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Abstract: Natural soil and rock materials and the associated artificial materials have cracks, fractures,
or contacts and possibly produce rock fragments or particles during geological, environmental,
and stress conditions. Based on color gradient distribution, a digital image processing method
was proposed to automatically recognize the outlines of fractures, fragments, and particles. Then,
the fracture network, block size distribution, and particle size distribution were quantitatively
characterized by calculating the fractal dimension and equivalent diameter distribution curve. The
proposed approach includes the following steps: production of an image matrix; calculation of the
gradient magnitude matrix; recognition of the outlines of fractures, fragments, or particles; and
characterization of the distribution of fractures, fragments, or particles. Case studies show that the
fractal dimensions of cracks in the dry mud layer, ceramic panel, and natural rock mass are 1.4332,
1.3642, and 1.5991, respectively. The equivalent diameters of fragments of red sandstone, granite,
and marble produced in quasi-static compression failures are mainly distributed in the ranges of
20–40 mm, 25–65 mm, and 10–35 mm, respectively. The fractal dimension of contacts between
mineral particles and the distribution of the equivalent diameters of particles in rock are 1.6381 and
0.8–3.6 mm, respectively. The proposed approach provides a computerized method to characterize
quantitatively and automatically the structure characteristics of soil/rock or soil/rock-like materials.
By this approach, the remote sensing for characterization can be achieved.

Keywords: soil/rock-like materials; digital image processing; color gradient; block size distribution;
fractal dimension; particle size distribution

1. Introduction

Natural geomaterials (soil and rock) and the associated artificial materials have many
discontinuous structures such as cracks, fractures, and contacts and possibly produce frag-
ments or particles during geological, environmental, and stress conditions [1–7]. The distri-
butions of discontinuous structures and particles can determine the physical-mechanical
characteristics and failure modes of these materials. The size distribution of fragments
reflects the failure behavior or breakage performance. Characterizations of discontinu-
ous structures, particles, and fragments are important for many operations in mining
and geotechnical fields, such as geo-mechanical assessment and stability analysis of rock
mass, performance analysis of rock breakage, and geometrical characterization of the
internal structure of rock-like material. Digital image processing is a digital-based and
computer-based approach applying various mathematical algorithms to extract significant
information from the images. Digital image processing has been widely used in a range
of engineering topics in recent years to determine the characteristics of microscopic and
macroscopic structures in the natural and human-made materials [8].

Many efforts have been made to collect and characterize discontinuous structures in
rock exposures. Customarily, handheld equipment such as a geological compass-clinometer,
a measuring tape, and a roughness profile gauge were used to make the in situ measurement
of discontinuity geometry of rock mass exposures. This method was undesirable for several
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reasons: high operation risk, limited measurement scale, high time consumption, and no
uninterpreted record of the rock face. As an alternative approach to in situ measurement,
photogrammetry allows for discontinuity geometry to be measured from remotely sensed
photographs of rock mass exposures [9,10]. Afterwards, digital images were used instead,
which promoted the production of automated methods to firstly detect discontinuities
and to then analyze discontinuity geometry as the data comprising digital images can
be mathematically processed [11]. Some digital image processing techniques, such as
the greyscale threshold, greyscale smoothing, segmentation, and edge detection, have
been used to identify discontinuity traces in digital images of rock mass exposures to
characterize the fracture length, orientation, and position [11–13]. In these efforts, it was
difficult to fully reflect the information of the natural rock mass exposure with gray-
level images. The complication of the recognition of discontinuity traces defined by
edges resulted in the binary image from segmentation containing a large number of error
pixels. The optimal threshold value for each image impeded the creation of an automatic
mapping tool [14]. The manual, automatic, and semiautomatic methods had been used to
characterize discontinuity traces using photographs of rock exposures, and the case studies
on actual rock images were taken to conduct comparative analyses to quantify the accuracy
of fracture detection and characterization [11,14]

Fragmentation is an important operation in order to control and minimize the loading,
hauling, crushing, classification, and processing costs in mining and minerals engineer-
ing [15–18]. Many methods based on photo-analysis were proposed to estimate the size
distribution of rock fragments [19–22]. The aforementioned methods were performed by
hand or through image processing techniques by computer, which must delineate the
individual rock fragments in an image. A computer program using statistical procedures
was developed to automatically determine the size distribution of rock fragments based
on high-resolution images [23]. Subsequently, digital image software was developed to
evaluate fragmentation, which gradually became a worldwide accepted tool in the mining
and mineral processing industries with the emergence of the continuous fragmentation
monitoring system [24]. Some scholars compared fragmentation measurements using
photographic and image analysis techniques on the actual images of fragments. They
found that the photographic method was time-consuming, and manual editing was re-
quired to improve the accuracy of the image processing method [25]. The image analysis
approaches could reach a satisfactory accuracy via comparisons with calculations from
manual outlining and measurement [23–25].

The aforementioned methods based on image analyses provide useful tools for es-
timating the fracture and block size distributions. However, there is still a lack of a
comprehensive and consolidated method to automatically recognize discontinuous struc-
tures and to characterize the distributions of discontinuous structures and block sizes
with multiple scales. In addition, the graying process decreases the dimensionality of
multicolor images and reduces recognition accuracy, although it is a common process in
demarcations based on image processing techniques. This study proposed a digital image
processing method based on the color gradient distribution of a multicolor image. This
approach was used to automatically recognize the outlines of fractures/cracks/contacts,
fragments, and particles. Then, the fracture network, block size distribution, and particle
size distribution were quantitatively characterized. Case studies were conducted to confirm
the proposed method.

2. Methodology
2.1. Image Processing Method Based on Color Gradient

The colors of fractures in rock and the outlines of rock fragments or particles are
different from the colors of other zones in a digital image. There are high color gradient
values at rock fractures and the outlines of rock fragments or particles. Therefore, a color
gradient-based image processing method was proposed to automatically recognize the
outlines of rock fractures, rock fragments, and rock particles. Then, the fractal dimension
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of the fracture network in rocks and the particle size distribution of rock fragments or
particles can be characterized. The detailed steps are shown in Figure 1 and described
as follows:
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Figure 1. Flowchart of the image-processing method for analyzing the properties of rock fracturing
and block/particle size distribution.

Step 1—Read the original color image consisting of three primary colors (red, green,
and blue) to produce an image matrix expressed as Equation (1) including pixel locations
and the associated tricolor values.

Cm×n×3 = [cijk] (1)

where Cm×n×3 is the image matrix and cijk is the tricolor value of a pixel.
Step 2—Calculate the color gradient based on Equation (2) to achieve a gradient

magnitude matrix expressed as Equation (3), including gradient magnitudes of tricolor
values. In addition, the isolated pixel with a peak value of color gradient will be deleted
for simple noise reduction. The box with 3 × 3 pixels was used to find the insolated pixel
with a peak value of color gradient by one pixel as the set size in the search. If the color
gradient in the center position presents a sudden rise, this pixel will be considered noise.

gijk =

√
(

ci,j+1,k − ci,j,k

∆x
)

2
+ (

ci+1,j,k − ci,j,k

∆y
)

2
(2)

G(m−1)×(n−1)×3 = [gijk] (3)
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where gijk is the gradient magnitude, G(m−1)×(n−1)×3 is the gradient magnitude matrix, and
∆x and ∆y are the differential steps in the horizontal and vertical directions for calculating
the gradient magnitude, in which the steps are set to one pixel in the horizontal and
vertical directions.

Step 3—Outline the rock fractures or the boundaries of rock fragments or particles,
and use binarization to store the locations of outlines in a binary digital image according to
the color gradient magnitude and the following criteria:

gij > a (4)

gij =
gij1 + gij2 + gij3

3
(5)

where gij is the mean of the gradient magnitude values of the tricolor values and a is the
threshold value to recognize the outline.

Step 4—Calculate the fractal dimension of the fracture network in rock to quanti-
tatively characterize the developmental degree of fractures in rock. The box-counting
dimension is used to determine the fractal property of the fracture network. The binarized
image is covered by a sequence of square grids with ascending sizes through a measuring
box scale along the horizontal and vertical measuring directions. For each grid, the number
of boxes intersected by the fracture network, N(δ), and the lengths of the sides of the boxes,
δ, are recorded. Then, the natural logarithm of N(δ) is plotted against the natural logarithm
of 1/δ and the straight line is regressed by Equation (6). The slope of the regressed straight
line is the fractal dimension, DF.

ln(N(δ)) = DF ln(
1
δ
) + C (6)

where C is a regressed constant.
Step 5—Calculate the area, SAO, of the connected zone enclosed by each outline of the

rock fragment or rock particle, and convert SAO into the equivalent diameter d of a circle
for which the area SA is equal to the area enclosed by outline, which can be expressed as

SAO = π
d2

4
= SA (7)

Then, the frequency histograms and distribution curves of equivalent diameters of
the rock fragments or rock particles can be drawn from the size statistics.

2.2. Description of the Proposed Image Processing Method

In order to clearly describe the proposed image processing method, the calculation
processes of the fractal dimension of the world coastline and the size distribution of the
connected land were taken as the example shown in Figure 2. The calculation process was
similar to the analyses of the fractal dimension and the size distribution of rock fractures,
rock fragments, or rock particles. First, the world coastline map (Figure 2a) was simplified
into a graph (Figure 2b), with the different colors denoting seawater and land, by marking
seawater and land with blue and white, respectively, using a drawing software. Secondly,
the mean of the color gradient was calculated and drawn in the color gradient distribution
graph shown in Figure 2c. Then, the coastline was recognized and located in a binary digi-
tal image shown in Figure 2d. Finally, the fractal dimension of the coastline was obtained
using the regression analysis (Figure 2f) of the box-counting dimension. The schematic
diagram of the measuring process for calculating the box-counting dimension is shown in
Figure 2e. Meanwhile, the connected domain of land (Figure 2g) was distinguished. The
areas of connected domains were calculated and stored in a vector to obtain the frequency
histogram and cumulative distribution curve (Figure 2i) of land sizes by calculating equiv-
alent diameter, as shown in Figure 2h. The fractal dimension of world coastline is 1.3625,
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and the land sizes are mostly distributed below 2000 km, as determined by analyses from
the proposed digital image processing method.
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Figure 2. Description of the image-processing method for determining the fractal dimension of the world coastline and
the size distribution of land, including (a) a world coastline map, (b) a simplified world coastline map, (c) color gradient
distribution, (d) color gradient-based recognition of the coastline, (e) calculation process of the fractal dimension, (f) result
of the fractal dimension of the coastline, (g) connected domain of land, (h) calculation process of equivalent diameter, and
(i) the result of equivalent diameter distribution of land.

3. Application of the Proposed Image Processing Method
3.1. Fractal Dimension of Fracture Network

Rock and soil materials often produce a crack or fracture network under loads from
geological and environment effects. It is an important task to characterize the fracture
network to quantitatively determine the development and distribution of fractures. For
the soil material of a mud layer under water, many cracks (Figure 3a) will emerge after
the water recedes, induced by tensile stress generated from water evaporation, thermal
expansion, and cold shrinkage under high temperatures and drought conditions. The
proposed image-processing method was used to determine the fractal dimension of cracks
in the dry mud layer. The calculation process is shown in Figure 3. The result shows that
the fractal dimension of cracks in the dry mud layer is 1.4332.

For a ceramic panel that is a brittle material made by artificial sintering of clay, the
crack network (Figure 4a) will be produced by thermal expansion and cold shrinkage
during high-temperature sintering and long-term service conditions. As shown in Figure 4,
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the proposed image processing method was used to determine the fractal dimensions of
the crack network in the ceramic panel. The calculated fractal dimension is 1.3642.
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Figure 3. Fractal dimension of the crack network of the mud layer, including (a) cracks of the mud layer, (b) color gradient
distribution, (c) recognized cracks, and (d) fractal dimension of the crack network.
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Figure 4. Fractal dimension of the crack network in a ceramic panel, including (a) cracks in the ceramic panel, (b) color
gradient distribution, (c) recognized cracks, and (d) fractal dimension of the crack network.

For the rock mass, there are many cracks or fractures (Figure 5a) due to geological
processes including tectonics, weathering, and diagenesis, and the effects of human-made
excavation. It is important for quality assessments, strength prediction, and stability
analysis of rock masses to characterize the fracture distribution. As shown in Figure 5, the
proposed method was used to determine the fractal dimension of the fracture network
in rock mass based on the color gradient-based processing of a digital image of a natural
rock mass. By distinguishing the color differences of rock fractures from color gradient
distribution, the rock fractures were recognized from the natural rock mass. The fractal
dimension of the fracture network regressed to 1.5991.

The aforementioned application examples show that the proposed image-processing
method based on the color gradient distribution of a digital image can automatically and
programmatically recognize cracks or fractures. Then, the associated fractal dimension
of the crack or fracture network in soil and rock materials can be calculated. The results
can provide quantitative information to determine the distribution characteristics and
development degree of cracks or fractures in soil and rock materials.

In order to compare the proposed methodology with the existing methods, the afore-
mentioned actual image of fracture network shot from the on-site rock mass were used
to produce the calculation time and fractal dimensions by different image processing
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methods. The results were compared to the real situation by manual outlining, which can
be regarded as a real result of fractal dimension. In the comparisons, the color gradient-
based method proposed in this study was compared with the gray gradient-based, binary
gradient-based, color image-based, gray image-based, and binary image-based methods.
Finally, the proposed method was confirmed by manual outlining and the color-based
method. The gradient-based methods were based on the gradient distribution of color,
gray, or binary values for outlining the fracture network. The image-based methods were
based on the tricolor, gray, or binary values for outlining the fracture network. The used
computer was installed with Windows 10 × 64 system, Intel(R) Core(TM) i5-6200U CPU
2.30 GHz and RAM 8 GB. The comparative results are shown in Figure 6 and summarized
in Table 1. Manual outlining can provide the real value of fractal dimension for conducting
comparisons. However, the work outlining the fracture consumed four hours, which was
a time-consuming and laborious task. Therefore, the image-processing methods were
created to solve such a problem. The color gradient-based method proposed in this study
consumed the longest calculation time for fracture identification and fractal dimension
because it was required to determine the tricolor and the associated gradient. Nevertheless,
it only took 1490.733 ms to produce the results. The results of fracture network and its
fractal dimension achieved by the proposed color gradient-based method were closest to
the results obtained by manual outlining. The difference rate was only 0.33%. Therefore,
the calculation accuracy and calculation efficiency of the proposed method were confirmed
by the comparisons.
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Figure 6. Calculation results of the fractal dimension of a fracture network by different methods, including (a) the color
gradient-based method proposed in this study, (b) a gray gradient-based method, (c) a binary gradient-based method, (d) a
color image-based method, (e) a gray image-based method, (f) a binary image-based method, and (g) a manual outlining
and color-based method.
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Table 1. Comparation of calculation methods.

Method
Calculation Time for
Fracture Identification and
Fractal Dimension/ms

Fractal
Dimension

Difference Rate of Fractal
Dimension Relative to
the Result by Manual
Outlining/%

Color gradient-based method proposed in this study 1490.733 1.5991 0.33
Gray gradient-based method [11] 1003.207 1.5669 1.69
Binary gradient-based method [11] 1187.949 1.5299 4.01
Color image-based method (designed in this study
for comparison) 196.739 1.4181 11.02

Gray image-based method 143.722 1.4911 6.44
Binary image-based method [14] 155.167 1.4775 7.3

Manual outlining and color-based method (designed
in this study for comparison)

157.846
(Before it, the outlining time
has 4 h)

1.5938 –

3.2. Block Size Distribution of Rock Fragments

A number of rock fragments with multiple shapes and sizes will be produced when
rock failure occurs in rock mechanical experiments and field excavations. The block
size distribution of rock fragments is an important parameter for estimating the energy
consumption characteristic of a rock after peak strength. The digital image processing
approach was proposed to calculate the block size distribution of rock fragments. Firstly,
the boundaries of rock fragments will be drawn and stored in a binary color matrix using
the recognition criterion based on the color gradient distribution of the original image
of rock fragments. Then, the areas of the connected domains surrounded by fragment
boundaries were calculated, and these areas were converted into circles with the same
area values and equivalent diameters. Finally, the frequency histogram and cumulative
distribution curve of the equivalent diameters of rock fragments can be achieved. Granite,
marble, and sandstone, which are classified as magmatic, metamorphic, and sedimentary
rocks, respectively, are commonly used rock specimens for investigating the mechanical
properties of brittle materials. Therefore, rock fragments of red sandstone, granite, and
marble were used as application examples to show the specific processes of the proposed
image processing approach to characterize the block size distribution, as shown in Figure 7.
The analysis results show that the equivalent diameters of fragments are mainly distributed
in the ranges of 20–40 mm, 25–65 mm, and 10–35 mm for red sandstone, granite, and mar-
ble, respectively, under the same experimental conditions. Although the main distribution
range of fragment diameter can be reflected, the distribution modality of fragment diame-
ters did not present a special strict type with unimodality, bimodality, or multimodality
because the number of fragments was few and did not have the statistical law. In addition,
the randomness of rock fracturing also contributed to that result.

Based on the proposed image processing approach, the boundaries of the rock frag-
ments can be clearly recognized and the connected domains can be accurately demarcated.
Then, an accurate frequency histogram and cumulative distribution curve of equivalent
diameters can be automatically produced to conduct visualization of the block size distri-
bution of rock fragments. Therefore, the proposed method can be used to characterize the
block size distributions of rock fragments produced during opencast blasting, underground
mining, tunneling, ore-rock crushing, etc.

3.3. Fractal Dimension and Particle Size Distribution of Microparticles in Rock

Rocks are formed by cementation of many microparticles, influenced by long-term
geological processes. The types, shapes, sizes, and distribution and cementation charac-
teristics of microparticles determine the physical-mechanical properties of rock material.
The fractal dimension of contacts between microparticles can reflect the shapes and the
associated distribution of microparticles in rock. The equivalent diameter of particles and
the associated distribution can characterize the particle size distribution in rock. The pro-
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posed digital image processing method can be simultaneously used to calculate the fractal
dimension of contacts and the particle size distribution of microparticles in rock, as shown
in Figure 8. Based on the color gradient distribution, the contacts between microparticles
can be recognized, and then the connected domains of microparticles can be demarcated.
Then, the fractal dimension of contacts and the equivalent diameter distribution of particles
can be produced by using the calculation processes of the box-dimension and equivalent
diameter. The analysis results show that the fractal dimension of the contacts is 1.6381. The
equivalent diameters of the microparticles are mainly distributed from 0.8–3.6 mm with
a bimodality distribution, which means the sizes of microparticles are concentrated near
1 mm and 2–3 mm for the mentioned rock material. The reason for that bimodality may
be determined by the mineral particle composition, bonding form, and special geological
conditions of diagenesis. That result indicated that the particle elements with sizes of 1 mm
and 2–3 mm be produced and reserved during the long process of diagenesis.
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Figure 7. Block size distribution of rock fragments produced in rock mechanics tests, which include (a) red sandstone,
(b) granite, and (c) marble.
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Figure 8. Fractal dimension and particle size distribution of microparticles in rock, including (a) contacts and particles
in rock, (b) color gradient distribution, (c) recognized fractures between microparticles in rock, (d) fractal dimension
of fractures, (e) connected domains of particles, and (f) the frequency histogram and cumulative distribution curve of
particle sizes.

4. Conclusions

A digital image-processing method based on color gradient distribution was proposed
to automatically recognize the outlines of rock fractures, rock fragments, and rock particles.
By using this method, the fracture network, block size distribution, and particle size
distribution of rock can be quantitatively characterized. The proposed approach can
automatically produce the fractal dimension of a fracture or contact network in rock and
the size distribution curves of rock fragments and mineral particles. These approaches can
quantitatively characterize the rock structure characteristics by means of a computer. Based
on this study, the following conclusions can be drawn:

(a) The calculation examples show that the proposed image-processing method can
automatically and programmatically recognize cracks or fractures and then calculate the
fractal dimensions of crack or fracture networks. The fractal dimension can quantita-
tively reflect the distribution characteristic and development degree of cracks or fractures
in soil and rock materials. The calculation results show that the fractal dimensions of
cracks in the dry mud layer, ceramic panel, and natural rock mass are 1.4332, 1.3642,
and 1.5991, respectively.

(b) The outlines of rock fragments produced after rock failure can be clearly recognized
by the proposed image-processing method. Then, the frequency histogram and cumulative
distribution curves of equivalent diameters of rock fragments can be automatically obtained
to characterize the block size distribution of rock fragments. The proposed method can
be used to characterize the block size distributions of rock fragments produced in rock
fragmentations during opencast blasting, underground mining, tunneling, and ore-rock
crushing. The calculation examples show that the equivalent diameters of fragments of red
sandstone, granite, and marble produced in compression failures are mainly distributed in
the ranges of 20–40 mm, 25–65 mm, and 10–35 mm, respectively.
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(c) Based on the proposed method, the contacts between microparticles in rock can be
accurately recognized, and the connected domains of microparticles can be demarcated
subsequently. Then, the fractal dimension of contacts and the equivalent diameter distri-
bution of particles can be calculated and are 1.6381 and 0.8–3.6 mm, respectively, for the
mineral particles in the rock specimens.

(d) The comparative analyses show that the proposed color gradient-based method
presents the best performance and is closest to the actual result assessed by manual out-
lining. Compared to the existing methods, the proposed method is a comprehensive and
consolidated approach that can automatically recognize discontinuous structures and
characterize the distributions with multiple scales. Meanwhile, this approach fully utilizes
multicolor information in color images. The above improvement significantly increases the
recognition accuracy.
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