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Abstract: The “Multivariate Ring Learning with Errors” problem was presented as a generalization
of Ring Learning with Errors (RLWE), introducing efficiency improvements with respect to the
RLWE counterpart thanks to its multivariate structure. Nevertheless, the recent attack presented
by Bootland, Castryck and Vercauteren has some important consequences on the security of the
multivariate RLWE problem with “non-coprime” cyclotomics; this attack transforms instances
of m-RLWE with power-of-two cyclotomic polynomials of degree n = ∏i ni into a set of RLWE
samples with dimension maxi {ni}. This is especially devastating for low-degree cyclotomics (e.g.,
Φ4(x) = 1 + x2). In this work, we revisit the security of multivariate RLWE and propose new
alternative instantiations of the problem that avoid the attack while still preserving the advantages of
the multivariate structure, especially when using low-degree polynomials. Additionally, we show
how to parameterize these instances in a secure and practical way, therefore enabling constructions
and strategies based on m-RLWE that bring notable space and time efficiency improvements over
current RLWE-based constructions.

Keywords: tensor of number fields; lattice cryptography; homomorphic encryption; ring learning
with errors; multivariate rings

1. Introduction

Lattices have become a very promising tool for the development and improvement of
new cryptographic constructions, notably those belonging to the field of homomorphic
encryption. Instead of directly working with lattice assumptions, it is frequent to deal
with assumptions whose underlying security can be based on the hardness of lattice
problems. Among them, the family of Learning with Errors (LWE) [1,2] has become the
preferred one due to its versatility. Lyubashevsky et al. [3,4] proposed a variant of LWE
called Ring-LWE (or RLWE), whose hardness can be reduced from hardness problems over
ideal lattices (instead of the general ones used in the LWE version). RLWE has proven to
be more practical than LWE, as the underlying primitives can be usually more efficient;
e.g., RLWE enables a notable reduction in the size of the public and secret keys in public
key cryptosystems.

The RLWE problem enables homomorphic cryptography with a ring homomorphism
supporting both addition and multiplication of ciphertexts. Among the possible quotient
polynomial rings used for this purpose, the most practical ones are those where the ideal is
a cyclotomic polynomial of the form 1 + zn, with n a power of two. They present two ad-
vantages: (a) they enable efficient implementations of polynomial operations through fast
radix algorithms of the Number Theoretic Transforms (NTTs) [5,6], and (b) the polynomial
operations over the used ring correspond to basic blocks in practical applications in Com-
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puter Vision and Signal Processing [7–9], comprising, among others, linear convolutions,
filtering, and linear transforms.

Recently, a multivariate version of RLWE (m-RLWE) was proposed as a means to effi-
ciently deal with encrypted multidimensional structures, such as videos or images [9–12].
In this scenario, the use of a tensorial decomposition in “coprime” cyclotomic rings
(see [3,4,13]) is a priori not applicable, as these structures require that the ideals have
the same form (e.g., (1 + zn)). This is the context in which m-RLWE [10] was originally
introduced.

Additionally, current hot problems in (fully) homomorphic encryption involve the
optimization of elementary polynomial operations through fast transforms and, especially,
the search for optimal strategies to execute homomorphic slot manipulations and trade
off storage and computation needs for relinearization operations. These are fundamen-
tal blocks in homomorphic processing and in the implementation of the bootstrapping
(see [14–17]) primitives enabling fully homomorphic encryption. As we will show, m-
RLWE can bring significant efficiency improvements in all of them (see Sections 8 and 9).

The use of the tensor of lattices and/or adding a multivariate structure to the involved
rings has been the subject matter of several previous works, but with very different targets.
We briefly survey here the closest ones: (a) In [18], the authors applied the standard tensor
product of lattices to improve the hardness factor of the Shortest Vector Problem (SVP)
under different assumptions. (b) In [13], the authors define an isomorphism between some
cyclotomic fields and a tensor product of cyclotomic fields when the order m in Φm(z)
can be factored into several (different) prime powers. (c) The “tensor” representation also
appears in the definition of the GLWE problem (also called Module-LWE [19]) which was
originally introduced in [20,21]. In fact, analogously to LWE versus RLWE, the introduced
multivariate RLWE problem can be seen as a ring version of the GLWE problem, by means
of adding for a second time a ring structure into the module. (d) Finally, the FHEW scheme
features [22] a ring tensoring for a speed-up of the homomorphic accumulator, and also
bivariate rings are used as a means to enhance the efficiency of polynomial products inside
the refreshing procedure in [23].

It is discussed in [24] that the m-RLWE problem can be reduced from discrete Gaussian
Sampling (equivalent to worst case Shortest Independent Vectors Problem, SIVP) over the
tensor of rings. Unfortunately, a recent work [25] shows an effective attack against m-RLWE
when the univariate subrings share common roots, therefore considerably lowering the
security of the underlying problem. Hence, our main contribution in this work is to redefine the
m-RLWE problem and find secure instantiations that preserve the efficient results on multivariate
RLWE [12], by basing their security on a subset of RLWE on general number fields (see the
recent work by Peikert et al. [26], that generalizes the RLWE problem to any modulus and
any ring over number fields).

We now briefly sketch the more conventional univariate RLWE problem, and its use for
the implementation of efficient homomorphic encryption. Next, we informally introduce
the definition of m-RLWE, the attack by Bootland, Castryck and Vercauteren [25], and the
rationale of our solution, all exemplified in the bivariate case.

1.1. Univariate RLWE and Homomorphic Encryption

Gentry’s seminal work [27] introduced a new family of cryptosystems enabling Fully
Homomorphic Encryption (FHE), which can compute an unbounded number of both
encrypted additions and multiplications. Despite its theoretical relevance, current FHE
schemes are still not entirely practical for real scenarios [28]. This motivated the use of a
more efficient alternative as Somewhat Homomorphic Encryption (SHE), on which only a
limited number of consecutive homomorphic operations is allowed. Precisely, as in many
real scenarios the number of required operations is known beforehand, SHE turns out to be
a perfect fit. Furthermore, many optimizations have been incorporated and, consequently,
lattice-based SHE/FHE cryptosystems are being progressively adopted by researchers
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in the field [7,29–31]. In particular, RLWE-based cryptosystems show nowadays the best
runtime performance.

Most of the efficiency improvements that RLWE has introduced into (somewhat/fully)
homomorphic encryption rely on its particular algebraic structure [4], consisting in the
use of polynomial cyclotomic rings. Actually, from a practical perspective, most of the
recent libraries for homomorphic cryptography, such as the HElib [14,32], PALISADE [33],
SEAL [34], Lattigo [35] and NFLlib [5], take advantage of this fact to optimize the runtime
of the implemented lattice-based cryptosystems.

We exemplify in Table 1 the use of univariate RLWE for homomorphic encryption.

Table 1. Univariate Ring Learning with Errors (RLWE) for homomorphic encryption.

A simple RLWE-based cryptosystem: Let Rq be a cyclotomic polynomial ring Zq[x]/(Φ2n(x)), where
Φ2n(x) = 1 + xn is the 2n-th power-of-two cyclotomic polynomial with a maximum degree φ(2n) = n (by
φ(·) we denote the Euler’s totient function). We refer the reader to Table 2 for a summary of the notation
used in this work. The RLWE assumption states that given a pair (a, b = as + e) where a← Rq is uniformly
random and e ← ψ is drawn from an error distribution (usually a discrete Gaussian distribution χ), this
sample is very hard to distinguish from the pair (a, u) where u← Rq is also uniformly random.
By assuming this indistinguishability assumption, which reduces from hard problems on ideal lattices
(see Theorem 2), it is very easy to define a simple cryptosystem based on RLWE. To this aim, the plaintext
information can be encoded in the noise term by working with the ring Rt = Zt[x]/(1 + xn).
Let m ∈ Rt be the plaintext, it can be encrypted by doing (a′ = ta, b′ = a′s + te + m), in such a way that
the plaintext is encoded in the lower bits of the error term. This cryptosytem also allows for homomorphic
operations.
Homomorphic cryptography: Consider two encryptions (a1, b1 = a1s + te1 + m1) and (a2, b2 = a2s + te2 +
m2). If q is high enough compared to the maximum value of the noise terms, we can easily obtain a
homomorphic addition of the plaintexts by doing

(aadd = a1 + a2, badd = b1 + b2 = aadds + t(e1 + e2) + (m1 + m2)).

The process for a homomorphic multiplication is slightly more complicated, but it can still be done:

(amult, bmult, cmult) = (a1a2, a1b2 + a2b1, b1b2).

Although we skip the details, the triple (amult, bmult, cmult) can be seen as an encryption of the polynomial
product m1m2 mod (1 + xn).
Efficient homomorphic encryption: This type of cryptosystems brings about some useful features by taking
advantage of the plaintext/ciphertext ring structure:

• Operations in the ciphertext ring Rq can be very efficiently performed by means of NTT/INTT trans-
forms.

• If the plaintext ring Rt factors into φ(2n) = n linear factors, each ciphertext can directly encrypt
vectors of n integers (or slots) and efficient SIMD (Single Instruction, Multiple Data) operations can be
homomorphically performed.

• The use of the existing automorphisms in both the ciphertext/plaintext rings enables to exchange
the contents between different slots. Hence, this is very convenient to homomorphically rotate the
components of the encrypted vectors.

As we will show, the use of multivariate rings for both plaintext and ciphertext rings, instead of the
conventional choice of univariate cyclotomics, introduces significant efficiency improvements in the above
three aspects.

1.2. Bivariate RLWE

Let K(T) = Kx
⊗

Ky be the tensor product of 2 cyclotomic number fields of dimensions
nx = φ(mx) and ny = φ(my), and R = Z[x, y]/(Φmx (x), Φmy(y)) the tensor of their
corresponding ring of integers (see Table 2 for a summary of the notation used).

We define a Bivariate Ring LWE sample (see Definition 2 for the general formulation
of m-RLWE) as the pair (a, b = (a · s)/q + e mod R∨), where a← Rq is uniformly random
and e← ψ comes from the error distribution ψ.
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Table 2. Notation and some basic concepts.

Notation Description

Polynomial Rings, Matrices and Some Operators

R[x], Rq[x] They denote, respectively, the polynomial ring Z[x]/( f (x)) and Zq[x]/( f (x)).

R[x1, . . . , xl ], Rq[x1, . . . , xl ]
It represents the quotient multivariate polynomial ring with coefficients in Z (resp.
Zq) and the l polynomial functions fi(xi) with 1 ≤ i ≤ l. For simplicity, if there is
no ambiguity, we omit the polynomial variable.

a(x), a
The polynomial a(x) is denoted as a when there is no ambiguity. It can also
be denoted by a column vector a, whose components are the corresponding
polynomial coefficients.

A⊗ B It denotes the Kronecker product between matrices A and B.

[l], blc, dle They denote, respectively, the set {1, 2, . . . , l}, the floor function and the ceiling
function.

Lattices and algebraic number fields

K, K(T)
K is a number field and K(T) is the result of the tensor product of several number
fields.

OK , O∨K
OK is the ring of integers of the number field K, whileO∨K refers to its dual. We also
denote them, respectively, as R and R∨ referring to the polynomial representation
considered in this work.

KR, K(T),R KR and K(T),R are, respectively, KR = K⊗Q R and K(T) ⊗Q R.

T T is, depending on the context, K(T),R/R∨ or directly KR/R∨.

K = Q(ζm) The m-th cyclotomic number field, where ζm is the m-th root of unity.

K = Q(
√

di) A quadratic number field.

K = Q(
√

d1, . . . ,
√

dl) A multiquadratic number field.

K = Q(a1/n1
1 , . . . , a1/nl

l ) A multivariate number field, for which all the ai are squarefree and coprime.

∆K Discriminant of the number field K.

I , I∨ I is a fractional ideal of K, while I∨ is its dual. For an integer q ≥ 2 we can have
I/qI .

Φm(x) The m-th cyclotomic polynomial.

φ(m) Euler’s totient function, which outputs the degree of Φm(x).

Φ2n(x) = 1 + xn The 2n-th cyclotomic polynomial when n is a power of two. For this particular
case φ(2n) = n.

η(I) Smoothing parameter of the lattice generated by I .

λi(I) It refers to the i-th successive minimum distance in the lattice generated by I .

SVP, SIVP, DGS They refer, respectively, to the Shortest Vector Problem, the Shortest Independent
Vectors Problem and the Discrete Gaussian Sampling problem.

Error distributions

ψ A continuous error distribution over KR.

χ A discrete error distribution over R∨ (also R).

Ψ A family of continuous error distributions over KR.

Υ A distribution over a family of error distributions, each over KR.

Γ(k, θ) Gamma distribution with shape parameter k and scale parameter θ.

e← ψ, e← χ
They denote an element e drawn, respectively, from the error distribution ψ and
the error distribution χ.

a← A It denotes an element a chosen uniformly at random from the set A.



Mathematics 2021, 9, 858 5 of 42

1.3. BCV Attack

Choices of polynomial functions fx(x) = Φmx (x), fy(y) = Φmy(y) as fx(x) = xnx + 1,
fy(y) = yny + 1 have been proposed in [10], as this structure presents computational
advantages and can be very beneficial for practical applications.

BCV attack is able to exploit common roots on the involved rings to factorize the
multivariate RLWE samples into RLWE samples of smaller dimension. For example,
consider that nx = ny = n; by applying the substitution x → y, we obtain n RLWE
samples of dimension n each, hence decreasing the n2 lattice dimension of the original
m-RLWE sample.

1.4. Secure Multivariate RLWE Instantiations

Let m = mxmy and gcd(mx, my) = 1; then, the m-th cyclotomic field K = Q(ζm) ∼=
Q[x]/(Φm(x)) (with ζm the m-th root of unity) is isomorphic (see Theorem 1) to the bivariate
field

K ∼= Q[x, y]/(Φmx (x), Φmy(y)). (1)

Consequently, by considering instantiations satisfying gcd (mx, my) = 1, the bivariate
RLWE problem becomes equivalent to the equally sized RLWE problem. However, we
would like to search for other instantiations where the polynomial ideals can have a similar
form and, if possible, the same degree.

By restricting ourselves to the most common scenario of “power-of-two” cyclo-
tomics (we must clarify here that we refer to polynomials with only two non-zero
terms: the leading and the constant coefficient of the polynomial), polynomial ideals
of the form (xnx + dx, yny + dy, znz + dz, . . .), could avoid BCV attack for some parameters
{nx, dx, ny, dy, nz, dz, . . .}. E.g., the rings Z[x]/(x64 + 1) and Z[y]/(y27 + 5) do not have
common roots, so trivial substitutions such as x → y cannot be applied. Additionally,
whenever we reduce modulo q and work over Rq, we can impose (for the sake of efficiency)
that both polynomials functions x64 + 1 and y27 + 5 factor in linear terms enabling the use
of variants of the NTT. Additionally, slot encoding and slot manipulations are still possible
in the plaintext ring by means of the pre-/post-processing, as presented in [7]. Analogously
to the negayclic convolution, these pre-/post-processing steps preserve the properties of
the NTT transform over a ring with an α-generalized convolution [36].

This seems to effectively avoid a substitution attack; however, there might be some
small ideal divisor for which, modulo some particular q, the noise does not increase
substantially, and we can distinguish the resulting sample from uniform. This attack has
been extensively studied by Peikert in [37] and we will discuss it in Section 7.1.

1.5. The Proposed Solution

The previous strategy preserves most of the advantages of the multivariate construc-
tions while apparently avoiding the effects of BCV attack. However, the security of these
instantiations is not based on any specific formulation of the RLWE problem, and there is
no trivial way of parameterizing them. This raises the following questions:

1. Can we find multivariate rings similar to Z[x, y, . . .]/(xnx + dx, yny + dy, . . .) while
(a) still preserving the aforementioned advantages of this structure, and (b) basing
its security on the hardness of the RLWE problem (see Definition 7); i.e., without a
decrease in the ring dimension due to BCV attack (see Theorem 3)?

2. If these multivariate rings exist, how can the values {nx, ny, . . .}, {dx, dy, . . .} be
chosen to easily define the ring of integers R and its dual R∨?

From this point forward, we focus on answering these two questions. To this aim, we
identify number fields whose ring of integers (and their dual) have the sought structure
(see Section 4). In particular, we divide this set of fields in two categories:

1. Multiquadratic number fields (see Section 5). These structures ([38], Theorem 4.1
and its proof) enable efficient radix-2 transforms for faster polynomial arithmetic
(see Section 8).
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2. More general number fields with polynomials functions {xnx + dx, yny + dy, . . .}
(see Section 6). These structures support all the signal processing applications de-
scribed in [8], and the matrix operations introduced by the original MHEAAN
scheme [39] (not based on coprime cyclotomic polynomials [40]) while preserving the
equivalent RLWE security.

1.5.1. Rationale on the Security of Our Solution

The weakness of some m-RLWE instantiations is rooted on the existence of (small
norm) zero divisors in the tensor product of fields. For example, Q[x, y]/(x2 + 1, y2 + 1)
has zero divisors as x + y (e.g., (x + y)(x− y) = 0), and hence m-RLWE samples defined
on rings Z[x, y]/(x2 + 1, y2 + 1) can be easily factored, as the effective degree can be
reduced with substitutions {x → y,−x → y}. Additionally, as these roots have small norm,
the noise in the reduced samples is not increased enough to preserve security.

Instead of the previously proposed Z[x, y]/(x2 + 1, y2 + 1), we work with a quo-
tient bivariate ring with polynomial ideals of the form (xnx + dx, yny + dy) (we use
Z[x, y]/(x2 + 1, y2 + 3) as our example). The use of different polynomials functions avoids
a trivial substitution attack. However, we need to rule out the possibility of (small norm)
substitution attacks, such as the one from [25], modulo some q; even if they exist, finding
them would require solving a hard subset-sum modq (knapsack) problem.

As there is a security reduction from ideal lattices to RLWE defined on general number
fields [26], we search for the ring of integers of multivariate number fields. This gives us
a way to find secure parameters for the used ring, and also the right error distribution to
guarantee that the noise increase after a substitution modulo q is enough to preserve the
required security [37]. To exemplify this rationale, we compare the differences between
a bivariate cyclotomic ring (which can be seen as a univariate cyclotomic ring), and our
proposed solution.

Consider the ring Z[z]/(Φ12(z)) with Φ12(z) = z4 − z2 + 1. There is an iso-
morphism with the bivariate ring Z[x, y]/(Φ4(x), Φ3(y)) where Φ4(x) = x2 + 1 and
Φ3(y) = y2 + y + 1. Therefore, our intuition is that if we found an effective substitution
attack on our example ring Z[x, y]/(x2 + 1, y2 + 3), this would work analogously for the
cyclotomic bivariate case Z[x, y]/(Φ4(x), Φ3(y)). In particular, if we apply the transfor-
mation T(y) = 2y + 1 in the ring Z[y]/(y2 + 3), we obtain Z[y]/(y2 + y + 1), which is
the mentioned cyclotomic ring with Φ3(y). Consequently, for this particular case, it is
clear that the existence of an attack in our example ring implies an attack to the bivariate
cyclotomic ring.

For more general multivariate rings, we can apply a similar idea. In general, for a
secure bivariate ring such as Z[x, y]/(xnx + dx, yny + dy), we can search for a transformation
y→ T(y) where the new polynomial function can share at least some roots with xnx + dx.
If this transformation can be effectively applied, we could use it to attack multivariate
cyclotomic rings.

Thus, this strengthens the belief that an attack on secure m-RLWE instantiations
defined on a general number field should provide us with either an attack to RLWE on
the product of prime-powers cyclotomic rings, and/or a better understanding on the
weaknesses of general cyclotomic rings. For a discussion on the practical security of RLWE
on the proposed number fields we refer the reader to Section 7.1.

1.5.2. Division Algebras and Non-Norm Condition

In [41], the authors propose an alternative variant of LWE over cyclic algebras, which
they denote as CLWE (Cyclic Algebra LWE). The main difference with respect to RLWE
relies on the fact that, instead of adding a ring structure, they incorporate into Module-LWE
a cyclic algebra structure, constructing a non-commutative variant of LWE.

The security of CLWE is supported by the hardness of finding short vectors in certain
structured lattices induced by ideals in a cyclic algebra A. Additionally, they explicitly
address BCV attack by means of the “non-norm” condition (see [42], Proposition 3.5).
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Let a cyclic algebra A = (L/K, θ, γ) where K is a number field of degree k and L is
a Galois extension of K of degree n such that Gal(L/K) = 〈θ〉. For a non-zero γ ∈ K,
the cyclic algebra is defined as A = L⊕ uL⊕ . . .⊕ un−1L where u ∈ A and un = γ.

The non-norm condition on γ (see [42], Proposition 3.5) avoids BCV attack by stating
that the lowest power of γ which appears in NL/K(L) is γn, where NL/K represents the
relative norm of L into K (see [41] for more details).

This defense against BCV attack also relies on avoiding the existence of zero divisors,
which are needed for the attack to succeed. In our case, as we already work in a number
field, we can adhere to the security conditions established by Peikert [37] to avoid this type
of attacks.

It is worth mentioning that we see both approaches as potentially complementary,
in such a way that the underlying field K considered in the (cyclic) division algebra could
be one of the multivariate fields discussed in Sections 5 and 6.

1.5.3. Contributions

The first contribution of this work is the definition and parameterization of secure
instantiations of the multivariate Ring Learning With Errors problem [8,24], supported by
the extended reduction [26] of the original proof by Lyubashevsky et al. [3,4]. The proposed
instantiations address the vulnerability leveraged on BCV attack to m-RLWE [25], while
still preserving all the efficiency improvements that m-RLWE brings. Moreover we show
that is possible to securely instantiate the m-RLWE problem, because the canonical embed-
ding of R has a polynomial skewness (λn/λ1). Our two main results are summarized in
Theorem 5 and Corollary 1 for multiquadratic rings (see Section 5), and Theorems 7 and 8
together with Corollaries 2 and 3, which refer to more general multivariate rings (see
Section 6). They show valid parameter choices so that the reduction for RLWE over general
number fields [26] (Theorem 2) applies to the hardness of multivariate RLWE, and without
a reduction in the lattice dimension. More flexible parameter choices require to relax this
assumption from RLWE to the Order-LWE assumption (see Section 9.4). Finally, Theorem 3
gives a worst-case security guarantee for RLWE with any multivariate cyclotomic ring,
by stating that it is at least as hard as univariate RLWE, but introducing a decrease in the
lattice dimension of the univariate RLWE assumption by a factor of L (see Section 4).

The second contribution is to showcase the possible applications. They are numerous
and achieve improved space-time tradeoffs in the most critical lattice operations. Therefore
enabling more efficient homomorphic processing and closing the gap to the realization of
practical fully homomorphic encryption. This is the main list of applications:

• We introduce the α-generalized Walsh–Hadamard Transform as the basic block that
can replace Number Theoretic Transforms in multivariate rings [43], achieving an
improvement on the computational complexity of degree-n polynomial products
by a factor log(n) in terms of elemental multiplications, with additional savings in
memory usage (see Section 8). It is worth noting that the results of Section 8 were
previously introduced in [43], where we also exemplify its use for the implementation
of Oblivious Linear function Evaluation.

• We enable net improvements in cryptographic primitives built on top of m-RLWE, such
as efficient time and space computation of automorphisms, relinearizations, packing,
unpacking and homomorphic slot manipulation, and, consequently, bootstrapping,
improving on current achievable trade-offs in RLWE (see Section 9).

• We instantiate a simple cryptosystem based on m-RLWE (see Section 7.2), and exem-
plify with it the use of the multivariate structure of m-RLWE to improve on complex
number embedding, enabling fully packed complex numbers, compared to the expo-
nentially decreasing packing ratio of current approaches working with multivariate
rings [39,40] (see Section 10). This enables applications in homomorphically en-
crypted approximate arithmetic, complex processing, and efficient multidimensional
signal manipulation.
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1.5.4. Structure

The rest of the paper is organized as follows: Section 2 describes BCV attack to
multivariate RLWE. Section 3 introduces some algebraic number theory notions and the
main definitions for the m-RLWE problem. Section 4 describes the followed strategy to
achieve secure instantiations of multivariate RLWE, including the well-known tensor of
“coprime” cyclotomic rings. Section 5 focuses on the analysis of multiquadratic rings.
Section 6 studies a set of more general multivariate rings. Section 7 includes a discussion
on the achieved resilience against known attacks together with example instantiations that
showcase the practicality of multivariate RLWE, and discusses some practical applications.
Additionally, the included Section 8 particularizes the problem to rings enabling an α-
generalized Walsh–Hadamard Transform, and compares its performance with fast NTT
algorithms currently used in state-of-the-art RLWE cryptosystems. Section 9 introduces the
strategies for homomorphic packing/unpacking and the space/time tradeoffs improving
on current RLWE relinearization and bootstrapping operations. Section 10 briefly discusses
how to work with complex slots, comparing to current approaches that work with bivariate
rings. Finally, Section 11 draws some conclusions.

2. Worst Case Security of Multivariate RLWE

We first introduce the notation used in this section (see Table 2 for more details on
the notation used in this work). Polynomials are denoted with regular lowercase letters,
omitting the polynomial variable (i.e., a instead of a(x)) when there is no ambiguity.

We follow a recursive definition of multivariate modular rings:
Rq[x1] = Zq[x1]/( f1(x1)) denotes the polynomial quotient ring in the variable x1 modulo
f1(x1) with coefficients belonging to Zq. Analogously, Rq[x1, x2] = (Rq[x1])[x2]/( f2(x2))
is the quotient bivariate polynomial ring with coefficients belonging to Zq reduced modulo
univariate f1(x1) and f2(x2). In general, Rq[x1, . . . , xl ] (resp. R[x1, . . . , xl ]) represents the
quotient multivariate polynomial ring with coefficients in Zq (resp. Z) and the l polynomial
functions fi(xi) with 1 ≤ i ≤ l. The polynomial a can also be denoted by a column vector a
whose components are the corresponding polynomial coefficients.

For the sake of clarity, we present the definition of multivariate RLWE with power-
of-two cyclotomic polynomials, as originally introduced in [10], but all the results in this
section can be generalized to any cyclotomic function:

Definition 1 (Multivariate RLWE with power-of-two polynomial functions as xni
i + 1).

Given a multivariate polynomial ring Rq[x1, . . . , xl ] with f j(xj) = 1 + x
nj
j for j = 1, . . . , l where

n = ∏j nj (with all nj a power of two) and an error distribution χ[x1, . . . , xl ] that generates
small-norm random multivariate polynomials in Rq[x1, . . . , xl ], the multivariate polynomial RLWE
problem relies upon the computational indistinguishability between samples (ai, bi = ai · s+ ei) and
(ai, ui), where ai, ui ← Rq[x1, . . . , xl ] are chosen uniformly at random from the ring Rq[x1, . . . , xl ];
s, ei ← χ[x1, . . . , xl ] are drawn from the error distribution.

The original works of multivariate RLWE [8,10] assume that the search and decision
m-RLWE problems (see Definitions 3 and 4) in dimension n = ∏m

i=1 ni are as hard as
the corresponding RLWE problems in dimension n. However, Bootland, Castryck and
Vercauteren [25] introduced an attack that can exploit polynomial functions that allow
repeated “low-norm” roots in the multivariate ring. As a result, when the subrings of the
tensor have common roots, this attack is able to factor the m-RLWE samples into RLWE
samples of smaller dimension, hence reducing the security of these m-RLWE samples to
that of solving a set of independent RLWE samples which are easiest to break. For e.g., the
ring Z[x, y]/(x2n + 1, yn + 1), changes of variable y→ x2i with i ∈ Z∗2n factors the m-RLWE
sample into n different RLWE samples with rings of polynomial function x2n + 1 and an
increase in the error variance of n (maximum degree of yn + 1).

The instantiations of (multivariate) RLWE with “coprime” cyclotomic rings are not
affected by this attack, as they do not introduce these “common” roots (see Section 4.1).
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We now give a more formal description of the attack, particularized for bivariate RLWE
(2-RLWE) with power of two cyclotomics (Definition 1). Let (a, b = as + e) ∈ R2

q[x, y] and
Rq[x, y] = Zq[x, y]/(xnx + 1, yny + 1) with nx ≥ ny and k = nx

ny
without loss of generality.

Now we define the map Θ̃:

Θ̃ : Zq[x, y]/(xnx + 1, yny + 1)→
(
Zq[x]/(xnx + 1)

)ny

a(x, y)→
(

a(x, xk), a(x, x3k), . . . , a(x, x(2ny−1)k)
)

This map is a ring homomorphism, and if q is odd it is also invertible (see [25]). This
transforms the pair (a, b) ∈ Rq[x, y] into (Θ̃(a), Θ̃(b) ∈ R

ny
q [x]. If we denote each of the

components by Θ̃i, for i = 1, . . . , ny, we have(
Θ̃i(a), Θ̃i(b) = Θ̃i(a)Θ̃i(s) + Θ̃i(e)

)
∈ R2

q[x], (2)

for i = 1, . . . ny. This results in ny different RLWE samples of dimension nx and whose
noise has a variance ny times higher than the original 2-RLWE sample (the result of adding
ny independent variables).

The attack works by trying to break the obtained ny RLWE samples. Once this is done,
as the map is invertible, it is possible to reconstruct the original secret key with the different
ny smaller keys.

This attack can be generalized to an m-RLWE sample (Definition 1) by recursively
applying “versions” of this map (l − 1) times. This recursion converts an m-RLWE sample
into n

n1
RLWE samples (assuming, without loss of generality, that n1 ≥ n2 ≥ . . . ≥ nl) with

dimension n1 and an error variance n
n1

times higher.

3. Multivariate Ring Learning with Errors

This section revisits the main definitions from algebraic number theory and multivari-
ate RLWE, including a generalized version of the multivariate polynomial RLWE problem
which admits any type of cyclotomic polynomial as ideals. For the sake of clarity, we
particularize to power-of-two cyclotomic functions (Definition 1) when exemplifying some
of the results, but this does not affect to the generality of the discussion.

3.1. Algebraic Number Theory Background

This section presents the fundamental concepts of lattices and algebraic number theory
and extends them to the more general case of a tensor of number fields on which m-RLWE
is based.

3.1.1. The Space H(T) =
⊗

i Hi

When dealing with cyclotomic fields, it is useful to work with the subspace H ⊆
Rs1 ×C2s2 with s1 + 2s2 = n, where the tuple (s1, s2) ∈ N2 is called the signature of the
number field, and H satisfies

H = {(x1, . . . , xn) ∈ Rs1 ×C2s2 such that xs1+s2+j = x̄s1+j, ∀j ∈ [s2]} ⊆ Cn. (3)

The subspace H is composed of vectors from Rs1 × C2s2 , whose first s1 elements
(x1, . . . , xs1) are real numbers, and the last part is composed of s2 complex num-
bers (xs1+1, . . . , xs1+s2) together with their complex conjugates (xs1+s2+1, . . . , xs1+2s2) =
(x̄s1+1, . . . , x̄s1+s2).

An orthonormal basis {hj}j∈[n] for H can be defined as
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hj =


ej if j ∈ [s1]

1√
2
(ej + ej+s2) if s1 < j ≤ s1 + s2√

−1√
2
(ej−s2 − ej) if s1 + s2 < j ≤ s1 + 2s2,

where ej are the vectors of the standard basis in Rn. Each element a = ∑j∈[n] ajhj ∈ H (with
aj ∈ R) has its own lp norm. For our purposes, we define the subspace H(T) =

⊗
i∈[l] Hi as

the tensor product of l subspaces Hi (each subspace Hi defined as in Equation (3) but with
s1 + 2s2 = ni).

In particular, if we see each element belonging to each Hi as a different linear trans-
formation, we are actually working with the Kronecker product of the subspaces Hi. We
can therefore express an orthonormal basis for H(T) given by {hj}j∈[n] as the result of the
Kronecker product of the original basis of each Hi, by defining any invertible mapping
for j and {j1, . . . , jl}, where hj =

⊗
i∈[l] h(i)

ji
are the basis vectors for H(T), and n = ∏i∈[l] ni;

each {h(i)
ji
}ji∈[ni ]

is the orthonormal basis of each Hi ⊆ Cni for i ∈ [l].

3.1.2. Lattice Background

A lattice in our multivariate setting is defined as an additive subgroup of H(T). We
only consider full rank lattices, obtained as the set of all integer linear combinations of a
set of n linear independent basis vectors B = {b1, . . . , bn} ⊂ H(T)

Λ = L(B) =

 ∑
i∈[n]

zibi such that z ∈ Zn


The minimum distance λ1(Λ) of a lattice Λ for the norm ||.|| is given by the length of

the shortest non-zero lattice vector, that is, λ1(Λ) = minx∈Λ/x 6=0||x||.
The dual lattice of Λ ⊂ H(T) is defined as Λ∗ = {x ∈ H(T)|〈Λ, x〉 ⊆ Z} and it satisfies

(Λ∗)∗ = Λ.

3.1.3. Gaussian Measures

The results on nonspherical Gaussian distributions presented in [4] can be extended
to our case. Hence, we revisit here some of the concepts for Gaussian measures, adapted to
our tensor setting.

We consider the Gaussian function ρr : H(T) → (0, 1] with r > 0 as ρr(x) =

exp(−π||x||2/r2). A continuous Gaussian probability distribution Dr can be obtained
by normalizing the previous function to obtain a probability density function as r−nρr(x).
Extending this to the non spherical Gaussian case, we consider the vector r =

⊗
i∈[l] ri

where r = (r1, . . . , rn) ∈ (R+)
n and ri = (ri,1, . . . , ri,ni ) ∈ (R+)

ni and whose components
satisfy ri,j+s1+s2 = ri,j+s1 . Finally, a sample from Dr is given by ∑j∈[n] xjhj where each xj is
drawn independently from a Gaussian distribution Drj over R; rj equals ∏i∈[l] ri,ji (where l
is the number of “unidimensional” spaces Hi in the tensor, that is n = ∏i∈[l] ni) and we are
using any invertible mapping between {j}j∈[n] and {ji}ji∈[ni ],i∈[l].

3.2. Main Definitions for Multivariate Ring-LWE

Let K(T) =
⊗

i∈[l] Ki be the tensor product of l cyclotomic fields of dimension
ni = φ(mi) each, and R =

⊗
i∈[l]OKi (R∨ =

⊗
i∈[l]O∨Ki

) the tensor of their correspond-
ing (dual of the) ring of integers. We have the following definitions:

Definition 2 (Multivariate Ring LWE distribution). For s ∈ R∨q and an error distribution ψ
over K(T),R, a sample from the m-RLWE distribution As,ψ over Rq × T is generated by a ← Rq
uniformly at random, e ← ψ, and outputting (a, b = (a · s)/q + e mod R∨) (where T =
K(T),R/R∨ and K(T),R = K(T) ⊗Q R) .
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Definition 3 (Multivariate Ring LWE, Search). Let Ψ be a family of distributions over K(T),R.
m-RLWEq,Ψ denotes the search version of the m-RLWE problem. It is defined as follows: given
access to arbitrarily many independent samples from As,ψ for some arbitrary s ∈ R∨q and ψ ∈ Ψ,
find s.

Definition 4 (Multivariate Ring LWE, Average-Case Decision). Let Υ be a distribution over
a family of error distributions, each over K(T),R. The average-case decision version of the m-
RLWE problem, denoted m-R-DLWEq,Υ, is to distinguish with non-negligible advantage between
arbitrarily many independent samples from As,ψ, for a random choice of (s, ψ) ← U(R∨q )× Υ
(where U(R∨q ) represents the uniform distribution over R∨q ), and the same number of uniformly
random and independent samples from Rq ×T.

For an asymptotic treatment of the m-RLWE problems, we let K(T) come from an
infinite sequence of tensors of number fields K = {K(T),n} of increasing dimension n
(n = ∏i φ(mi) is the number of basis elements that form the integral basis), and let q, Ψ,
and Υ depend on n as well.

3.2.1. Error Distributions

We include here two definitions about the error distributions.

Definition 5 (extension of Lyubashevsky et al. [4], Definition 3.4). For a positive real α > 0,
the family Ψ≤α is the set of all elliptical Gaussian distributions Dr (over K(T),R), where each
parameter ri ≤ α with i ∈ [n].

Definition 6 (extension of Lyubashevsky et al. [4], Definition 3.5). Let K(T) =
⊗

i∈[l] Ki
where the Ki are the mi-th cyclotomic number field having degree ni = φ(mi). For a positive real
α > 0, a distribution sampled from Υα is given by an elliptical Gaussian distribution Dr (over
K(T),R) whose parameters are rj ∈ [n] using the unidimensional index (see Section 3.1.3), and each
rj satisfies r2

j = α2(1 +
√

nxj) where different xj,xk that do not correspond to conjugate positions
are chosen independently from the distribution Γ(2, 1).

Practical applications [7,9,10] usually deal with variants of the problem:

• discrete b: Instead of working with an error distribution ψ over K(T),R, the m-RLWE
distribution As,χ can use χ as a discrete error distribution over R∨, so that the element
b belongs to R∨q .

• small key: Instead of a uniform s, s can be a “short key” equivalently sampled from the
error distribution (this is known as “normal form” in [13]), with equivalent security.
Given a list of l m-RLWE samples, s can be substituted with the error e of any sample
(a, b) whose term a is invertible in Rq, which occurs with constant probability by
Claim 1 below.

• power of 2 cyclotomic: Instead of sampling a and s from Rq and R∨q respectively,
both are usually sampled from Rq (this is usually known as the non-dual variant).
In general, the works which consider s in Rq deal with cyclotomic fields where mi is a
power of two. It can be shown that for this particular type of cyclotomic fields both
definitions are equivalent.

• modulus switching: The original definitions of the problem are presented with a
prime modulus q that splits the space into small independent coordinates. With the
same hardness guarantees, it is possible to modulus-switch to other compute-friendly
modulus at the price of a slight increase of the error.

Lyubashevsky et al. [13] show that the variant of RLWE with discrete and short error
(R-DLWEq,χ) is as hard as the original R-DLWEq,ψ, by following the technique from [44].
These results can be adapted to our more general case as follows:
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Claim 1. The fraction of invertible elements in Rq =
⊗

i∈[l]OKi /(q), for prime q = 1 mod mi

for all i and with n = ∏i φ(mi), is (1− 1
q )

n. Thus, if q ≥ n, this probability is constant.

Proof. Since Rq is in bijection with the ring (Z/qZ)n via the tensor embedding mod q, so
an element is invertible iff. its image does not contain any zero. Hence, there are (q− 1)n

invertible elements out of qn.

3.2.2. Pseudorandomness of m-RLWE

To show that the m-RLWE distribution is pseudorandom (that is, there exists a re-
duction from the search problem to the decision variant of the hardness problem) we rely
on the results from [4], applied to the case of multivariate elements. The main needed
properties are those related to the decomposition of (q) into n prime ideals (q ≡ 1 mod mi
for all i) and the use of the automorphisms that permute the prime ideals.

4. Proposed Approach for Secure Multivariate Rings

Despite the efficiency benefits of multivariate RLWE, its security can be much smaller
than originally expected for those instances vulnerable to BCV attack [25]. This motivates us
to redefine the set of instantiations that preserve the security in the tensor lattice dimension.

This section enumerates those secure instantiations of multivariate RLWE. With this in
mind, we first briefly revise the choice of “coprime” order cyclotomics explicitly included
in [13]. Afterwards, we discuss the possibility of using a more general set of number fields,
enabling other multivariate rings that can be more convenient for practical applications.

4.1. Multivariate RLWE as a Subset of RLWE

It is well known that for two cyclotomic number fields Q(ζa) and Q(ζb) with co-
prime orders gcd(a, b) = 1, their product is the cyclotomic number field Q(ζab) (see
Lemma 11.8 in [45]). For convenience, we include an adapted version of this property ([13],
Equation (1.1)) using the polynomial representation of the cyclotomic number fields.

Theorem 1 (Tensorial decomposition of cyclotomic number fields). The m-th cyclotomic field
K = Q(ζm) ∼= Q[x]/(Φm(x)) (with ζm the m-th root of unity) is isomorphic to the multivariate
field

K ∼= Q[x1, . . . , xl ]/(Φm1(x1), . . . , Φml (xl)), (4)

where m = ∏i mi is decomposed in its prime-power decomposition with gcd(mj, mk) = 1 for
all j 6= k.

This fact gives an alternative basis to the power basis {1, x, . . . , xφ(m)−1} for the ring of
integers R = Z[x]/(Φm(x)); this basis is the “powerful” basis of K composed of elements

∏i xji
i with 0 ≤ ji < φ(mi). It does not coincide with the power basis under the mentioned

field isomorphism and considering the map x
m
mi → xi for i = 1, . . . , l (see [13]). This

“powerful” basis has some very nice properties [13] which make it more appealing than
the more “conventional” power basis. Additionally the authors of [13] provide a detailed
analysis on how the performance of ring operations can be improved by means of this
multivariate structure.

Besides [13], the use of the multivariate structure in Equation (4) has been exploited to
enhance polynomial operations in both the HElib [14,32] and the MHEAAN [40] libraries.
This gives us a first approach to deal with multivariate instantiations which do not suffer
a decrease on the underlying lattice dimension. However, this structure is not flexible
enough to convey the same benefits that general multivariate structures can achieve; in
particular, it cannot preserve the interesting structure of power-of-two cyclotomics (1 + xn).
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4.2. More General RLWE Instantiations

We look now beyond cyclotomics, into more general and flexible number fields and
their parameterization. We first introduce the definitions of RLWE over any number
field [26], and then give the intuition on the properties required to resist the BCV attack. A
detailed discussion on the choice of good parameters and the security of RLWE on these
number fields follows in Sections 5, 6 and 7.1.

4.2.1. RLWE Over Any Number Field

Peikert et al. [26] have recently generalized the RLWE problem to any number field.
Let K be a number field with ring of integers R = OK; let R∨ be the fractional codifferent
ideal of K, and let T = KR/R∨. Let q ≥ 2 be a (rational) integer modulus, and for any
fractional ideal I of K, let Iq = I/qI (for any fractional ideal I ⊂ K there is a ∈ OK such
that aI ⊆ OK is an integral ideal of OK). We include now the relevant definitions of RLWE
over any number field that we use in our formulation.

Definition 7 (Ring-LWE Distribution, Definition 2.14 in [26]). For s ∈ R∨q and an error
distribution ψ over KR, the R − LWE distribution As,ψ over Rq × T is sampled by indepen-
dently choosing a uniformly random a ← Rq and an error term e ← ψ, and outputting
(a, b = (a · s)/q + e mod R∨).

Definition 8 (Ring-LWE, Average-Case Decision, Definition 2.15 in [26]). Let Υ be a distri-
bution over a family of error distributions, each over KR. The average-case Ring-LWE decision
problem, denoted R− LWEq,Υ, is to distinguish (with non-negligible advantage) between indepen-
dent samples from As,ψ for a random choice of (s, ψ) ← U(R∨q )× Υ, and the same number of
uniformly random and independent samples from Rq ×T.

Theorem 2 (Theorem 6.2 from [26]). Let K be an arbitrary number field of degree n, I any
fractional ideal of K, and R = OK. Let α = α(n) ∈ (0, 1), and let q = q(n) ≥ 2 be an integer
such that αq ≥ 2 · ω(1). There is a polynomial-time quantum reduction from K − DGSγ to
(average-case, decision) R− LWEq,Υα

, for any

γ = max
{

η(I) ·
√

2/α ·ω(1),
√

2n/λ1(I∨)
}

.

K−DGSγ corresponds to the Discrete Gaussian Sampling (DGS) problem, but restricted to
(fractional) ideal lattices in K.

The Υα distribution considered here is narrower than the one from Theorem 6. We refer the
reader to Definition 6.1 from [26] for its concrete expression.

Additionally, it is worth highlighting some observations on the choice of a particular
number field in RLWE, as stated in [26]:

• The geometry of the dual ideal R∨ affects the error rate α (chosen to be smaller
than the minimum distance λ1(R∨)). As α decreases, worst-case hardness theorems
give weaker guarantees (i.e., larger approximation factors), and known attacks on
Ring-LWE become more efficient.

• A similar phenomenon arises for rings with large “expansion factors” (see [46]) which
imposes smaller α for achieving correct decryption; hence, good rings for practical
applications have small expansion factors.

• Besides the two previous relations, there is no practical evidence on which particular
number field is better in terms of security.

4.2.2. Ad-Hoc Countermeasures to BCV Attack

BCV attack [25] shows that a reduced RLWE sample is at least as hard as an m-RLWE
sample. To prove the converse, we can use an oracle for m-RLWE. With access to such
oracle and a set of RWLE samples with different keys, we can construct an m-RWLE sample
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(with a slight increase in the noise variance) by means of the reverse map of BCV attack
(i.e., Θ̃−1). Once this oracle returns the secret key of the m-RLWE sample, the original keys
of the RLWE sample can be recovered by means of the map Θ̃.

We can therefore express the security of m-RLWE in terms of RLWE, but the decrease
of the involved dimension considerably reduces the applicability of the problem with
“non-coprime” polynomial functions. The security of ∏j 6=k φ(gcd (mj, mk)) independent

RLWE samples with dimension
∏i∈[l] φ(mi)

∏j 6=k φ(gcd (mj ,mk))
could be reduced to that of one m-RLWE

sample (according to Definition 2) with dimensions {φ(m1), . . . , φ(ml)}:

Theorem 3 (Θ̃−1 transform from [25] ). Let L independent univariate RLWE samples (ai, bi) ∈
Rq ×T for i ∈ [L] and dimension n. We can transform (this transformation is invertible when q
is prime) these L samples by means of the (inverse) of BCV attack into one m-RLWE sample with
l dimensions {φ(m1), . . . , φ(ml)} (see Definition 2) satisfying L = ∏j 6=k φ

(
gcd(mj, mk)

)
and

having for the RLWE sample n =
∏i∈[l] φ(mi)

L . This transformation slightly increases the variance of
the error distribution by a factor L.

The decrease in the lattice dimension by a factor L = ∏j 6=k φ
(
gcd(mj, mk)

)
brings

about the question of whether we can modify some of the multivariate RLWE constructions
where L > 1 to avoid BCV attack.

4.2.3. Followed Strategy

By considering instantiations satisfying gcd (mj, mk) = 1 for all j 6= k, we straight-
forwardly go back again to the RLWE problem defined on univariate cyclotomic rings.
On the contrary, we would like to find other instantiations where the polynomial ideals
can have a similar form and degree. We will hence focus on polynomial functions as fol-
lows: {xnx + dx, yny + dy, znz + dz, . . .}, which can avoid BCV attack for certain parameters,
while enabling NTT-like fast transforms and preserving the advantages of the originally
introduced m-RLWE constructions.

However, the security of these instantiations is apparently not based on any specific
formulation of the RLWE problem, so we do not have a clear way of choosing the right
parameters.

In the next two sections, we will show that this is not really true and that there are
many number fields satisfying Definition 7, and whose ring of integers (and their dual)
has the aforementioned structure. In particular, we focus on multiquadratic number fields
(Section 5) and more general multivariate rings (Section 6).

5. Multiquadratic Rings

Let K = Q(
√

di) be a field with prime di (hence squarefree) satisfying di = 1 mod 4;

its ring of integers is OK = Z
[

1+
√

di
2

]
with basis {1, 1+

√
di

2 } and discriminant ∆K = di,

then we can also represent OK as a polynomial ring Z[x]/(x2 − x + 1−di
4 ) (OK is free of

rank 2), according to (see Proposition 1):

Proposition 1 (Proposition 2.24 from [47] ). Let K = Q(
√

d) be a quadratic field with d a
squarefree integer. If d ≡ 2, 3(mod4), then OK = Z

[√
d
]
' Z[x]/(x2 − d) and OK is free of

rank 2 over Z with basis {1,
√

d}. If d ≡ 1(mod4), then OK = Z
[

1+
√

d
2

]
' Z[x]/(x2 − x +

1−d
4 ) and OK is free of rank 2 over Z with basis {1, 1+

√
d

2 }.

Let us extend the field to Q(
√

d1, . . . ,
√

dl) (a multiquadratic field), with all di pairwise
coprime, but still sticking to the case di = 1 mod 4. Taking into account that OKOK′ = OF
when gcd (∆K, ∆K′) = 1, where F is the compositum over Q (see [48]) of two subfields
K = Q(

√
d1) and K′ = Q(

√
d2) (see [49]), we have that OF = Z

[
1+
√

d1
2 , 1+

√
d2

2

]
. This can
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be generalized to the case of a field with l “coprime” squares, whose resulting ring of
integers is

OK = Z
[

1 +
√

d1

2

]
· . . . ·Z

[
1 +
√

dl
2

]
. (5)

Therefore, as all di are different primes, the discriminants of Q(
√

di) are also coprime,
which implies that the ring of integers can be expressed as the product of the respective
univariate rings of integers. However, the definition of RLWE (see Definition 8) works on
the dual of the ring of integers, due to its geometric properties. The dual can be obtained
through Theorem 4:

Theorem 4 (Theorem 3.7 from [50] ). Let K = Q(α) and let f (T) be the minimal polynomial of
α in Q[T]. Write

f (T) = (T − α)(c0(α) + c1(α)T + . . . + cn−1(α)Tn−1), ci(α) ∈ K.

The dual basis to {1, α, . . . , αn−1} relative to the trace product is{
c0(α)

f ′(α)
,

c1(α)

f ′(α)
, . . . ,

cn−1(α)

f ′(α)

}
.

In particular, if K = Q(α) and α ∈ OK then

(Z+Zα + . . . +Zαn−1)
∨
=

1
f ′(α)

(Z+Zα + . . . +Zαn−1).

For simplicity, if a ring of integers R = Z[x]/( f (x)) satisfies Theorem 4, we usually
denote its dual as R∨ = 1

f ′(x)Z[x]/( f (x)), being f ′(x) the corresponding scale factor
introduced in the power basis. Particularized to the quadratic case, Theorem 4 says that
whenever the ring of integers has a power basis, the basis of the dual is{

1,
1 +
√

di
2

}∨
=

{
1

f ′(α)
,

1
f ′(α)

1 +
√

di
2

}
, (6)

where f (x) = x2 − x + 1−d
4 and α = 1+

√
d

2 , so f ′(x) = 2x− 1; evaluated at x = α =
1+
√

di
2 ,

it satisfies f ′(α) =
√

di.
As dual commutes tensoring, this result can be straightforwardly extended to the

compositum case with several di. Additionally, we see that we can go from the dual to OK
by just scaling with

√
di (or multiplying with the polynomial 2x− 1).

Following our requirements, we need a ring of the form Z[x1, . . . , xl ]/(x2
1 −

d1, . . . , x2
l − dl), which is an order of the field Q(

√
d1, . . . ,

√
dl), but not necessarily its

ring of integers and a Dedekind domain. Actually, a recent work [51] discusses the hard-
ness of a generalization of Ring-LWE called Order-LWE, which can be leveraged to have
more freedom in the choice of the multivariate rings (see Section 9 for more details on
the advantages of Order-LWE). We also refer the reader to [52] for a recent study on the
connections between several algebraic LWE variants.

However, in this section we only want to base the security on RLWE defined on
a number field of the form Q(

√
d1, . . . ,

√
dl) (see Definition 7) and its ring of integers

satisfying Z[x1, . . . , xl ]/(x2
1 − x1 +

1−d1
4 , . . . , x2

l − xl +
1−dl

4 ). We will therefore show that
we can define an invertible map modulo q from the ring OK (and its dual O∨K ) to the ring
Z[x1, . . . , xl ]/(x2

1 − d1, . . . , x2
l − dl), while still basing its security on the original RLWE

formulation from Definition 7. Additionally, this map does not significantly increase the
noise; in fact, it also decorrelates it in the coefficient domain, enabling direct sampling of
the noise in the coefficient representation with an independent error distribution.

The map, applied to each variable xi, works as follows:

• We apply the change of variable x → x+1
2 .
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• We multiply the sample by a factor 2.

This mapping can be applied whenever the inverse of 2 exists modulo q. The multipli-
cation by 2 is applied afterwards to avoid the potentially high distortion introduced by the
factor 1

2 into the noise.
Canonical Embedding:
Let K = Q(

√
d), and note that 1

2x−1 evaluated at x = 1+
√

d
2 equals 1√

d
. We define the

Embedding map E going from O∨K ∼=
1√
d
Z[x]/(x2 − x + 1−d

4 ) to C2, as the substitutions

{x → 1+
√

d
2 ,
√

d →
√

d} and {x → 1−
√

d
2 ,
√

d → −
√

d}. This gives this transformation
matrix for E

1√
d

(
1 1+

√
d

2

−1
√

d−1
2

)
. (7)

The inverse map E−1 is defined as the product with the matrix( √
d−1
2 − 1+

√
d

2
1 1

)
. (8)

Sampling the error directly in the coefficient domain:
Finally, if we define the noise in the embedding of the dual ring as two indepen-

dent Gaussian variables e0, e1 with variance σ2, we have in the ring 1
xZ[x]/(x2 − d) after

following the whole “processing chain”:

1
x

(e0 + e1)︸ ︷︷ ︸
2σ2

x +
√

d(e0 − e1)︸ ︷︷ ︸
2dσ2

 mod x2 − d.

Hence, the noise is not correlated in the coefficient domain and we can easily sample
the error distribution considering an appropriate variance per coefficient.

For simplicity, we have focused on a quadratic field, but the embedding matrix can be
extended to the multiquadratic case by means of the Kronecker product.

5.1. Multiquadratic RLWE

Let us define the multiquadratic version of m-RLWE, where all the polynomial func-
tions have the form fi(xi) = di + x2

i , as

Definition 9 (Multivariate polynomial RLWE with quadratic polynomial ideals). Given
a multivariate polynomial ring R∨q [x1, . . . , xl ] with f j(xj) = dj + x2

j for j = 1, . . . , l where
l = log2 n (with n a power of two) and an error distribution χ[x1, . . . , xl ] that generates small-
norm random multivariate polynomials in R∨q [x1, . . . , xl ], the multivariate polynomial RLWE relies
upon the computational indistinguishability between samples (ai, bi = ai · s + ei) and (ai, ui),
where ai ← Rq[x1, . . . , xl ], ui ← R∨q [x1, . . . , xl ] are chosen uniformly at random from the rings
Rq[x1, . . . , xl ] and R∨q [x1, . . . , xl ]; and s, ei ← χ[x1, . . . , xl ] are drawn from the error distribution
(see Section 5).

Given an adequate parameter setting, the security reduction from Theorem 2 applies
to this multiquadratic version of the RLWE problem.

Theorem 5 (Parameter setting—hardness of multiquadratic RLWE ). The polynomial-
time quantum reduction from Theorem 2 applies to the multiquadratic RLWE assumption from
Definition 9 (with fi(xi) = di + x2

i ) whenever:

• All di are squarefree integers.
• All di are pairwise coprime, i.e., gcd (di, dj) = 1 for all i 6= j.
• All di satisfy −di = 1 mod 4.
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• The error distribution satisfies the lower bound αq ≥ 2 ·ω(1).

Corollary 1 (Parameter setting—hardness of multiquadratic RLWE, derived fom
Theorem 5). The polynomial-time quantum reduction from Theorem 2 applies to the multi-
quadratic RLWE assumption from Definition 9 (with fi(xi) = di + x2

i ) whenever:

• All di are different prime numbers.
• All di satisfy −di = 1 mod 4.
• The error distribution satisfies the lower bound αq ≥ 2 ·ω(1).

Section 7.1 gives further insights on the security and practicality of the chosen parame-
terization, and exemplifies it with a concrete instantiation. In particular, Proposition 5 gives
a sufficient condition to consider the problem secure against known attacks. It is worth
mentioning that even when the Principal Ideal Problem is easy in multiquadratics [53],
to the best of our knowledge, this has not been proven enough to solve RLWE.

5.2. Comparison with Gaussian Integers

We now compare the multiquadratic RLWE with the particular case of power-of-two
cyclotomics m-RLWE (see Definition 1) where all the used polynomial functions have the
same form fi(xi) = 1 + x2

i :

Definition 10 (multivariate polynomial RLWE with Φ4(·) as polynomial functions). Given
a multivariate polynomial ring Rq[x1, . . . , xl ] with f j(xj) = 1 + x2

j for j = 1, . . . , l where
l = log2 n (with n a power of two) and an error distribution χ[x1, . . . , xl ] that generates small-
norm random multivariate polynomials in Rq[x1, . . . , xl ], the multivariate polynomial RLWE relies
upon the computational indistinguishability between samples (ai, bi = ai · s + ei) and (ai, ui),
where ai, ui ← Rq[x1, . . . , xl ] are chosen uniformly at random from the ring Rq[x1, . . . , xl ]; and
s, ei ← χ[x1, . . . , xl ] are drawn from the error distribution.

The comparison of our secure multiquadratic RLWE samples with RLWE samples
from Definition 10 is specially relevant, as the latter are severely affected by BCV attack.
Samples from Definition 10 can be reduced to a dimension of 2, by applying the map
Θ̃ a total of (log2 n − 1) times, yielding n/2 RLWE samples with f (x) = 1 + x2 and
error variance n/2 times higher than the original m-RLWE sample; this can be very easily
solved. Consequently, despite of the efficiency of the polynomial operations on the rings
instantiated according to Definition 10, they are not valid for cryptographic applications.
Meanwhile, the samples from a secure instantiation of multiquadratic RLWE (Definition 9)
preserve the lattice dimension n and withstand BCV attack.

Another advantage of the multiquadratic RLWE problem is that it also enables very
efficient polynomial operations, without decreasing security. In particular, it is possible to
apply a variant of the Fast Walsh–Hadamard Transform (over finite rings instead of the
usual real numbers), featuring a convolution property that relates the coefficient-wise rep-
resentation with the transformed domain. This transform can be very efficiently computed
with FFT-like algorithms whose computational cost is only O(n log n) additions and O(n)
products, hence considerably speeding up practical implementations [43]. For more details,
we refer the reader to Section 8.

6. More General Multivariate Rings

Let us consider now general fields Q(a1/n1
1 , . . . , a1/nl

l ), for which the ai are square-
free and coprime, but for simplicity we will assume that they are independent primes.
The results shown in the previous section for multiquadratics cannot be straightforwardly
generalized to these fields, as the individual univariate fields Q(a1/ni

i ) can easily have
common factors in their discriminants (i.e., be non-coprime), in such a way that finding a
basis for the multivariate ring of integers is not trivial. We refer the reader to Section 9 for
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a discussion on the advantages that Order-LWE [51] brings about with respect to RLWE
when choosing a basis for the ring of integers.

We explain the followed path that leads to our definition of valid, secure and easily
parameterizable multivariate rings. We start by choosing number fields whose ring of
integers OK can be represented as Z[x]/(xn + ax + b), that is, as quotient polynomial rings
whose ideal has the form (xn + ax + b). For this to be a valid ring OK for K, it has to be
irreducible over Q, for which we use Eisensntein’s criterion:

Proposition 2 (Eisenstein’s criterion [54]). The polynomial p(x) = anxn + an−1xn−1 + . . . +
a1x + a0, where ai ∈ Z for all i = 0, . . . , n and an 6= 0 (which means that the degree of p(x) is
n) is irreducible if some prime number p divides all coefficients a0, . . . , an−1, but not the leading
coefficient an and, moreover, p2 does not divide the constant term a0.

Therefore, we impose the following two conditions on f (x) = xn + ax + b:

• Both a and b have to be divisible by a prime p and not by p2 (Eisenstein’s criterion).
• If we choose b as a prime, a has to be divisible by b.

Now, we can compute the discriminant for this number field by resorting to ([55],
Chapter 2.7):

Proposition 3 (An example of the calculation of a discriminant [55] ). For the calculation of
∆K in a number field K = Q(x) being a extension of finite degree n of Q and f (x) = xn + ax + b
the minimal polynomial of x over Q, we obtain

∆K = (−1)
n(n−1)

2 (nnbn−1 + (−1)n−1(n− 1)n−1an). (9)

For n = 2 (respectively, 3) we rediscover the well-known expressions a2 − 4b (respectively,
−27b2 − 4a3).

Theorem 6 (Theorem 8.11 from [45] ). For Z-lattices L′ ⊂ L inside K, [L′ : L]2 < ∞ and

discZ(L′) = [L′ : L]2 · discZ(L).

In particular, if L′ ⊂ OK and the integer discZ(L′) ∈ Z− {0} is squarefree then [OK :
L′] = 1; i.e., L′ = OK.

If we choose values for a and b such that the polynomial discriminant is squarefree,
Theorem 6 guarantees that the ring of integers has a power basis of the form {1, α, α2, . . .},
with α a root of xn + ax + b. Consequently, Z[x]/(xn + ax + b) is a valid ring of integers.

By including more “univariate” subrings, Z[x1, . . . , xl ]/(xn
1 + a1x + b1, . . . , xn

l + al x +
bl) becomes a valid ring of integers when all the discriminants are coprime [49]. Therefore,
this is a feasible strategy to define RLWE over a multivariate ring, as the product of
univariate rings with polynomial ideals (xn + aix + bi). To define the dual O∨K we can
make use of Theorem 4 which states that whenever the ring of integers has a power basis,
the basis of the dual is the same basis, scaled by 1

f ′(α) =
1

nαn−1+a , where α is a root of f (x).
Finding valid parameters for f (x) = xn + ax + b:
Unfortunately, the two previous conditions (Eisenstein’s criterion from Proposition 2

and Theorem 6) cannot be satisfied at the same time

• To satisfy the Eisenstein’s criterion, b and a have to be divisible by at least a prime
p (i.e., gcd (a, b) = u · p for some u ∈ Z), this introduces a factor pn−1 in ∆K (see
Equation (9)), in such a way that ∆K is not squarefree and not satisfying [OK : L′] = 1
in Theorem 6.
We could still work with these multivariate rings provided that their discriminants
are coprime, but it seems that there is no straightforward way to determine the
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“powerful” basis of the ring of integers: starting from Proposition 3, it is known that
Z[α] ⊆ OK ⊆ 1

∆K
Z[α] where f (α) = 0.

• Additionally, Eisenstein’s criterion is a sufficient but not necessary condition for
irreducibility of the polynomial functions. Without the imposed restrictions, we
could search for squarefree and coprime discriminants, but we would have to verify
the irreducibility of the involved functions case-by-case. Nevertheless, this is not
impossible to find, as it is known that monogenic fields are not scarce [56]; in fact,
for random polynomials f , it has been conjectured that Z[x]/( f (x)) of degree ≥ 4 is a
ring of integers with probability & 0.307 [57].

6.1. Transformation Based on Modulus Switching

Let us assume that we have found valid (monogenic) xn
i + aixi + bi functions defining

the ring of integers Z[xi]/(xn
i + aixi + bi); they do not yet feature the desired xn + d form.

In order to achieve this, we consider a map from the original RLWE samples to RLWE
samples modulo q, that removes the term ax if q divides a. It is worth noting that this trans-
formation is nothing but a modulus switching to q, and if it were possible to break RLWE
modulo q, the original secret key could be recovered or at least the indistinguishability
assumption could be broken.

The trick relies on all the polynomial functions having the form
fi(xi) = xn

i + a′iq︸︷︷︸
ai

xi + bi. Hence, a reduction modulo q converts the polynomial

functions into fi(xi) = xn
i + bi. We show the effect of this transformation on the ring qO∨K

for the univariate case (it extends to the multivariate case, as dual commutes tensoring):

• O∨K is defined as 1
f ′(α)OK; under the polynomial ring Z[x]/(xn + a′iqx+ bi), this implies

that the dual is 1
nxn−1+a′iq

Z[x]/(xn + a′iqx + bi).

• After reducing modulo q, we obtain 1
nxn−1 Zq[x]/(xn + bi); considering that x has

inverse modulo q, we can multiply numerator and denominator by x to obtain x
nxn =

x
−nbi

.

• The factor 1
−nbi

can be removed by just a scaling (moving to the ring of integers OK),
so we can directly work on Zq[x]/(xn + bi). This gives a “basis” {bi, x, x2, . . . , xn−1}
(or a basis { 1

n , x
nbi

, x2

nbi
, . . . , xn−1

nbi
} without scaling).

Decodability of the transformed xn + ax + b:
Elias et al. [56] use an heuristic perturbation method to bound the spectral norm of

the canonical embedding with f (x) = xn + ax + b. As the condition number is stable
for most of the random perturbations of the canonical embedding matrix associated to
xn + 1, they conjecture that many f functions have a bounded spectral norm in terms of a
and b; therefore, we can consider that the spectral norm s1(N f ) (N f represents the inverse

of the canonical embedding matrix) is likely bounded by
√

max (a, b) · det (N f )
1/n [58].

Consequently, the same arguments about noise behavior in [37,58] still apply, and in order
to guarantee the prevalence of the security reduction (see Proposition 5), the noise wraps
around modulo q in some of the polynomial coefficients (max (a, b) ≈ q). This is due to the
large q factor introduced in f (x), which requires the use of a high error variance, rendering
some of the polynomial coefficients modulo q useless. This makes these RLWE samples
harder to use for cryptographic applications.

6.2. Valid and Practical Parameterizations for Multivariate Rings

The previous solutions to parameterize multivariate rings with polynomial ideals (xn +
d) are not satisfactory, as (a) the search of valid univariate rings is not easy to handle (due to
the impossibility to use Eisenstein’s criterion) and (b) the obtained samples are not practical
for cryptographic applications due to their high noise in some polynomial coefficients.

Here we follow a slightly different approach, releasing the condition on equal-
degree polynomial functions; that is, we consider multivariate rings as Z[x1, . . . , xl ]/(xn1

1 +
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d1, . . . , xnl
l + dl). Again, to simplify the explanation we only use an univariate quotient

ring with polynomial ideal (xn + d), but all the results can be analogously extended to the
multivariate case (see Section 5) by requiring coprime discriminants.

First, for f (x) = xn + d, Equation (9) simplifies to ∆K = (−1)
n(n−1)

2 nndn−1.
Let d be a prime number and n = um a prime power. Then,

• f (x) is an irreducible polynomial over Q by the Eisenstein’s criterion (Propostion 2).
• f (x) is monogenic for d and n by satisfying the following Proposition 4.

Proposition 4 (Adapted Proposition 3 from [56] ). Let n be a power of a prime u. If d is
squarefree and u2 does not divide ((−d)n−1 + 1)d, then the polynomials xn + d are monogenic.

Proposition 4 shows that f (x) can be monogenic even when its discriminant is
not squarefree. If f (x) satisfies Proposition 4, we have OK = Z[x]/(xn + d) and
O∨K = 1

nxn−1 Z[x]/(xn + d).
In order to extend these results to multivariate rings

Z[x1, . . . , xl ]/(xn1
1 + d1, . . . , xnl

l + dl), we only have to consider functions
{xn1

1 + d1, . . . , xnl
l + dl} satisfying Proposition 4 and having coprime discriminants.

This basically means that all the di and ni are respectively different primes and
power primes.

Analogously to the multiquadratic rings in Section 5, we can directly map the error
distribution in the coefficient domain. In particular, for the ring 1

nixni−1 Z[xi]/(xni
i + di),

the parameter for the error distribution in the (j− 1)-th coefficient (1 ≤ j ≤ ni) is given

by
√

nid
ni−j

ni
i r, where r is the parameter of an independent spherical error distribution

in the embedding domain [58]. This extends to multivariate rings by means of the Kro-
necker product.

Finally, we introduce the definition of multivariate RLWE with the proposed polyno-
mial functions fi(xi) = di + xni

i :

Definition 11 (Multivariate RLWE with polynomial functions as xni
i + di). Given a multi-

variate polynomial ring Rq[x1, . . . , xl ] with f j(xj) = dj + x
nj
j for j = 1, . . . , l where n = ∏j nj

(where all nj are prime powers) and an error distribution χ[x1, . . . , xl ] that generates small-norm
random multivariate polynomials in R∨q [x1, . . . , xl ], the multivariate polynomial RLWE relies
upon the computational indistinguishability between samples (ai, bi = ai · s + ei) and (ai, ui),
where ai ← Rq[x1, . . . , xl ], ui ← R∨q [x1, . . . , xl ] are chosen uniformly at random from the rings
Rq[x1, . . . , xl ] and R∨q [x1, . . . , xl ]; s, ei ← χ[x1, . . . , xl ] are drawn from the error distribution.

For the ring R∨[x1, . . . , xl ], we define χ[x1, . . . , xl ] as an error distribution generating
polynomials belonging to R∨[x1, . . . , xl ] and whose parameter per coefficient satisfies

r ∏i∈[l]
√

nid
ni−ji

ni
i , where 1 ≤ ji ≤ ni and 1 ≤ i ≤ l, and hence represents the parameter for

the coefficient associated to the monomial xj1−1
1 · . . . · xjl−1

l .
Given an adequate parameter setting, the security reduction from Theorem 2 applies

to several multivariate versions of the RLWE problem (see Definition 11).

Theorem 7 (Parameter setting—hardness of multivariate RLWE with polynomial functions
as xni

i + di ). The polynomial-time quantum reduction from Theorem 2 applies to the multivariate
RLWE assumption from Definition 11 whenever:

• All di are squarefree and all ni are powers of the primes ui.
• Each u2

i does not divide ((−di)
ni−1 + 1)di.

• All ni and di satisfy gcd (ni, nj) = 1, gcd (ni, dj) = 1 and gcd (di, dj) = 1 if i 6= j.
• The error distribution satisfies the lower bound αq ≥ 2 ·ω(1).
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Corollary 2 (Parameter setting—hardness of multivariate RLWE with polynomial functions
as xni

i + di, derived from Theorem 7). The polynomial-time quantum reduction from Theorem 2
applies to the multivariate RLWE assumption from Definition 11 whenever:

• All di and ni are, respectively, different odd primes and powers of the odd primes ui.
• All di and ui satisfy gcd (di, uj) = 1 for all i, j.
• The error distribution satisfies the lower bound αq ≥ 2 ·ω(1).

Corollary 3 (Parameter setting—hardness of multivariate RLWE with polynomial functions
as xni

i + di, derived from Theorem 7). The polynomial-time quantum reduction from Theorem 2
applies to the multivariate RLWE assumption from Definition 11 whenever:

• All di are different primes, and each ni is a power of di.
• The error distribution satisfies the lower bound αq ≥ 2 ·ω(1).

Theorem 8 (Parameter setting—hardness of multivariate RLWE with the compositum of
rings from Definitions 9 and 11). The polynomial-time quantum reduction from Theorem 2
applies to the multivariate RLWE assumption from Definition 11 whenever:

• For all fi(xi) = di + xni
i with ni = 2:

– The di are squarefree integers satisfying −di = 1 mod 4.

• For all fi(xi) = di + xni
i with ni > 2 a power of a prime ui:

– Each u2
i does not divide ((−di)

ni−1 + 1)di.

• All di and all ni > 2 satisfy gcd (ni, nj) = 1, gcd (ni, dj) = 1 and gcd (di, dj) = 1 if i 6= j.
• The error distribution satisfies the lower bound αq ≥ 2 ·ω(1).

Some examples of valid parameters:
In order to show the feasibility of the proposed parameterization, we exemplify it

with some practical use cases for bivariate RLWE; we will consider n1 = 211 = 2048 and
n2 = 37 = 2187, and d1 = 5, d2 = 7, for which we prove that they meet the conditions of
Proposition 4

• 22 = 4 does not divide 52047 + 1, or equivalently, 52047 + 1 6= 0 mod 4. We have
52047 + 1 mod 4 = 12047 + 1 = 2 6= 0.

• 32 = 9 does not divide 737−1 + 1, or equivalently, 737−1 + 1 6= 0 mod 9. We have
737−1 + 1 = 7−1737

+ 1 = 7−1737 mod 6 + 1 = 72 + 1 = 50 = 5 mod 9 6= 0.

Consequently, with this choice of parameters we can work on the number
field K = Q((−5)1/2048, (−7)1/2187), with OK = Z[x, y]/(x2048 + 5, y2187 + 7) and
O∨K = 1

4478976x2047y2186OK.

As for the example mentioned in the introduction, with functions x64 + 1 and y27 + 5,
we can also verify that

• x64 + 1 is the Φ128(x) power-of-two cyclomic, hence it is monogenic.
• y27 + 5 is monogenic by Proposition 4, as 32 = 9 does not divide 5 or 526 + 1.

Additionally, as both discriminants are coprime, the product is directly the corresponding
ring of integers.

7. Security of Multivariate RLWE and Example Instantiations

This section includes a discussion on several aspects of the proposed solutions in this
work, namely their security, the geometric interpretation of the problem, and the feasibility
of the proposed parameterizations. With this purpose, we enumerate the known attacks in
the literature and include an example instantiation of a simple bivariate RLWE scheme. We
refer to next Sections for a description of the applications enabled by our constructions.
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7.1. Resilience against Known Attacks

The formulation proposed in this work involves working with quotient rings whose
polynomial ideal is (xn + d) or, more generally, (xn + ax+ b). Some particular instantiations
of these rings have already been studied in the literature and we can find specific attacks
to “variants” of the RLWE problem (e.g., PLWE together with non-dual and dual RLWE
versions) defined over them.

In general, the known attacks can be divided in two main types [37]:

• Attacks using a reduction modulo an ideal divisor q of the modulus qR [56,59–63].
These attacks try to distinguish between the error distribution and the uniform distri-
bution modulo an ideal divisor.

• A reduction to errorless LWE [58] which exploits the relation between RLWE and LWE.
Expressing RLWE in its LWE form, the error term of some of the equations can be
removed by means of a rounding operation, and linear algebra can be used to search
for the secret key.

All these attacks have been generalized and studied in depth by Peikert in [37], where
he concludes that all the concrete insecure RLWE instantiations made use of error distributions
which were insufficiently well spread relative to the rings, meaning that none of the vulnerable
instantiations satisfy the conditions from Theorem 2 to have worst-case hardness. In [37],
Peikert also gives sufficient conditions to make RLWE secure against the previous attacks.
We summarize the main relevant results for our constructions.

Proposition 5 (Invulnerability condition from [37]). Let ψ = Dr (see Definition 7) be a spheri-
cal Gaussian error distribution over KR for some r > 0; a sufficient condition for invulnerability to
the attacks from [37,56,58–62] is

r ≥ 2. (10)

The validity of Proposition 5 to resist the previous attacks is shown in the following
two theorems: Theorem 9 (for the attack based on reduction modulo an ideal divisor) and
Theorem 10 (for the attack based on errorless LWE).

Theorem 9 (Theorem 5.2 from [37]). Given a Ring-LWE sample (a, b = s · a + e) ∈ Rq ×
KR/qR∨ where e ← Dr is transformed into n LWE samples (Aa, b = sT Aa + eT), where
b ∈ (R/qZ)n and e ∈ Rn are respectively the coefficient vectors of b ∈ KR/qR∨ and e ∈ KR
(with respect to the chosen basis of R∨), and Aa ∈ Zn×n

q is the matrix of multiplication by a ∈ Rq
with any element of R∨q (with respect to the chosen bases of R, R∨). Then, for any Z-basis B∨ = (b∨j )
of R∨ used above, each entry of e is a continuous Gaussian of parameter at least r

√
n ≥ 2

√
n

(which is the required lower bound to apply the worst-case hardness theorems for plain-LWE).

Theorem 10 (Theorem 5.1 from [37]). Let q ⊆ R be any ideal of norm N(q) ≤ 2n, and let the
error parameter r ≥ 2 satisfy condition (10). Then the reduced error distribution Dr mod qR∨ is
within statistical distance 2−2n of uniform over KR/qR∨.

7.2. Geometric Interpretation and Examples of Multivariate RLWE

In this section, we give a high level overview of how to instantiate a secure multivariate
RLWE sample from Definition 11, exemplifying it in the bivariate case (all rings are defined
over variables x, y, omitted when unambiguous).

This example can also be used as a means to showcase complex numbers packing
into slots, obtaining a net improvement on the number of available slots per ciphertext
when comparing to the recent results in [39] (see Section 10). For the sake of clarity, we
introduce a simple SHE scheme which enables homomorphic additions and multiplications
without taking into account some of the more advanced techniques typically considered in
the literature.
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A Multivariate RLWE Sample

For simplicity, we consider a bivariate RLWE sample (a, b = a · s + e) ∈ Rq × R∨q ,
where a ∈ Rq[x, y], s ∈ R∨q [x, y] and e ← χ[x, y], with χ[x, y] generating small-norm
random bivariate polynomials in R∨[x, y]. We can use a uniformly random s or follow
conventional approaches where s is a small key (see Section 3).

Geometry of R, its dual R∨ and an example for {x2 + 3, y2 − 5}:
To easily illustrate the geometry of R and R∨, we use a simple example

R = Z[x, y]/(x2 + 3, y2 − 5). By means of the canonical embedding, we know that the sub-
stitutions {x → ±

√
−3, y→ ±

√
5} yield the four different slots in the embedding domain.

This clearly shows that λ1(R) ≤
√

n = 2 by the embedding of 1, and we can also
obtain the embedding of the elements x, y and xy. The term xy can be used to obtain an
upper-bound for λ4(R), such that λ4(R) ≤ 2

√
15.

This is generalizable to any multiquadratic with l = log2 n variables, by considering
the embedding of 1 and ∏i∈[l] xi, obtaining λ1(R) ≤

√
n and λn(R) ≤

√
n ∏i∈[l]

√
di. As the

l-th prime is asymptotically pl ∼ l log l, a worst-case for l = log2 n is dl
l ∼ ll(log l)l =

(log2 n)log2 n(log2 log2 n)log2 n. Combining the two previous expressions we have that
λn(R) (and hence also the ratio λn(R)

λ1(R) ) is polynomially upper-bounded by n.
These bounds are straightforwardly extended to the dual R∨ by taking into account

the corresponding “tweak” factor. For the multiquadratic scenario, the dual only suffers
a scaling by the square roots of the di terms (R is sparser than the dual R∨). However,
considering higher degrees in the polynomial functions xni

i + di, the tweak factor can turn
the noise in the non-dual version of RLWE into highly non-spherical.

A very detailed analysis of these effects (including also some enlightening visual
examples) can be found in [37].

Parameters’ choice:
We show now how to select correct parameters {nx, ny, dx, dy} satisfying the conditions

established in Sections 5 and 6 for valid number fields.
As a brief summary, and focusing on nx, ny > 2, this mainly implies that: (1)

the discriminants of Kx = Q[x]/(xnx + dx) and Ky = Q[y]/(yny + dy) are coprime,
i.e., gcd (∆Kx , ∆Ky) = 1, and (2) nx, ny are prime powers satisfying Proposition 4.

This enables the definition of OK = R = Z[x, y]/(xnx + dx, yny + dy) as the ring of
integers. Analogously, the dual is O∨K = 1

nxnyxnx−1yny−1 Z[x, y]/(xnx + dx, yny + dy) (see

Section 6 for some particular choices).
In this bivariate case, the error distribution χ[x, y] samples polynomials in O∨K whose

coefficients are independently sampled from Gaussian distributions with different standard

deviations. In particular, σ is equal to r
√

nd
nx−jx

nx
x d

ny−jy
ny

y /
√

2π for the coefficient associated
to the monomial xjx−1yjy−1 with 1 ≤ jx ≤ nx and 1 ≤ jy ≤ ny.

Working on qOK:
As it is usually done with power-of-two cyclotomics, we can directly trans-

form the dual into the ring of integers by means of a scaling. If we have
O∨K = 1

nxnyxnx−1yny−1 Z[x, y]/(xnx + dx, yny + dy), we can first multiply the dual by xy
xy , to

see the simplified relation xy
xyO∨K = xy

ndxdy
OK.

Finally, analogously to the xn + 1 functions, we can scale the (a, b) sample by
n = nxny and also dxdy. This gives us a sample (a(x, y), b′(x, y) = ndxdyxy · b(x, y)) ∈ R2

q.
Consequently, we can directly work on the ring of integers with (a, b = as + e) ∈ R2

q
where a← Rq, s← Rq (or also s← χ[x, y]) and e← χ[x, y]. After the multiplication with
the monomial xy, the error distribution χ[x, y] generates independent coefficients from

a Gaussian distribution of σ = r
√

nd
nx−jx

nx
x d

ny−jy
ny

y /
√

2π for 1 < jx ≤ nx and 1 < jy ≤ ny,
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σ = r
√

nd
2nx−jx

nx
x d

ny−jy
ny

y /
√

2π for jx = 1 and 1 < jy ≤ ny, σ = r
√

nd
nx−jx

nx
x d

2ny−jy
ny

y /
√

2π for

1 < jx ≤ nx and jy = 1 while σ = r
√

nd
2nx−1

nx
x d

2ny−1
ny

y /
√

2π for jx = jy = 1.
SHE over Multivariate Rings:
The basic example cryptosystem described in Table 3 follows the structure of the SHE

version introduced in [64] and implemented in [65]. The main difference relies on the fact
that our polynomial elements belong to the multivariate rings R[x, y], Rt[x, y] and Rq[x, y]
(see Definition 11), contrarily to the traditional univariate version Z[x]/(1 + xn) and its
analogous rings modulo t and q. In Table 3 the diagonal of J has the corresponding standard
deviations of χ normalized by r (i.e., σ/r) for each coefficient of the bivariate polynomials.

In particular, our plaintext ring Rt is basically a bivariate polynomial Rt[x, y] =
Zt[x, y]/(xnx + dx, yny + dy) which is encoded as a sub-module of T = KR/R∨

(see Definition 7). Our example is based on the scheme introduced in [64], but other
choices are possible. Regarding the achieved noise bounds, they are analogous to the
computations from [64] by taking into account the expansion factor of the involved rings.

The additional variables of the multivariate structure can bring about some significant
advantages: more efficient polynomial operations (see Section 8), better space/efficiency
tradeoffs when working with automorphisms (see Section 9), and can also be very useful
when working with multidimensional structures (see the works [8,10,39] for more details
on practical applications). In particular, in [39,40] the authors present a library called
MHEAAN, based on multivariate RLWE, which is optimized to perform homomorphic
matrix operations.

Table 3. Parameters and primitives of a somewhat homomorphic cryptosystem based on a multivari-
ate version of RLWE (see [8,10]).

Parameters

Let Rt[x, y] be the cleartext ring and Rq[x, y] the ciphertext ring. The noise distribution χ[x, y] in
Rq[x, y] takes its coefficients from a multivariate truncated Gaussian N (0, r2 J2). q is an integer
satisfying t < q and is relatively prime to t. All the previous parameters are chosen in terms of
the security parameter λ where n = 2blog λe−1

Example SHE Cryptographic Primitives

SH.KeyGen Process s, e← χ[x, y], a1 ← Rq[x, y]; sk = s and pk = (a0 = −(a1s + te), a1)

SH.Enc
Input pk = (a0, a1) and m ∈ Rt[x, y]

Process u, f , g← χ[x, y] and the fresh ciphertext is c = (c0, c1) = (a0u + tg +
m, a1u + t f )

SH.Dec
Input sk and c = (c0, c1, . . . , cγ−1)

Process m =
((

∑γ−1
i=0 cisi

)
mod q

)
mod t

SH.Add
Input c = (c0, . . . , cβ−1) and c′ = (c′0, . . . , c′γ−1)

Process cadd = (c0 + c′0, . . . , cmax (β,γ)−1 + c′max (β,γ)−1)

SH.Mult
Input c = (c0, . . . , cβ−1) and c′ = (c′0, . . . , c′γ−1)

Process
Using a symbolic variable v their product c′′ can be obtained from
the relation

(
∑

β−1
i=0 civi

)
·
(

∑γ−1
i=0 c′iv

i
)
= ∑

β+γ−2
i=0 c′′i vi

Correctness and Security:
The condition for correct decryption is that the effective noise ||(∑γ−1

i=0 cisi) mod q)||∞
remains smaller than q/2. Let us consider a simplified version of Theorem 2 from [64]
where only the effect of noise is taken into account, and let max {σ} be the maximum
standard deviation of the polynomials sampled from χ[x, y]. Let M be the maximum
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coefficient of the evaluated degree-D polynomial; if M(t max {σ}dxdyn
√

n)D is smaller
than q/2, the scheme of Table 3 can evaluate degree-D multivariate polynomials over
elements which belong to Rt[x, y]. We could also consider a more tight empirical condition
for q, as stated in [65].

Regarding the security of this SHE scheme, it relies on the indistiguishability as-
sumption of the polynomial multivariate version of RLWE (with adequately chosen secure
parameters χ[x, y], {nx, dx, ny, dy} and q) featured in Definition 11; breaking this assump-
tion implies, as stated in Theorem 2, the existence of a quantum algorithm which solves
short vector problems over ideal lattices. For a practical estimation of the bit security, we
can apply the LWE security estimator developed by Albrecht et al. [66,67] to the cryp-
tosystems built on multivariate RLWE and also the estimates included in the standards
document [68] for a general random lattice with the same dimension (n = ∏ ni). This is
plausible, analogously to what it is typically done with ideal lattices, as a secure instantia-
tion of m-RLWE works with full-rank lattices, for which no substantially faster attacks are
known than for general lattices.

8. Multiquadratic Rings with Fast Walsh–Hadamard Transforms

Copyright of Section 8 by IEEE: ©2021 IEEE. Reprinted, with permission, from Sec-
tions 3 and 4 of the conference paper: “Multiquadratic Rings and Walsh–Hadamard
Transforms for Oblivious Linear Function Evaluation”, 2020 IEEE International Work-
shop on Information Forensics and Security (WIFS). This section focuses on improving
the cost of the underlying polynomial operations for cryptographic primitives based on
RLWE, especially polynomial products (convolutions) [43]. We show how the well-known
asymptotic cost of O(n log n) for cyclotomic rings with polynomials of n coefficients can
be improved by a factor of log n in terms of elemental multiplications when working on
m-RLWE (or RLWE over a multivariate number field). To this aim, we particularize the
multivariate version to degree-2 polynomials and introduce an (α-generalized) variant
of the Walsh–Hadamard Transform (over finite rings instead of the usual real numbers),
featuring a convolution property that relates the coefficient-wise representation with the
transformed domain. This transform can be very efficiently computed with FFT algorithms
(specifically, with a variant of the Fast Walsh–Hadamard Transform) whose computational
cost is only O(n log n) additions, hence being much more amenable for a practical imple-
mentation. It is worth noting that the effect of the efficiency improvement brought about
by our approach goes beyond somewhat homomorphic encryption schemes (including
also the NTRU setting [69,70]), also enhancing any cryptographic primitives involving
polynomial multiplications, e.g., the candidates of the NIST Post-Quantum challenge [67].
We also exemplify in [43] its use for the efficient implementation of Oblivious Linear
Function evaluation.

For this section, we deal with a specific version of m-RLWE where all the used polyno-
mial functions have the same form fi(xi) = di + x2

i (see Definition 9).
The security reduction from Theorem 2 applies to this particular version of the m-

RLWE problem. To this aim, parameteres di have to be chosen as indicated in the beginning
of Section 5. Additionally, Proposition 5 gives a sufficient condition to make the problem
secure against the attacks described in Section 7.1.

We introduce next the (α-generalized) Hadamard transform, that we apply to reach
the aforementioned performance gains on polynomial convolutions.

Faster Polynomial Arithmetic over Multivariate Rings

The Hadamard transform over real numbers is usually applied by means of
the recursion

Hi =
1√
2

(
Hi−1 Hi−1
Hi−1 −Hi−1

)
, (11)

where i ∈ N and H0 = 1.
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It can be seen that the matrix Hi with i ≥ 1 is equivalent to the Kronecker product of
i Discrete Fourier Transform (DFT) matrices of size 2 (H1 equals the DFT matrix of size
2); that is, it can be seen as a 2× 2× · · · × 2︸ ︷︷ ︸

i times

-DFT transform (defined over i dimensions of

length 2 each).
Analogously to the DFT, the Walsh–Hadamard Transform (WHT) of size n possesses

a particular fast algorithm called Fast Walsh–Hadamard Transform (FWHT) which can be
very efficiently computed with no products and with a cost of O(n log n) additions and
subtractions (see [71,72]). Hence, when working over rings satisfying a convolution prop-
erty with the Hadamard transform, it is possible to efficiently compute the multiplication
of elements from these rings with a cost of O(n) elemental multiplications.

Security reasons prevent us from directly working over rings satisfying this con-
volution property with the Walsh–Hadamard transform (that is, multivariate quotient
rings whose polynomial functions are f (xi) = x2

i − 1), as they can be easily factored into
(xi − 1)(xi + 1) over Z. Therefore, we resort to the type of multivariate rings presented in
Definition 9 and apply an (α-generalized) variant of the WHT.

α-generalized convolutions:
An α-generalized convolution corresponds to the ring operation defined over poly-

nomials belonging to Zq[z]/(1− αzn). For example, with α = −1 we have a negacyclic
convolution. In the literature, this convolution operation is also called negative wrapped
convolution. Figure 1 shows the realization of an α-generalized convolution between
vectors of length N (with l = 0, . . . , N − 1), by means of a cyclic convolution combined
with an element-wise pre/post-processing applied before/after [7,36].

Pre-processing

Cyclic Convolution

Pre-processing

Post-processing

c

a

b

Figure 1. Block diagram for the implementation of an α-generalized convolution.

As the cyclic convolution can be efficiently computed by means of standard fast
algorithms, this means that an α-generalized convolution can be implemented with only
a light overhead (O(n) scalar products). It is common to include these additional scalar
products inside the butterflies of the FFT algorithms to further enhance the efficiency.

α-generalized Walsh–Hadamard transform:
We are mainly interested in polynomial functions with the form x2

i + di. We can rewrite
1− αxn as−α((−α)−1 + xn). Hence for x2

i + di we have di = (−αi)
−1 = −α−1

i . For this par-
ticular type of polynomial rings we can define the following direct and inverse transforms:

W1 = H1

(
1 0
0 (α1)

−1/2

)
, and W−1

1 = 2−1

(
1 0
0 (α1)

1/2

)
H1,

where the square-roots (αi)
1
2 and (αi)

−1
2 have to exist in Rq for all i (see Definition 9).

Equivalently, if q is an odd prime, we can make use of the Legendre symbol (−d mod p
p )

to check when the multivariate ring factors into linear terms. To this aim we need that
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(
−di mod q

q ) = 1 for a prime q and for all i. We also redefine H1 =

(
1 1
1 −1

)
without

taking into account the normalizing factor 1
2 .

Therefore, now we can extend this definition to multivariate quotient rings with poly-
nomial ideals of the form (x2

i + di): we consider the Kronecker product of the matrices W1

and W−1
1 as Wi =

⊗
j∈[i] W1 and W−1

i =
⊗

j∈[i] W−1
1 , arriving to the following expression:

Wi = Hi

⊗
j∈[i]

(
1 0
0 (αj)

−1/2

), and W−1
i = 2−i

⊗
j∈[i]

(
1 0
0 (αj)

1/2

)Hi,

where the normalizing factors are again left outside Hi.
Consequently, if we define the vector α = (α1, . . . , αl)

T , when working over the multi-
variate ring Rq[x1, . . . , xl ] with f j(xj) = dj + x2

j for j = 1, . . . , l we can use the transforms

Wl and W−1
l analogously to the use of negacyclic NTTs in the univariate RLWE. Both

Wl and W−1
l transforms can be efficiently computed in O(n) (where n = 2l) elemental

multiplications thanks to the FWHT. This enables the computation of the Hl matrix multi-
plications with only O(n log n) additions and subtractions and no products, which brings
a net improvement with respect to the analogous and wide-spread radix implementation
of the NTT.

Implementation of the Fast Walsh–Hadamard Transform (FWHT):
Algorithm 1 shows a pseudocode implementation of the (cyclic) Fast Walsh–

Hadamard Transform (FWHT) implementation (see [71,72]), computing the Hadamard
transform of a length-n vector a. It can be easily seen that this algorithm requires a total of
n log2 n additions (specifically, n log2 n

2 additions and n log2 n
2 subtractions), instead of the n2

additions/subtractions required when directly applying the matrix multiplication.

Algorithm 1 Fast Walsh–Hadamard Transform (Hia with i ≥ 1).

1: procedure FASTWALSH–HADAMARDTRANSFORM(a)
2: Input:
3: a such that length(a) = n = 2i and i ≥ 1
4: Algorithm for FWHT(a) (computing Hia):
5: depth = 1;
6: for j = 0 until log2 n− 1 do
7: scale = 2 ∗ depth;
8: for k = 0 until

⌊
length(a)−1

scale

⌋
do

9: for l = scale ∗ k until scale ∗ k + depth− 1 do
10: ac = a[l];
11: a[l] = a[l] + a[l + depth];
12: a[l + depth] = ac− a[l + depth];
13: depth = 2 ∗ depth;
14: Output:
15: a← Hia

Finally, the α-generalized version of the direct (inverse) FWHT can be defined by
adding a right (left) product by a diagonal matrix, so that the total cost for the α-generalized
FWHT on a length-n vector is n elemental multiplications and n log2 n additions.

Implementation and evaluation:
Polynomial multiplications are the main bottleneck of lattice cryptography, as they

are the most time-consuming basic blocks of any cryptographic algorithm, from encryp-
tion/decryption to relinearization and bootstrapping. The replacement of the traditional
NTTs by FWHT by transitioning from cryptographic constructions built on univariate
RLWE to the proposed multivariate version can bring a considerable improvement in
terms of computational efficiency. To showcase the achieved gains, we have implemented
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Algorithm 1 in C++ and compared it with one of the currently most efficient radix-2 imple-
mentations of the NTT [6]; this is the algorithm featured in the NFLlib, one of the fastest
lattice-based cryptographic libraries available for homomorphic encryption. NFL also
off-loads the complexity of the bit-reversal operation to the INTT, in order to speed up
the NTT, and makes use of SSE and AVX2 optimizations to further enhance the obtained
performance. Figure 2 shows the comparison of the obtained run times for a wide range
of practical values of n (vector size or polynomial degree), when using our FWHT im-
plementations, including an SSE/AVX2 vectorized version. It can be seen that we obtain
a reduction to about 45–50% of the time of the NTT (38–43% of the INTT) in the non-
vectorized implementation of the FWHT with respect to the fast NTT of NFLlib, while the
vectorized one further reduces this figure to 22–24% (19–22% of the INTT). Finally, it is
worth noting that the memory consumption of the FWHT is much lower, as it does not
need to store the tables of the twiddle factors.

10 11 12 13 14 15 16 17 18 19

log
2
(n)

10
0

10
1

10
2
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3

10
4

T
im

e
 (

s
)

NTT

INTT

FWHT

FWHT (AVX2)

Figure 2. Runtimes of the proposed Fast Walsh–Hadamard Transform (FWHT) compared to the
Number Theoretic Transform (NTT)/INTT from [6].

9. Slot Manipulation in Multivariate Rings

In this section we introduce the main improvements that m-RLWE brings to slot
manipulation when packing several plaintext inputs into a ciphertext, with applications
in relinearization and bootstrapping operations. Packing into slots [73] helps to take
advantage of the available space in the plaintext ring, therefore improving cipher expansion.
The use of this packing strategy also enables working with homomorphic “slot”-wise
additions and multiplications, i.e., Single Instruction, Multiple Data (SIMD) operations
with encrypted data.

This is usually combined with a mechanism to efficiently move and exchange the
plaintext contents across slots, by taking advantage of the properties of the available
automorphisms in the used ring. In general, in the ring Rt = Zt[z]/(Φm(z)), we can define
a set of automorphisms φ(m) as different transformations ρi : Rt → Rt with i ∈ Z∗m, which
apply a change of variable z→ zi over the elements in Rt.

Current lattice-based homomorphic cryptosystems leverage automorphisms to per-
form linear transformations across plaintext slots. Whereas applying an automorphism is
a very efficient operation, it produces a ciphertext encrypted under a different secret key,
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and consequently, a switching key operation is needed to recover a ciphertext under the
original secret key. This switching key process has two main drawbacks [74]: (a) a notable
computational overhead and (b) an increase in the memory requirements due to the need
of adding additional public information (“switching key/relinearization” matrices, a.k.a.
evaluation keys).

In general, there is a tradeoff between these two dimensions: when the number of
evaluation keys increases, the involved switching key runtime decreases, and conversely,
when the number of keys is reduced, a chain of several switching key operations is needed,
hence increasing the runtime. In a recent work [74], Halevi and Shoup explore several
strategies to optimize this tradeoff, claiming improvements of even 75 times faster runtimes
than those of their previous implementation, together with a reduction of up to a half in
the required memory space to store the evaluation keys.

This section focuses on two different aspects: (1) We show how the introduced multi-
variate rings over the RLWE problem (see Sections 5 and 6) enable considerable improve-
ments in the efficiency of the homomorphic packing/unpacking into slots, therefore greatly
improving essential blocks for homomorphic encryption, such as bootstrapping, and (2) we
analyze the structure of the available set of automorphisms on these rings, also showing
that our solution can improve on both the runtime and the memory requirements with
respect to the state of the art [74].

It is worth highlighting that some of the exemplified solutions in this section are
sketched out with negacyclic rings. For completeness, in Section 9.4 we give some in-
sights on how to extend these results to the more general multivariate rings showcased in
this manuscript.

9.1. Efficient Slot Packing/Unpacking

The homomorphic packing/unpacking of plaintext values into slots is one of the
most important examples of the evaluation of linear transformations on the ciphertexts,
bootstrapping being one of the most representative applications [14–16]. The way current
cryptosystems implement this packing/unpacking is by means of a decomposition of the
matrix multiplication into element-wise products between the different diagonals of the
matrix and different rotated versions of the ciphertext (hence by adding the result of a set
of multiplications between plaintexts and rotated ciphertexts).

The main bottleneck of this process is the number of switching key matrices required to
rotate the ciphertexts. Working with n slots, a total of n− 1 rotations, hence n− 1 switching
key matrices, is required in the worst case. Available strategies to reduce this number of
matrices come at the cost of also increasing the runtimes per automorphism/switching
key operation.

To the best of our knowledge, the best strategy for homomorphic packing/unpacking
is presented in [75] for the HEAAN cryptosystem. Their method, with an input of n
slots and parameterized by a radix r, requires O(r logr n) constant vector multiplications,
O(
√

r logr n) rotations and a depth of O(logr n).
Thanks to the introduced multiquadratic RLWE with l = log2 n independent variables,

we can also break the need of a number of rotations (automorphisms/switching key
operations) equal to the number of slots, and we enable homomorphically packing/unpacking
operations with a single switching key operation per independent ring variable.

Homomorphic Packing/Unpacking:
Considering a multiquadratic plaintext ring Rt[x1, . . . , xl ] (see Definition 11), we arrive

to the following packing/unpacking matrices:

Vl = 2−l

⊗
j∈[l]

(
1 0
0 (αj)

1/2

)Hl , and V−1
l = Hl

⊗
j∈[l]

(
1 0
0 (αj)

−1/2

).
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These matrices are similar to the ones introduced in Section 8, but now having

Vl = 2−lW−1
l and V−1

l = Wl ,

and being defined over the plaintext ring, so satisfying αj = −dj mod t for j ∈ [l].
Both packing and unpacking matrices can be decomposed on a matrix of size 2× 2 over

each independent variable. Additionally, these matrices can be very efficiently computed
on a quadratic ring.

Consider, without loss of generality, that we have

a(x1, . . . , xl) = a0(x1, . . . , xl−1) + xla1(x1, . . . , xl−1) mod x2
l + dl .

By applying now the automorphism xl ← −xl , we can efficiently extract both a0 and
a1 by computing a(x1, . . . , xl) + a(x1, . . . ,−xl), and a(x1, . . . , xl)− a(x1, . . . ,−xl).

Once we have extracted a0 and a1, the multiplication with the 2 × 2 matrix can
computed. This process can be recursively applied for each independent variable.

Hence, our proposed method enables homomorphic packing/unpacking on an input
of n slots which requires log2 n rotations and depth log2 n, but now working for BFV-type
cryptosytems [76].

Homomorphic Walsh–Hadamard Transform

Consider again a multiquadratic plaintext ring Rt[x1, . . . , xl ]: by applying the packing
method (packed-RLWE) described in [12], we can emulate over a ciphertext composed
of multiquadratic rings, a ring homomorphism with a cyclic Walsh–Hadamard ring (i.e.,
a ring with 1-generalized Walsh–Hadamard transforms, see Section 8).

Then the required matrices for packing and unpacking are respectively:

Vl = 2−l Hl and V−1
l = Hl .

Hl evaluation:
It can be seen that the Hl matrix can be homomorphically evaluated by means of

recursively applying a shift and an automorphism for each independent variable. That is,
if we have encrypted a polynomial a ∈ Rt[x1, . . . , xi], we would do:

ã(x1, . . . , xl) = ∑
i∈[l]

xia(x1, . . . , xi, . . . , xl) + a(x1, . . . ,−xi, . . . , xl).

The above operations can be homomorphically evaluated by means of one shift, one
automorphism and two additions per independent variable.

9.2. Automorphisms in Multiquadratic Rings and Their Hypercube Structure

We show now how m-RLWE improves on the tradeoffs between space and computa-
tional cost when dealing with automorphisms, with respect to the univariate version.

Let A[z]/(1+ z2) be a polynomial ring as the one described by Definition 9, and α be an
element α ∈ A[z]/(1 + z2); then, we denote by θ

(z)
i (α) ∈ A[z]/(1 + z2) the transformation

over α which applies the change of variable z → zi with i ∈ Z∗4 . For these particular
rings, both transformations are, respectively, the identity z→ z and the negation z→ −z.
Reducing modulo t (the modulo of the plaintext ring), the effect of the latter transformation
over the slots would be equivalent to a block shift where each block is composed by one
half of the total slots. This shift is graphically illustrated in Figure 3 (also briefly described
in Table 4), where ψ is the 4th root of unity modulo t (i.e., ψ4 ≡ 1 mod t), and the two
blocks of slots encoded respectively in α(ψ) and α(ψ3) get shifted by applying z → −z.
With rings A[z]/(d + z2) we have similar automorphisms {z→ z} and {z→ −z}.
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Figure 3. Representation of the rotation between two blocks of slots encoded in α.

Table 4. Rotation between two blocks of slots (description of Figure 3).

To fix ideas, and without loss of generality, in Figure 3 we represent a plaintext α as an element
α ∈ A[z]/(1 + z2), where A does not depend on z. By reducing modulo t, and by having a 4-th root
of unity ψ, the polynomial α(z) = α0 + α1z mod 1 + z2 can encode a vector with two different block slots
(α(ψ)︸︷︷︸
slot0

, α(−ψ)︸ ︷︷ ︸
slot1

) ∈ A2. The concrete structure of these blocks depends on the ring structure of A modulo t.

Figure 3 showcases the effect of applying the transformation z → −z under α(z), i.e., we obtain a new
polynomial α̃(z) = α0− α1z mod 1 + z2. As a result of this automorphism, the polynomial α̃(z) now encodes
a rotated vector of the original block slots (α̃(ψ), α̃(−ψ)) = (slot1, slot0) ∈ A2.

Going back to the notation Rt[x1, . . . , xl ] with f j(xj) = 1+ x2
j for our ring, we can then

apply combinations of these two transformations with the different variables xj for j ∈ [l].
Analogously to [74], this gives a multidimensional structure on the automorphisms group
considering the composition of transformations

θi1,...,il (α) = θ
(x1)
i1

(θ
(x2)
i2

(. . . θ
(xl)
il

(α) . . .)) ∈ Rt[x1, . . . , xl ],

where α ∈ Rt[x1, . . . , xl ], t ≡ 1 mod 4 and i1, . . . , il ∈ Z∗4 .
This multidimensional structure of the automorphisms group can be seen as an l-tuple

with two different values per component (which gives a total of 2l different automor-
phisms). Hence, similarly to the shift property of a multidimensional DFT [77], this group
satisfies both the abelian and sharply transitive properties required to perform any type
of permutation [78].

Logarithmic Increase in Space and Computational Cost (Strategy 1):
The effect of each of the automorphisms over the slots can be visually represented

as a hypercube with as many dimensions as independent variables the rings have, that is,
with a total of log2 n dimensions. As a graphical example, Figure 4 shows the slot structure
corresponding to a multivariate ring with seven independent variables; in this case, each
different vertex of the hypercube represents one of the n = 128 available slots, where the
allowed transitions between vertices depend on the chosen strategy, as we describe next
(see also Table 5).
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A

B

Figure 4. Representation of the hypercube structure of the group of automorphisms available in the
multivariate polynomial RLWE with Φ4(·) as polynomial functions and considering 7 independent
variables {x1, . . . , x7}.

Table 5. Hypercube structure of the group of automorphisms (description of Figure 4).

Figure 4 particularizes the block structure of Figure 3 to the case on which A = Zt[x1, . . . , x6]/(1 +
x2

1, . . . , 1 + x2
6). By also considering z = x7, we finally have B = Zt[x1, . . . , x7]/(1 + x2

1, . . . , 1 + x2
7).

An element α ∈ B can encode a vector with 128 slots such as (slot0, . . . , slot127) ∈ Z128
t , where the

existing automorphisms correspond to the transformations xi → −xi. Figure 4 exemplifies the effect of
these rotations by representing the positions of the vector (slot0, . . . , slot127) as the existing vertices in a
hypercube of dimension 7. The transformation xi → −xi corresponds to a translation vector between two
different vertex locations.
For example, in order to move slotA (point A) in α to the position of slotB (point B), all the transformations
x1 → −x1, x2 → −x2, x3 → −x3, x4 → −x4, x5 → −x5, x6 → −x6 and x7 → −x7 must be applied to
α(x1, . . . , x7), finally obtaining α̃(x1, . . . , x7) = α(−x1, . . . ,−x7).

In case of storing n switching key matrices (corresponding to all the automorphisms),
any vertex transition will be allowed through one single switching key operation. However,
it is possible to store less switching key matrices (which, combined, represent the whole set
of automorphisms), hence increasing the number of subsequent automorphisms/switching
key operations for transitioning from one vertex to another.

Due to the specific structure of our multivariate rings, we propose an optimal strategy
with log2 n switching key matrices, each one corresponding to a different transformation
xi → −xi; with the additional advantage that these transformations are their own inverses.
Following this strategy, we can also see the different slots (vertices in Figure 4) as a binary
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vector of length log2 n, where the available operations are bit-wise XOR operations with
vectors

{(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}

belonging to the standard basis of dimension log2 n. In the example of Figure 4 (with
log2 n = 7), this method would be equivalent to working with seven independent vec-
tors (of the standard basis) enabling only movements between vertices in the dimension
associated to the vector.

It can be seen that with this strategy the farthest slot to a given one is always the slot
represented as its ones’ complement, i.e., the opposite vertex. This implies a total of log2 n
automorphisms/switching key operations. Hence, in the worst case we have an increase
in the computational cost by a factor of log2 n when storing log2 n switching key matrices
and working with n slots. This is a considerable reduction in the memory requirements
when compared to the approximately O(D) and O(

√
D) factors considered by Halevi and

Shoup [74] when working with D slots (in one dimension).
As a quick comparison, for the practical values reported in [74],

i.e., n = φ(m) = 16, 384, our strategy achieves an increase factor of 14 on the computational
cost, which is not considerably higher than their results, but with huge savings in storage
for our case: we store only 14 matrices, compared to the 51 matrices and three automor-
phisms/switching key operations achieved by [74] for a similar value of φ(m) = 15, 004
and one dimension with D = 682 following a baby-step/giant-step strategy.

Finally, it must be noted that when applying a switching key, noise constraints force
the need of decomposing the coefficients of the involved polynomials in some specific base.
This is true unless we resort to the strategy of Bajard et al. [79] which takes advantage of
the CRT decomposition over the polynomial coefficients. However, this strategy cannot
be applied always, as it requires a highly composite modulo with primes of an adequate
machine size (see [5]). As this base decomposition does not straightforwardly commute
with the NTT/INTT (or CRT over the polynomial function) representation, the inverse and
direct transforms have to be applied over the polynomials. Our setting in multivariate
rings with FWHT enables a reduction on complexity for these transforms by a factor of
O(log n) in terms of elemental products; i.e., this yields a net gain factor of log n in storage
while keeping the same order of (multiplicative) computational complexity.

Efficiency/space tradeoffs:
In practical scenarios, the tradeoff between used memory and computational cost

might require a different balance with less space efficiency than the log2 n achieved by the
described strategy. Consequently, we also cover two additional strategies which lead to an
improvement of the computational cost by a factor of 2.

Strategy 2: Our first approach adds to the previous log2 n matrices those which are
associated to “diagonal” vectors in our hypercube representation of the autormorphisms

(see Figure 4); that is, we work with automorphisms {xi → xli
i , xj → x

lj
j } where li, lj ∈ Z∗4

and i, j ∈ [log2 n], being i 6= j. Going back again to the binary representation of the slots,
the additional automorphisms could be seen as the result of all pairwise XOR operations of
different vectors of the standard basis of length log2 n.

The number of needed switching key matrices is therefore increased to(
1 + log2 n

2

)
=

(1 + log2 n) log2 n
2

.

In order to calculate the associated computational cost for this strategy, we resort
to induction, working first with the odd natural numbers, and afterwards with the even
natural numbers. Let the multivariate ring Rt[x1, . . . , xl ] with fi(xi) = 1 + x2

i where
i = 1, . . . , l and l = log2 n, if we consider only the odd values of l we have:

• For l = 1, any transition can be applied with only one automorphism/relinearization
operation.
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• Assuming that l variables require k automorphisms/relinearization operations, it can
be shown that adding two variables (i.e., l + 2), k + 1 automorphisms/relinearization
operations are needed. We can graphically see this by resorting to the binary represen-
tation: moving between any two slots implies, in the worst case (consider one vector
and its ones’ complement), one additional XOR operation.

• Therefore, by induction, odd values of l require d l
2e automorphisms/

relinearization operations.

The argument is analogous for even l. First, we consider l = 2, where with only one
automorphism/relinearization operation is enough to move between any of the slots. Next,
the same reasoning as before could be applied between l and l + 2 variables, resulting in a
total of l

2 automorphisms/relinearization operations for l variables.
Taking into account both results, this strategy yields an increase in the number of

automorphisms/switching key operations by a factor of d log2 n
2 e. Hence, we can reduce by a

half the computational cost compared to our previous strategy, with a quadratic increase in

the memory requirements of (1+log2 n) log2 n
2 instead of log2 n. For instance, with n = 16, 384

this would give an increase in cost by a factor of seven and a total of 105 stored matrices.
Strategy 3: The incurred increase in space requirements by Strategy 2 might not

be acceptable for certain applications; therefore, our next approach preserves the cost
improvement, but achieving a negligible increase in the number of required matrices:
1 + log2 n matrices instead of O((log n)2).

The idea behind this approach is adding to the switching key matrices for transforma-
tions of the form {xi → −xi} for i = 1, . . . , log2 n the following one

{x1 → −x1, . . . , xlog2 n → −xlog2 n}.

As a graphical explanation, let us consider again the binary representation of the slots:
in addition to working with those XOR operations with vectors belonging to the standard
basis of length log2 n, now we can also apply the ones’ complement of every “slot” in one
operation (e.g., in Figure 4 we could directly move with one automorphism/switching key
operation from point A to point B).

Therefore, the worst case automorphism requiring l = d log2 n
2 e matrices with our

first strategy can now be computed with just one matrix. Moreover, as we know that
l − d l

2e ≤ d
l
2e for any l ∈ N, then the farthest slot position can be achieved by only

d l
2e = d

log2 n
2 e automorphisms. Consequently, we can see that with 1 + log2 n matrices, we

only need a maximum of d log2 n
2 e automorphism/switching key operations. For instance,

with n = 16, 384 this would give an increase in cost by a factor of seven and a total of 15
matrices in terms of use of memory.

9.3. Automorphisms in Multivariate Power-of-Two Cyclotomic Rings

It can be useful to expand Definition 9 to also cover more general multivariate rings,
which can be leveraged by some applications. Most of these applications consider a
general multivariate ring as the R and Rq from Definition 1, where each of the polynomial
functions are defined as different power-of-two cyclotomic polynomials fi(xi) = xni

i + 1.
Hence, analogously to the procedure we followed with multiquadratics in Section 9.2, we
exemplify these results with power-of-two cyclotomics. They can be similarly extended to
more general rings of the form xni

i + di. We refer the reader to Section 9.4 for more details.
In this section the discussed efficiency/space tradeoffs achievable with automor-

phisms on the FWHT-enabled rings will be expanded to these rings (at the cost of lacking
the faster FFT algorithms for the negacyclic Hadamard transform).
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Tradeoffs in the Size/Efficiency Of Automorphisms

We consider the ring R introduced in Definition 1; particularly, we work with
Rt[x1, . . . , xl ] where t ≡ 1 mod 2ni for i = 1, . . . , l. Analogously to our derivation in
Section 9.2, when working with an element α ∈ Rt[x1, . . . , xl ], we have the transformations

θi1,...,il (α) = θ
(x1)
i1

(θ
(x2)
i2

(. . . θ
(xl)
il

(α) . . .)) ∈ Rt[x1, . . . , xl ],

now with ij ∈ Z∗2nj
for all j.

This multidimensional structure can be seen again as an l-tuple, where each compo-
nent has ni different values, hence giving a total of n = ∏l

i=1 ni different automorphisms.
Strategy 4: Our main strategy works with ni − 1 matrices for each variable xi, where

each switching key matrix will correspond to an automorphism {xi → xli
i } for li ∈ Z∗2ni

(except {xi → xi}) and i = 1, . . . , l. This strategy yields a total of ∑l
i=1 ni − l matrices with a

computational cost of l automorphism/switching key operations. Let us assume that all the
matrices for every “univariate” change of variable have to be stored. However, the number
of required matrices per “univariate” change of variable could be further improved [74]
(that is, we could work with subsets Ai ∈ Z∗2ni

in such a way that the corresponding

automorphisms would be {xi → xli
i } for li ∈ Ai and i = 1, . . . , l).

We consider those ni = n
1
l for i = 1, . . . , l (hence being all ni equal). This gives us

several tradeoffs depending on l and n where we have l(n
1
l − 1) matrices and an increase

in the computational cost by a factor of l. Table 6 shows the number of required matrices
and the increase in computational cost for n = 16384 and several values of l. As n

1
l is not

always a valid value (that is, a power of two), the choice of ni can be optimized to achieve
the smallest possible number of automorphisms (∑ ni) such that n = ∏ ni.

Table 6. Practical space/efficiency tradeoffs of automorphisms for n = 16, 384.

l 2 3 4 5 6 7

# Matrices 256 80 52 36 34 28

# Calls to switching key (worst-case) 2 3 4 5 6 7

Conversely, Table 7 summarizes the different tradeoffs we have presented in
this section.

Table 7. Space/efficiency tradeoffs of automorphisms.

Strategy # Matrices # Calls to Switching Key (Worst-Case)

Strategy 1 from Section 9.2 log2 n log2 n

Strategy 2 from Section 9.2 (1+log2 n) log2 n
2 d log2 n

2 e
Strategy 3 from Section 9.2 1 + log2 n d log2 n

2 e
Strategy 4 from Section 9.3 ≈ n

1
l l − l l

Strategy 4 (general) from Section 9.3 ∑l
i=1 ni − l l

9.4. On the Applicability to More General Multivariate Rings

It is worth noting that all the solutions exemplified above (Sections 9.2 and 9.3) are
sketched out with negacyclic rings. In this section, we give some insights on how to extend
these results to the more general multivariate rings showcased in this manuscript.

An alternative set of polynomial ideals:
Bernstein et al. [70] propose a different non-cyclotomic ring. The authors argue that

with cyclotomic rings it is easy to have non-trivial ring homomorphisms (as the polynomial
function usually splits in linear factors to perform FFT algorithms) and a relatively small



Mathematics 2021, 9, 858 36 of 42

Galois group. Consequently, the authors propose rings of the form Zq[x]/( fp(x)), with an
irreducible polynomial function fp(x) = xp − x− 1 and p prime, where the Galois group
is the permutation group Sp with p! elements, and the modulo q is inert in the ring. Hence,
Zq[x]/(xp − x − 1) is indeed a finite field. See [80] for more details on the properties
exhibited by functions of the form fn(x) = xn − x− 1.

These polynomial functions are also interesting for our purposes, but for very different
reasons. Let K = Q(α) be a number field with α one of the roots of xn − x− 1. We know
that [80] polynomial functions fn(x) = xn − x − 1 with n ≥ 2 are irreducible, and for
2 ≤ n ≤ 100 the discriminant of fn(x) is squarefree. According to Theorem 6, this means
that K is monogenic and OK = Z[x]/( fn(x)).

Now, from Proposition 3, we have

∆K = (−1)
n(n−1)

2 (nn(−1)n−1 − (n− 1)n−1),

so it is straightforward to find coprime discriminants for different values of n.
For example, the discriminants of { fi(x)}i=2,...,7 are coprime. Therefore, we can define

a multivariate RLWE sample over the ring of integers

OK = Z[x1, . . . , x7]/( f2(x2), . . . , f7(x7))

for a multivariate number field of degree 5040 and 6 dimensions. In general, this gives
an easy way to find multivariate number fields with many variables and a small expan-
sion factor.

Operations over these rings are not as efficient as the ones with polynomial ideal
(xn − d), but still acceptable; i.e., in the worst case, multiplications modulo xn − x− 1 can
be decomposed in multiplications modulo xn − x and xn − 1, hence requiring two parallel
efficient “cyclic” convolutions, and afterwards, adding the obtained results.

Automorphisms for more general multivariate rings:
The multivariate rings introduced in Section 6 are, in general, separable but non-Galois

field extensions. This implies that the number of available automorphisms is strictly smaller
than the degree of the extension (see Corollary 4).

Corollary 4 (Corollary 4.3 from [81]). If L/K is a finite extension that is either inseparable or
not normal then

|Aut(L/K)| < [L : K],

being [L : K] the degree of the field extension.

Fortunately, this is not a problem in practice as we can make use of Theorem 11
to extend the mentioned separable multivariate number fields in Section 6 to a Galois
extension, where we have Gal(L/K) = Aut(L/K) = [L : K]; hence, automorphisms similar
to the case of power-of-two cyclotomics (see Section 9.3) can still be applied.

Theorem 11 (Theorem 4.8 from [81]). Every finite separable extension of a field can be enlarged to
a finite Galois extension of the field. In particular, every finite extension of a field with characteristic
0 can be enlarged to a finite Galois extension.

A toy example for a prime-degree field extension:

Consider the number field Q(d
1
p ) (with d > 1 and d ∈ N) isomorphic to the polynomial

ring Q[x]/(xp − d) and satisfying the conditions from Section 6 (Proposition 4). We know

that the roots of xp − d are {d
1
p , ζpd

1
p , . . . , ζ

p−1
p d

1
p }. These roots are separable, but Q(d

1
p ) is

not the corresponding splitting field, and hence Q(d
1
d ) is not a Galois field extension over

the rationals Q.
Even so, we know from Theorem 11 that this field can be extended to a Galois field

where we have a Galois automorphism group which enables “rotations” of the slots. It
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suffices to add the root ζp by means of a symbolic variable y over the cyclotomic polynomial

Φp(y) = ∑
p−1
i=0 yi, i.e., we enlarge the number field (see Theorem 11) to have Q(d

1
p , ζp) with

d and p different primes.
For this extended number field and considering a polynomial representation with

Q[x, y]/(xp − d, Φp(y)) (thanks to the field isomorphism d
1
p → x, ζp → y), we have the

chain of transformations {x → xyi, y → yj} with i ∈ Zp and j ∈ Z∗p, which enables
homomorphic “rotation” of the slots.

As an example, consider the polynomial a(x) = ∑
p−1
i=0 aixi mod xp − d. We apply the

change of variable x → xy

a(x) =
p−1

∑
i=0

aixi =
p−1

∑
i=0

aixiyi = ap−1yp−1xp−1 +
p−2

∑
i=0

aiyixi.

Consider now the following relation given by Φp(y)

yp−1 = −
p−2

∑
i=0

yi.

By applying it, we have:

ap−1yp−1xp−1 +
p−2

∑
i=0

aiyixi = −ap−1xp−1
p−2

∑
i=0

yi +
p−2

∑
i=0

aiyixi.

It is worth noting that the ring Z[x, y]/(xp − d, Φp(y)) is not, in general, the ring of

integers of the field Q(d
1
p , ζp), but instead a subring of its ring of integers. This can be

easily seen by inspecting the discriminants of xp − d and Φp(y) which are, respectively,

(−1)
p(p−1)

2 pp(−d)p−1 and pp−2. As they are not coprime we cannot assert that the ring

of integers of Q(d
1
p , ζp) is the product of Z[x]/(xp − d) and Z[y]/(Φp(y)), but if xp − d

satisfies the conditions established in Proposition 4, Z[x]/(xp − d) is the ring of integers of

Q(d
1
p ).
Consequently, when working with rings following Definition 11 in Section 6, if we

want to (1) base the security on RLWE over a general number field and also (2) make use of
the automorphisms, the reduction from Theorem 2 implies a loss in the lattice dimension-
ality; in the previous example of Z[x, y]/(xp − d, Φp(y)), we end up working with a ring
of degree p(p− 1), but being the original RLWE sample defined over a number field of
degree p. Nevertheless, we can avoid this loss by basing the security in a generalization of
RLWE called Order-LWE.

A much wider set of ring choices with Order-LWE:
Bolboceanu et al. [51] propose a generalization of RLWE which, instead of considering

the ring of integers OK and its dual O∨K , relies on the subrings called orders O and their
corresponding duals O∨ to define the underlying ideal lattices.

For a number field K of degree n, an order O in K is a subring of OK containing a
Q-basis of full-rank n of K such thatO⊗ZQ = K. The ring of integers is the maximal order
of K.

Order-LWE also presents worst-case hardness with respect to short vector problems,
but in the invertible-ideal lattices of the considered order [51].

This result enables a relaxation of many of the restrictions imposed for the rings in
Sections 5 and 6, by directly basing their hardness on Order-LWE. The previous example

with the field Q(d
1
p , ζp) and order Z(d

1
p , ζp) can base its hardness on a lattice of dimension

p(p− 1) by considering Order-LWE.
The use of the polynomial function Φp(y) seems to contradict our initial requirements

regarding the desired form of the polynomial ideal (see Section 1). However, for efficient
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polynomial products we can substitute Φp(y) by yp− 1 by just multiplying both polynomial
elements and polynomial function with the term y− 1.

We plan to extend our results and optimizations to the corresponding relaxations
offered by Order-LWE. In this direction, this work provides a wide set of concrete ring
instantiations which could be considered to analyze the hardness of Order-LWE.

10. Improving on the Packing Capacity of Complex Numbers

We have addressed packing of integer numbers in Section 9, but complex num-
bers are more difficult to efficiently pack. Nevertheless, we can also leverage the mul-
tivariate structure to represent the complex arithmetic in a much more efficient way
than previous recent approaches. Knowing that a total of n/2 complex slots can be
packed over the ring Z[z]/(1 + zn), Cheon et al. [39,82] expand these results to the bi-
variate case Z[x, y]/(1 + xnx , 1 + yny), packing a total of nx

2
ny
2 = n

4 complex slots. Gen-
eralizing this strategy to l dimensions, packing is restricted to n

2l complex slots (where
n = ∏l

i=1 ni) when working over multivariate rings as Z[x1, . . . , xl ]/(1 + xn1
1 , . . . 1 + xnl

l ).
Consequently, this strategy leaves a huge gap of unused potential slots when transitioning
to a multivariate ring. Additionally, while this strategy was introduced for a weak instance
of multivariate RLWE (i.e., vulnerable to BCV attack), a similar approach works for rings
following Definition 11.

Nevertheless, it is possible to achieve the same number of complex slots as the uni-
variate counterpart (that is, n/2 complex slots), effectively substituting the multivariate
complex embedding map (as used in [39]) by its univariate version. Let us consider the
ring Z[x1, . . . , xl ]/(d1 + xn1

1 , . . . , dl + xnl
l ), and choose one of the l independent variables to

work with the canonical embedding map, x1 without loss of generality. If we have a total of
n/2 complex numbers to pack in one multivariate polynomial plaintext, we organize them
as a set of n

n1
complex vectors with length n1/2 (n1 is chosen as a power of two). For each

complex vector we use the encoding from [82], defined as the composition of the inverse of
the complex embedding map and a discretization. This yields n

n1
polynomials belonging to

the ring A = Zt[x1]/(d1 + xn1
1 ) for an adequately chosen modulo t.

Coming back to the multivariate ring representation, we can consider the new message
as a polynomial in the ring Zt[x1, . . . , xl ]/(d1 + xn1

1 , . . . , dl + xnl
l ). Hence, we gather all the

polynomials in A as the different coefficients of the ring A[x2, . . . , xl ]/(d2 + xn2
2 , . . . , dl +

xnl
l ), and we define encoding/decoding matrices working over di + xni

i polynomial func-
tions (i.e., α-generalized INTTs/NTTs over t, see Section 8) for i = 2, . . . , l, consider-
ing the identity matrix In1 of size n1 × n1 for x1 and the polynomial function d1 + xn1

1 .
Using the vector representation of the plaintext polynomial, the encoding/decoding is
performed by means of one matrix multiplication which can be efficiently realized with
FFT-like algorithms.

This method can pack a total of n/2 complex slots while preserving the properties
for the automorphisms (whenever we enlarge the number field to a Galois extension, see
Section 9.4) and also removing the gap of the method used in [39], where the fraction of
used slots decreases exponentially with the number of dimensions.

Finally, it is worth looking at the case where the considered multivariate rings are
those from Definition 9 in Section 5. In this case, the polynomial ideals have the form
(di + x2

i ), so the variable x1 can directly represent the imaginary unit, therefore perfectly
mapping the complex arithmetic without the need of applying the canonical embedding
map over the polynomials in A.

11. Conclusions

This work addresses the main security flaw of the multivariate RLWE problem re-
vealed by Bootland et al. For this purpose, we have defined and parameterized practical
and secure instantiations of the multivariate Ring Learning With Errors problem, supported
by the extended reduction of the original proof by Lyubashevsky et al. [3,4]. The proposed
instantiations are resilient against BCV attack to m-RLWE [25], while still preserving all
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the efficiency improvements that m-RLWE brings. We have shown how to find prac-
tical parameters for the proposed instantiations to make them both secure and usable,
therefore enabling improved space-time tradeoffs in many practical applications, com-
prising the most critical fundamental lattice operations (faster polynomial multiplications
through α-generalized Walsh–Hadamard Transforms), efficient cryptographic operations
such as computation of automorphisms, relinearizations, packing, unpacking and homo-
morphic slot manipulation, and, consequently, bootstrapping, and optimization of high
level applications in encrypted approximate arithmetic, complex processing, and efficient
multidimensional signal manipulation.

These contributions, combined, showcase the power and versatility of secure instanti-
ations of the multivariate RLWE problem, and open up new research paths and strategies
for realizing efficient (fully) homomorphic encryption.
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