680 0.778 0.783 0.903 0.938 0.959
BM2 0.726 0.835 0.905 0.945 0.965 0.974
BS 0.717 0.810 0.877 0.920 0.947 0.961

CC2 0.712 0.805 0.873 0.920 0.949 0.936
CHI2 0.663 0.778 0.842 0.884 0.941 0.945
CVM 0.591 0.733 0.805 0.855 0.919 0.949

ChenS 0.729 0.806 0.871 0.915 0.943 0.960
Coin 0.735 0.830 0.891 0.930 0.952 0.963
DA 0.266 0.295 0.314 0.319 0.315 0.311

DAP 0.723 0.820 0.883 0.924 0.948 0.962
DH 0.709 0.805 0.877 0.925 0.950 0.963

DLDMZEPD 0.730 0.826 0.889 0.929 0.952 0.963
EP 0.706 0.828 0.974 0.910 0.946 0.959

Filli 0.712 0.805 0.875 0.922 0.949 0.962
GG 0.658 0.760 0.850 0.915 0.949 0.962
GLB 0.712 0.798 0.863 0.909 0.943 0.918

GMG 0.787 0.862 0.914 0.946 0.965 0.975
H1 0.799 0.862 0.852 0.999 0.999 0.999
JB 0.643 0.762 0.856 0.918 0.949 0.963
KS 0.585 0.723 0.789 0.836 0.905 0.939

Lillie 0.669 0.758 0.828 0.883 0.921 0.947
MI 0.632 0.676 0.705 0.724 0.736 0.745

N-metric 0.245 0.585 0.971 0.999 0.999 0.999
SF 0.715 0.807 0.876 0.923 0.949 0.962
SW 0.718 0.808 0.874 0.919 0.946 0.962

SWRG 0.694 0.775 0.834 0.882 0.916 0.946
ZQstar 0.513 0.576 0.630 0.669 0.697 0.718
ZW2 0.715 0.806 0.869 0.912 0.939 0.957

Table 2. Average empirical power obtained for a group of asymmetric distributions.

Sample Size

32 64 128 256 512 1024

Tests

AD 0.729 0.835 0.908 0.949 0.969 0.984
BCMR 0.749 0.856 0.924 0.971 0.995 0.991
BHS 0.529 0.664 0.769 0.855 0.915 0.950

BHSBS 0.538 0.652 0.747 0.914 0.902 0.944
BM2 0.737 0.859 0.931 0.965 0.981 0.993
BS 0.506 0.588 0.665 0.738 0.805 0.859
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Table 2. Cont.

Sample Size

32 64 128 256 512 1024

Tests

CC2 0.579 0.682 0.777 0.853 0.938 0.956
CHI2 0.645 0.799 0.881 0.934 0.965 0.980
CVM 0.594 0.755 0.836 0.887 0.935 0.957

ChenS 0.756 0.862 0.928 0.961 0.978 0.991
Coin 0.480 0.556 0.630 0.700 0.769 0.916
DA 0.237 0.223 0.209 0.198 0.191 0.192

DAP 0.705 0.826 0.910 0.955 0.977 0.990
DH 0.724 0.845 0.921 0.957 0.977 0.991

DLDMXAPD 0.726 0.843 0.918 0.955 0.975 0.989
EP 0.753 0.846 0.913 0.967 0.975 0.993

Filli 0.732 0.842 0.915 0.953 0.974 0.991
GG 0.672 0.805 0.898 0.949 0.973 0.988
GLB 0.725 0.831 0.905 0.987 0.970 0.984

GMG 0.683 0.751 0.809 0.859 0.901 0.932
H1 0.816 0.896 0.896 0.999 0.999 0.999
JB 0.662 0.808 0.904 0.953 0.975 0.989
KS 0.582 0.736 0.810 0.863 0.921 0.945

Lillie 0.671 0.786 0.872 0.929 0.959 0.976
MI 0.644 0.731 0.798 0.843 0.872 0.913

N-metric 0.464 0.761 0.990 0.999 0.999 0.999
SF 0.736 0.846 0.918 0.955 0.975 0.989
SW 0.753 0.859 0.925 0.959 0.977 0.991

SWRG 0.758 0.861 0.927 0.960 0.977 0.999
ZQstar 0.570 0.639 0.693 0.732 0.761 0.748
ZW2 0.764 0.870 0.932 0.962 0.980 0.997

Table 3. Average empirical power obtained for a group of modified normal distributions.

Sample Size

32 64 128 256 512 1024

Tests

AD 0.662 0.756 0.825 0.872 0.905 0.931
BCMR 0.652 0.756 0.831 0.880 0.913 0.935
BHS 0.463 0.585 0.676 0.744 0.796 0.834

BHSBS 0.568 0.701 0.787 0.847 0.890 0.918
BM2 0.641 0.770 0.854 0.904 0.934 0.953
BS 0.587 0.688 0.770 0.833 0.881 0.916

CC2 0.576 0.675 0.763 0.833 0.887 0.923
CHI2 0.566 0.728 0.808 0.866 0.914 0.939
CVM 0.557 0.708 0.779 0.833 0.897 0.930

ChenS 0.656 0.759 0.833 0.882 0.915 0.937
Coin 0.579 0.691 0.781 0.846 0.889 0.918
DA 0.314 0.342 0.367 0.388 0.405 0.418

DAP 0.617 0.733 0.818 0.872 0.906 0.930
DH 0.617 0.727 0.815 0.872 0.907 0.930

DLDMXAPD 0.651 0.754 0.831 0.879 0.912 0.935
EP 0.640 0.748 0.819 0.865 0.906 0.931

Filli 0.637 0.743 0.823 0.877 0.911 0.933
GG 0.529 0.657 0.775 0.860 0.906 0.932
GLB 0.659 0.755 0.823 0.870 0.903 0.930

GMG 0.688 0.771 0.836 0.883 0.917 0.942
H1 0.743 0.816 0.799 0.999 0.999 0.999
JB 0.515 0.662 0.783 0.861 0.904 0.930
KS 0.564 0.710 0.772 0.825 0.893 0.924

Lillie 0.626 0.724 0.796 0.850 0.889 0.917
MI 0.494 0.536 0.563 0.578 0.585 0.590

N-metric 0.243 0.582 0.972 0.999 0.999 0.999
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Table 3. Cont.

Sample Size

32 64 128 256 512 1024

Tests

SF 0.642 0.747 0.826 0.879 0.912 0.934
SW 0.654 0.758 0.832 0.882 0.915 0.937

SWRG 0.643 0.746 0.818 0.864 0.901 0.931
ZQstar 0.394 0.423 0.450 0.472 0.487 0.498
ZW2 0.640 0.749 0.826 0.876 0.907 0.931

An additional study was conducted to determine the exact minimal sample size at
which the N-metric test (statistic (34) with kernel function (35)) is the most powerful for
groups of symmetric, asymmetric, and modified normal distributions. Hosking1 and N-
metric tests were applied for data sets of sizes: 80, 90, 100, 105, 110, and 115. The obtained
results showed that the N-metric test was the most powerful for sample size ≥ 112 for the
symmetric distributions, for sample size ≥ 118 for the asymmetric distributions, and for
sample size≥ 88 for a group of modified normal distributions (see in Table 4). The N-metric
test is the most powerful for the Gamma distribution for sample size ≥ 32. It has been
observed that in the case of Cauchy and Lognormal distributions, the N-metric test is the
most powerful when the sample size is ≥ 255, which can be influenced by the long tail of
these distributions.

Table 4. The minimal sample size at which the N-metric test is most powerful.

Nr. Distribution Groups of
Distributions Minimal Sample Size (n)

1. Standard normal Symmetric 46
2. Beta Symmetric 88
3. Cauchy Symmetric 257
4. Laplace Symmetric 117
5. Logistic Symmetric 71
6. Student Symmetric 96
7. Beta Asymmetric 108
8. Chi-square Asymmetric 123
9. Gamma Asymmetric <32

10. Gumbel Asymmetric 125
11. Lognormal Asymmetric 255
12. Weibull Asymmetric 65
13. Normal1 Modified normal 70
14. Normal2 Modified normal 93
15. Normal3 Modified normal 72
16. Normal4 Modified normal 117

To complement the results given in Tables 1–3, Figure 4 (and Figures A1–A3 in
Appendix A) presents the average power results of the most powerful goodness-of-fit
tests. Figure 4 presents two distributions from each group of symmetric (Standard normal
and Student), asymmetric (Gamma and Gumbel), and modified normal (standard normal
distribution truncated at a and b and location-contaminated standard normal distribution)
distributions. Figures of all other distributions are given in Appendix A. In Figure 4, it
can be seen that for the standard normal distribution, our proposed test (N-metric) is the
most powerful when the sample size is 64 or larger. Figure 4 shows that our proposed test
(N-metric) is the most powerful in the case of Gamma data distribution for all sample sizes
examined. In general, it can be summarized that the power of the Chen–Shapiro (ChenS),
Gel–Miao–Gastwirth (GMG), Hosking1 (H1), and Modified Shapiro–Wilk (SWRG) tests
increases gradually with increasing sample size. The power of our proposed test (N-metric)
increases abruptly when the sample size is 128 and its power value remains close to 1 for
larger sample sizes.
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6. Conclusions and Future Work

In this study, a comprehensive comparison of the power of popular normality tests
was performed. Given the importance of this topic and the extensive development of
normality tests, the proposed new normality test, the detailed test descriptions provided,
and the power comparisons are relevant. Only univariate data were examined in this study
of the power of normality tests (a study with multivariate data is planned for the future).
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The study addresses the performance of 40 normality tests, for various sample sizes
n for a number of symmetric, asymmetric, and modified normal distributions. A new
goodness-of-fit test has been proposed. Its results are compared with other tests.

Based on the obtained modeling results, it was determined that the most powerful
tests for the groups of symmetric, asymmetric, and modified normal distributions were
Hosking1 (for smaller sample sizes) and our proposed N-metric (for larger sample sizes)
test. The power of the Hosking1 test (for smaller sample sizes) is 1.5 to 7.99 percent higher
than the second (by power) test for the groups of symmetric, asymmetric, and modified
normal distributions. The power of the N-metric test (for larger sample sizes) is 6.2 to 16.26
percent higher than the second (by power) test for the groups of symmetric, asymmetric,
and modified normal distributions.

The N-metric test is recommended to be used for symmetric data sets of size n ≥ 112,
for asymmetric data sets of size n ≥ 118, and for bell-shaped distributed data sets of size
n ≥ 88.
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Mathematics 2021, 9, 788 19 of 20

Mathematics 2021, 9, x FOR PEER REVIEW 19 of 20 
 

 

Figure A1. Average empirical power results, for all sample sizes, for the groups of symmetric distributions of five powerful 
goodness-of-fit tests. 

 

 
Figure A2. Average empirical power results for the examined sample sizes for the groups of asymmetric distributions of 
five powerful goodness-of-fit tests. 

 
Figure A3. Average empirical power results for the examined sample sizes for the groups of the modified normal 
distributions of five powerful goodness-of-fit tests. 

References 
1. Barnard, G.A.; Barnard, G.A. Introduction to Pearson (1900) on the Criterion That a Given System of Deviations from the 

Probable in the Case of a Correlated System of Variables is Such That it Can be Reasonably Supposed to Have Arisen from 
Random Sampling; Springer Series in Statistics Breakthroughs in Statistics; Springer: Cham, Switzerland, 1992; pp. 1–10. 

2. Kolmogorov, A. Sulla determinazione empirica di una legge di distribuzione. Inst. Ital. Attuari Giorn. 1933, 4, 83–91. 
3. Adefisoye, J.; Golam Kibria, B.; George, F. Performances of several univariate tests of normality: An empirical study. J. Biom. 

Figure A2. Average empirical power results for the examined sample sizes for the groups of asymmetric distributions of
five powerful goodness-of-fit tests.

Mathematics 2021, 9, x FOR PEER REVIEW 19 of 20 
 

 

Figure A1. Average empirical power results, for all sample sizes, for the groups of symmetric distributions of five powerful 
goodness-of-fit tests. 

 

 
Figure A2. Average empirical power results for the examined sample sizes for the groups of asymmetric distributions of 
five powerful goodness-of-fit tests. 

 
Figure A3. Average empirical power results for the examined sample sizes for the groups of the modified normal 
distributions of five powerful goodness-of-fit tests. 

References 
1. Barnard, G.A.; Barnard, G.A. Introduction to Pearson (1900) on the Criterion That a Given System of Deviations from the 

Probable in the Case of a Correlated System of Variables is Such That it Can be Reasonably Supposed to Have Arisen from 
Random Sampling; Springer Series in Statistics Breakthroughs in Statistics; Springer: Cham, Switzerland, 1992; pp. 1–10. 

2. Kolmogorov, A. Sulla determinazione empirica di una legge di distribuzione. Inst. Ital. Attuari Giorn. 1933, 4, 83–91. 
3. Adefisoye, J.; Golam Kibria, B.; George, F. Performances of several univariate tests of normality: An empirical study. J. Biom. 

Figure A3. Average empirical power results for the examined sample sizes for the groups of the modified normal
distributions of five powerful goodness-of-fit tests.

References
1. Barnard, G.A.; Barnard, G.A. Introduction to Pearson (1900) on the Criterion That a Given System of Deviations from the Probable in the

Case of a Correlated System of Variables is Such That it Can be Reasonably Supposed to Have Arisen from Random Sampling; Springer
Series in Statistics Breakthroughs in Statistics; Springer: Cham, Switzerland, 1992; pp. 1–10.

2. Kolmogorov, A. Sulla determinazione empirica di una legge di distribuzione. Inst. Ital. Attuari Giorn. 1933, 4, 83–91.
3. Adefisoye, J.; Golam Kibria, B.; George, F. Performances of several univariate tests of normality: An empirical study. J. Biom.

Biostat. 2016, 7, 1–8.



Mathematics 2021, 9, 788 20 of 20

4. Anderson, T.W.; Darling, D.A. Asymptotic theory of certain “goodness-of-fit” criteria based on stochastic processes. Ann. Math.
Stat. 1952, 23, 193–212. [CrossRef]

5. Hosking, J.R.M.; Wallis, J.R. Some statistics useful in regional frequency analysis. Water Resour. Res. 1993, 29, 271–281. [CrossRef]
6. Cabana, A.; Cabana, E.M. Goodness-of-Fit and Comparison Tests of the Kolmogorov-Smirnov Type for Bivariate Populations.

Ann. Stat. 1994, 22, 1447–1459. [CrossRef]
7. Chen, L.; Shapiro, S.S. An Alternative Test for Normality Based on Normalized Spacings. J. Stat. Comput. Simul. 1995, 53, 269–288.

[CrossRef]
8. Rahman, M.M.; Govindarajulu, Z. A modification of the test of Shapiro and Wilk for normality. J. Appl. Stat. 1997, 24, 219–236.

[CrossRef]
9. Ray, W.D.; Shenton, L.R.; Bowman, K.O. Maximum Likelihood Estimation in Small Samples. J. R. Stat. Soc. Ser. A 1978, 141, 268.

[CrossRef]
10. Zhang, P. Omnibus test of normality using the Q statistic. J. Appl. Stat. 1999, 26, 519–528. [CrossRef]
11. Barrio, E.; Cuesta-Albertos, J.A.; Matrán, C.; Rodríguez-Rodríguez, J.M. Tests of goodness of fit based on the L2-Wasserstein

distance. Ann. Stat. 1999, 27, 1230–1239.
12. Glen, A.G.; Leemis, L.M.; Barr, D.R. Order statistics in goodness-of-fit testing. IEEE Trans. Reliab. 2001, 50, 209–213. [CrossRef]
13. Bonett, D.G.; Seier, E. A test of normality with high uniform power. Comput. Stat. Data Anal. 2002, 40, 435–445. [CrossRef]
14. Psaradakis, Z.; Vávra, M. Normality tests for dependent data: Large-sample and bootstrap approaches. Commun. Stat.-Simul.

Comput. 2018, 49, 283–304. [CrossRef]
15. Zhang, J.; Wu, Y. Likelihood-ratio tests for normality. Comput. Stat. Data Anal. 2005, 49, 709–721. [CrossRef]
16. Gel, Y.R.; Miao, W.; Gastwirth, J.L. Robust directed tests of normality against heavy-tailed alternatives. Comput. Stat. Data Anal.

2007, 51, 2734–2746. [CrossRef]
17. Coin, D. A goodness-of-fit test for normality based on polynomial regression. Comput. Stat. Data Anal. 2008, 52, 2185–2198.

[CrossRef]
18. Desgagné, A.; Lafaye de Micheaux, P. A powerful and interpretable alternative to the Jarque–Bera test of normality based on

2nd-power skewness and kurtosis, using the Rao’s score test on the APD family. J. Appl. Stat. 2017, 45, 2307–2327. [CrossRef]
19. Steele, C.M. The Power of Categorical Goodness-Of-Fit Statistics. Ph.D. Thesis, Australian School of Environmental Studies,

Warrandyte, Victoria, Australia, 2003.
20. Romão, X.; Delgado, R.; Costa, A. An empirical power comparison of univariate goodness-of-fit tests for normality. J. Stat.

Comput. Simul. 2010, 80, 545–591. [CrossRef]
21. Choulakian, V.; Lockhart, R.; Stephens, M. Cramérvon Mises statistics for discrete distributions. Can. J. Stat. 1994, 22, 125–137.

[CrossRef]
22. Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [CrossRef]
23. Lilliefors, H.W. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 1967,

62, 399–402. [CrossRef]
24. Ahmad, F.; Khan, R.A. A power comparison of various normality tests. Pak. J. Stat. Oper. Res. 2015, 11, 331. [CrossRef]
25. D’Agostino, R.B.; Pearson, E.S. Testing for departures from normality. I. Fuller empirical results for the distribution of b2 and√

b1. Biometrika 1973, 60, 613–622.
26. Filliben, J.J. The Probability Plot Correlation Coefficient Test for Normality. Technometrics 1975, 17, 111–117. [CrossRef]
27. Martinez, J.; Iglewicz, B. A test for departure from normality based on a biweight estimator of scale. Biometrika 1981, 68, 331–333.

[CrossRef]
28. Epps, T.W.; Pulley, L.B. A test for normality based on the empirical characteristic function. Biometrika 1983, 70, 723–726. [CrossRef]
29. Jarque, C.; Bera, A. Efficient tests for normality, homoscedasticity andserial independence of regression residuals. Econ. Lett. 1980,

6, 255–259. [CrossRef]
30. Bakshaev, A. Goodness of fit and homogeneity tests on the basis of N-distances. J. Stat. Plan. Inference 2009, 139, 3750–3758.

[CrossRef]
31. Hill, T.; Lewicki, P. Statistics Methods and Applications; StatSoft: Tulsa, OK, USA, 2007.
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