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Abstract: The steepest descent (or ascent) algorithm is one of the most widely used algorithms in
Science, Technology, Engineering, and Mathematics (STEM). However, this powerful mathematical
tool is neither taught nor even mentioned in K12 education. We study whether it is feasible for
elementary school students to learn this algorithm, while also aligning with the standard school
curriculum. We also look at whether it can be used to create enriching activities connected to
children’s real-life experiences, thus enhancing the integration of STEM and fostering Computational
Thinking. To address these questions, we conducted an empirical study in two phases. In the first
phase, we tested the feasibility with teachers. In a face-to-face professional development workshop
with 457 mathematics teachers actively participating using an online platform, we found that after a
10-min introduction they could successfully apply the algorithm and use it in a couple of models.
They were also able to complete two complex and novel tasks: selecting models and adjusting
the parameters of a model that uses the steepest descent algorithm. In a second phase, we tested
the feasibility with 90 fourth graders from 3 low Socioeconomic Status (SES) schools. Using the
same introduction and posing the same questions, we found that they were able to understand the
algorithm and successfully complete the tasks on the online platform. Additionally, we found that
close to 75% of the students completed the two complex modeling tasks and performed similarly to
the teachers.

Keywords: elementary mathematics; STEM; mathematical modeling; computational thinking; steep-
est descent algorithm

1. Introduction

A large part of elementary school education is dedicated to teaching mathematics.
Together with learning to read and write, mathematics is one of the building blocks of
elementary education. Numeracy and literacy therefore account for most of the time spent
at school. In the case of mathematics, a large portion of this time is dedicated to learning
about and mastering algorithms, such as the four operations and operations with fractions.
Although arithmetic algorithms are simple and consist of only a few rules, learning them
takes several years, with many students struggling to learn them properly [1,2].

Much of the difficulty is due to what is known as evolutionary mismatch or the
evolutionary trap [3–6]. Our brain is the product of a long process of evolution that has
taken place over millions of years. In this time, it has evolved highly efficient mechanisms
to learn the knowledge and skills required for the life of hunter-gatherers. These are the
learning mechanisms of imitation, play, storytelling and teaching, which allow learning to
walk, speak, collect food, hunt, cook, fight against other bands, and maintain a productive
social life in our own small tribe. These types of knowledge and skills are called biologically
primary [7]. However, due to the enormous advances in cultural evolution over the last
5000 years, today we need students to learn completely new things, often of a totally
different nature and some of them very counter-intuitive. Students also need to learn
to live and socialize with thousands of strangers. They have to learn to read and write,
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something for which the brain is not adapted, requiring intensive and guided practice
and leading to a huge transformation of different areas of the brain [8,9]. We also need
them to learn abstract concepts that are totally different from the ones acquired by their
ancestors, such as positional notation, negative numbers, fractions, and algebra. These are
considered biologically secondary knowledge [7]. For this reason, students need very well
designed and tested lesson plans in order to guide them along proven learning trajectories.
Connecting these abstract concepts with concrete elements of every day hunter-gatherer
life can be a fruitful didactic strategy [10]. This includes connections between numbers
and objects, or between numbers and positions. By doing so, adding and subtracting
becomes grouping or ungrouping, or even a navigational activity. Another example is the
connection between mathematical modeling and building a board game such as chess,
where beads can be used to represent agents.

A great deal of experience has been accumulated over the last 600 years regarding how
to teach these new abstract concepts and their respective algorithms. In the history of math-
ematics education, the teaching of algorithms plays a central role; particularly algorithms
with numbers and practical applications. For example, the arithmetic textbook Liber Abaci
written in 1202 by Fibonacci [11] presented algorithms for performing calculations without
the aid of the abacus, using instead the then novel Hindu Arabic positional notation. This
notation, which is the one we use today, represents the numbers and algorithms used
with abacuses in a more abstract way. Later, in 1478, the Arithmetic of Treviso [12], the
first printed arithmetic textbook, teaches arithmetic algorithms and how to apply them to
business practice. It was a book with real-life applications, which was highly relevant to
students and of great interest for the practical training of merchants. Filled with exercises
based on business transactions, it set a precedent for what is perhaps still the most common
type of exercise found in arithmetic textbooks.

However, new advances in science and technology require the introduction of new
concepts and ways of Computational Thinking [13–15]. In recent centuries, the number
of mathematical concepts and algorithms invented has grown exponentially. They are
used in several practical and engineering problems. For example, linear programming
algorithms, spectral methods, Kalman filters, neural networks, text mining algorithms, and
many others are used in science and engineering. It is a dynamic process that continues to
accelerate and put enormous pressure on an already overcrowded curriculum. However,
these scientific and technological advances also make some algorithms almost obsolete.
With a calculator or a smartphone, we can calculate everything that is needed in com-
merce. Students therefore need not be very skillful in using an abacus or basic arithmetic
algorithms for performing long divisions with big numbers. This situation frees up time
to introduce new concepts and algorithms that are increasingly important in STEM and
Computational Thinking.

Which new concepts and algorithms have been included recently on the curricula
of different countries? One important case is Mathematical Modeling. Nowadays, it is
considered one of the most important mathematical skills. This ability was included in the
2003 PISA Framework [16] and the Common Core State Standards for Mathematics in the
USA [17]. Developing and using models is also a basic practice in the Next Generation
Science Standards (NGSS) [18], and delimiting and defining the system under study
and making a model of it is one of the core crosscutting concepts for K12 Education in
NGSS [19,20]. Building models is a basic thinking activity [21]. We are continuously
imagining landscapes, situations, relations, and using them to run simulations in our heads
in order to make decisions and act upon them. Most of these models are implicit. In
mathematical modeling, we try to make them as explicit as possible, specifying their main
components and the relations between them. For example, if you are planning to build a
bridge, you start by imagining different possible bridges and the traffic across them. This
is normally an implicit process that is done automatically. If you have more time and are in
charge of designing the bridge, then you might try to imagine its components and how it
will respond to traffic loads, water flow, and wind. You therefore start a more deliberate
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and explicit process. You can build a small toy bridge, test it, and measure its response
to different stresses. You then have to think about how to scale it. Here it is critical that
you try to determine the relations between the different components, testing them on your
toy model and eventually on a more realistic model. This whole process, from an initial
implicit model to an explicit model with mathematical specifications, is the mathematical
model building process that allows us to make better decisions. It is a key ability that we
need our students to learn and start using systematically in their daily lives.

Why steepest descent algorithm? Why with modeling? The steepest descent is one of
the most widely used algorithms in applied Mathematics and STEM. In Mathematics it is
at the core of Optimization and central to Dynamical Systems. It is critical in Computer
Sciences for Machine Learning and Natural Language Processing. In Physics it is used to
estimate trajectories with Scalar Potentials such as Gravitational and Electric Potential. In
Chemistry and Biology, it is the core idea behind Chemotaxis and Tropisms. In Economics it
is used in Decision Theory and Econometrics. It is also a common tool used in mathematical
modeling and engineering. Several popular mathematical models are based on finding
trajectories of particles or agents that optimize scalar potentials. This means that at each
moment the next movement of the particle or agent is in the direction of steepest descent
or steepest ascent. It is a powerful Computational Thinking tool.

Why, then, is it not used in K12 education? Steepest descent is normally introduced
in Differential Calculus courses. This is because minus the gradient gives the direction
of steepest descent when a linear tangent approximation to the scalar potential is used.
However, in a discrete world, where the potential function is discrete or approximated
using a discrete function, it can be formulated to move to the neighboring cell with the
smallest (or highest) value. In this case, there is no need for differential calculus and the
algorithm can be introduced in kindergarten or elementary school. According to [22],
“Mathematical modeling can be particularly accessible when the resulting mathematical
field at the heart of the development is in the area of discrete mathematics” [22] (p. 102).
Moreover, why introduce this algorithm in primary education? Because in addition to its
growing importance and wide applications in STEM, it offers an excellent opportunity to
easily connect with the natural interests of students at that age. As we will see later, this
algorithm can help to model the behavior of different animals, which is very attractive to
children. In this way, this algorithm makes it possible to establish a meaningful bridge
between mathematics and biology and behavioral sciences. As [23] suggests, one powerful
way to motivate students to do math and science is using them to understand animal
and social issues. Thus, the use of steepest descent algorithm used for modeling animal
behavior illustrates how elementary school mathematics can extend its field of application
beyond typical commercial transactions and allows elementary school students to know
and appreciate the power of mathematics to understand better other phenomena that occur
in their daily life and are very meaningful to them.

Our research question therefore asks whether it is feasible for elementary school
students to learn the steepest descent algorithm and use it for modeling, while align-
ing with the standard school curriculum. Can it be done with activities connected to
children’s real-life experiences and that enhance the integration of STEM and foster Com-
putational Thinking?

2. Materials and Methods

We use four methodological strategies: applying a specialized framework for mod-
eling, designing steepest descent activities with real-life models based on the interests
of elementary school students, testing the activities during a professional development
workshop for teachers, and testing the activities with fourth grade students. However, it is
important to highlight that our goal is to test the students in order to answer the research
question. The plan to test the teachers is designed as a mechanism to assess to what extent
the exercises were appropriate, not too complex, and to have a benchmark to compare the
performance of students.
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The first methodological strategy is the use of a specialized framework for introduc-
ing mathematical modeling. This is the Use-Select-Adapt-Build (USAB) framework of
Mathematical modeling [24,25]. This is a framework designed to introduce Mathemati-
cal Modeling skills in the K-12 school system. The strategy is to emulate how scientists,
engineers, and other professionals do mathematical modeling. Some people have built
models from scratch, but this is very uncommon. Normally, experts have been working
for several years on existing types of models. We therefore need to know the main types
of mathematical models that are used. There are also certain specific patterns and kinds
of techniques that are used by experts. We need to identify these and then teach them to
our teachers. Based on what the experts do, we have proposed a strategy for teaching
mathematical modeling. This strategy consists of four stages [23]. The first stage is to make
students USE certain types of typical and fertile [18] mathematical models; the student
learns certain ways of thinking with models that can be used in a wide range of situations.
Once the student knows how to use a model and has used it several times, then the second
stage begins. During this stage, the student has to SELECT the most appropriate model
from a set of two to five options. In the third stage, they have to ADJUST the parameters
in a model in order to best fit a situation. In the fourth stage, they have to BUILD a new
model or adapt an existing model for a new situation.

The USAB framework is similar to other strategies that emphasize teaching modeling
starting with having students know and use some models. For example, according to [26],
the English version of the Swedish curriculum for the gymnasium, “The school in its
teaching of mathematics should aim to ensure that pupils develop their ability to design,
fine-tune and use mathematical models, as well as critically assess the conditions, oppor-
tunities and limitations of different models” [26] (p. 61) and “develop their knowledge
of how mathematics is used in information technology, as well as how information tech-
nology can be used for solving problems in order to observe mathematical relationships,
and to investigate mathematical models” [26] (p. 61). Another example that recommends
starting using models is [27] “In teaching modelling, there are obviously two things that
you have to do, very basic kinds of questions. You have to take some models that have
been created and have been known to be successful and students have to study those
models, and understand what makes them work, and think about what went into their
creation and the way they were formulated and their success. Also, students have to take
situations for themselves and start creating models of those situations, make decisions
of what you have to keep and what you can afford to ignore, and how you are going
to test whether you really succeeded” [27] (p. 114). It is particularly important to start
knowing and using a “core set of models” [28] that can be viewed as a multiplicity of
lens. “Mastery of models improves your ability to reason, explain, design, communicate,
act, predict and explore” [28] (p. 1). Moreover, the USAB strategy is well adapted to the
developmental stages that are found in children thinking and their discovery process in
elementary math activities [29,30]. In several studied mathematical tasks, children start
Using a simple strategy, but in the process, they change it slightly, and starts a process of
Selection, and Adaptation of strategies, and then discovering or Building completely new
strategies. This learning trajectory is generated by a planned learning goal, together with
designed learning activities [31]. The learning process is also related to Van Hiele levels of
reasoning [32]. In the Van Hiele levels of reasoning, Use would be level 2, Select and Adapt
could be associated to level 3, and Build is a more complex level that could be associated
with level 4.

On the other hand, it is essential that the models introduced are really fertile or
generative. They must also be adaptable so as to include more details and complex
phenomena in higher grades. In this way, every year students will review the same types of
model but using more sophisticated mathematics and more parameters in order to account
for more realistic situations. This strategy will ensure that they incorporate particular
strategies and ways of thinking that can be used in building important and widely used
types of mathematical and computational models.
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The second methodological strategy is the design of steepest descent activities as a part
of mathematical modeling. We designed four items using models of real-life experiences
that could be of great interest to students: locomotion of bacteria [33,34] and locomotion
of dogs. The first item has 3 questions. The goal is to test the basic understanding of the
scalar potential model and the steepest descent algorithm. However, in the example, we
use the steepest ascent version. In each question, the user has to apply the Steepest Ascent
algorithm to generate the trajectories of three bacteria as shown in Figure 1. In this item,
the user has to Use the model. At each step, the user therefore has to consider the rules
of an already precisely described model and the current position of the bacteria in order
to work out their next position. This mental process must be repeated until the bacteria
cannot continue ascending. Thus, the user has to manage several thinking processes, all of
which correspond to the Use component of the USAB framework.
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Figure 1. Screenshot of Item 1. Note that this item has three questions. The user has to mark the path
that the bacteria will follow, which always move to the neighboring cell with the highest number (the
number represents the amount of nutrients), until they no longer find a higher number.

This item has what is called an agent-based model. In this particular case is a model of
the behavior of bacteria. We follow here [23] that recommends starting introducing science
with what naturally attracts children “ . . . we should consider focusing school science on
what has dismissively been termed the “soft” sciences, namely animal behavior, ecology
and psychology . . . the advantage of this lies precisely in the fact that these disciplines
deal predominantly with social behavior, and would thus capitalize on children’s natural
facility for understanding the social world” [23] (p. 183). Similar agent-based models
are very common in social sciences. For example, the agent-based models of population
migration [35] where agents live in a sugar-space board, moving from cell to cell search-
ing unoccupied places having the most nutrient (sugar). Nobel Prize winner Thomas
Schelling [36] uses similar agent-based models to understand the very important and
nowadays critical phenomenon of social segregation.

Figure 2 shows the solution. There are three trajectories. The user has to consecutively
click on the right cell in order to generate the trajectories.
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Figure 2. Correct answers to Item 1. There are three trajectories, one for each question.

In the second item, the user again has to apply the Steepest Ascent algorithm. However,
this time it is to generate the trajectory of a dog (Figure 3). This is a direct generalization of
the previous model. It has just two changes. Firstly, there is a change in the agent. Instead
of bacteria, we have a dog. Secondly, there is a change in the meaning of the potential
function. Instead of nutrients for bacteria, the scalar potential now represents the intensity
of the smell. This again involves the Use component of the USAB modeling framework,
with the student having to consider a small adaptation in how the numbers on the board
are interpreted.
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Figure 3. Screenshot of Item 2. Here, the user has to connect the blue cell and then consecutively
connect the cells through which the dog passes, considering that it always moves to the neighboring
cell with the highest number (the number represents the intensity of the smell), until it no longer
finds a neighboring cell with the highest number (i.e., where the bone is).
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Figure 4 shows the corresponding solution. The user has to consecutively click on the
right cell in order to generate the correct trajectory.
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Figure 4. Correct answer to Item 2.

The third item asks the user to select a model (Figure 5). This represents a higher-order
thinking skill. The user has to mentally simulate the trajectories for both models. Then,
at some point, the user has to realize a new interpretation of the problem. During the
thinking process, the user has to discover that the problem translates to the following: on
which board are there two local maximums? This item corresponds to the Select stage of
the USAB framework.
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Figure 5. Screenshot of Item 3. In this item, the user has to consider the same rule of motion as
in Item 2 and then connect the board that represents a courtyard where two bones are hidden in
different places.
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The fourth item asks the user to adjust the parameters of a model (Figure 6). This item
also requires higher-order thinking skills, where several options have to be tested. Here,
the user has to realize that the problem can again be interpreted as having to find local
maximums. Once they discover that the board has two local maximums, the user has to
change the number in one of them in order to make sure that all trajectories will lead to the
desired location. This item corresponds to the Adjust component of the USAB framework.
This item requires a deeper understanding of the model. The subject has to adapt (change)
part of the model in order to generate a certain behavior of the agent. The agent is using
steepest ascent, but this is just one part of the model. The other part is the board with the
numbers. The activity asks to select one cell in order to change there the number and thus
obtain a global desired behavior. In other words, the dynamical system will have just one
fixed point. This is a deeper type of question posed to a dynamical system model. Typical
questions of this sort are the following: under what conditions a unique fixed point will
exist, or under what conditions the system will reach a stable equilibrium [36], or under
what environment a specific pattern will emerge [36,37].
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Figure 6. Screenshot of Item 4. Here the user has to consider the same rules of motion as in Items
2 and 3 and then connect the cell in blue whose number should be changed in order for the dog to
always find the bone located at the yellow cell no matter where it starts.

In all 4 of the items, the numbers in the cells are all natural numbers below 50. The
items require the user to do a series of number comparisons. This is a typical learning
objective on the elementary mathematics curriculum. For fourth graders, the numbers
could be larger than 50, or include fractions, decimals, or additions and subtractions of
integers. This means that the exercises can be adapted to include more complex numbers
and expressions based on the grade level and learning objectives. Nevertheless, for the
present study, all numbers are integers between zero and 50.

The four items measure some of the learning objectives that are typically found in the
number strand of the curriculum, as well as the students’ mathematical modeling skills.
Furthermore, they also introduce the user to computational thinking.

The third methodological strategy is to test the idea with teachers. To do so, we
designed a Mathematical Modeling seminar for teachers that included the steepest de-
scent algorithm. The seminar focused on why we should teach mathematical modeling,
explaining that it has been included on the international PISA test since 2003, as well as
on the TIMMS test for 4th and 8th grade. The seminar provided a historical overview of
Mathematical Modeling, presenting Archimedes’ Method [38] and ancient Egyptian board
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games [39]. The seminar then focused on what has changed with the increasing use of
computers and computer simulations. It argued that mathematical models are enhanced by
these technologies, leading to a huge increase in the ability to predict what will happen in
different scenarios and therefore improve decision-making. Thus, traditional mathematical
skills must be complemented with the knowledge that is needed to detect patterns, as well
as to select and adjust mathematical models. The seminar included a 90-min workshop
during which teachers were introduced to several models. The workshop included a
10-min introduction to the steepest descent algorithm used in said models. At the end of
the workshop, we asked the participants to answer the previous four items on modeling
using their personal devices (smartphone or tablet). Teachers were shown how to login
to the ConectaIdeas platform [40,41] and how to generate a trajectory. During the last
15 min of the workshop, the teachers connected their devices to the Wi-Fi, logged in to the
ConectaIdeas platform, and answered the four items.

The fourth methodological strategy was testing the same activities with elementary
school students. Ninety fourth graders (51 boys and 39 girls) from three different schools
participated in a 90-min session on mathematical modeling and the steepest descent
algorithm. The students were given the same 10-min introduction that was delivered
during the teacher workshop. The students then had to answer the same four items using
the ConectaIdeas platform. We studied whether they were able to understand the steepest
descent algorithm and use it to understand modeling with scalar potentials, as well as
looking at the extent to which they were able to solve the more complex items.

In all these items, the model is the board and the rules (the algorithm) to move the
agent. This is typical of agent-based models [35–37,42]. In the first task, students have to
use the model. This means understanding that there is a world modeled as a board, with
cells with numbers that represent nutrients, and an agent that moves following certain
rules or algorithm. Then, as the second task, students have to use or apply the model to a
new situation, where there is another agent and the numbers on the board have a different
meaning. In the third task, students have to understand moored deeply the situation and
select the model that represents it. All these tasks require modeling, but in increasing
order of complexity and according to the need to align to typical development of children
thinking [29,30]. Thus, the strategy proposed to teach modeling is that first the students
have to know and understand several basic models. This is similar to what [28] calls a core
set of models. They are multiple lenses to view and understand nature. In this paper, we
propose one such core family of models. On the other hand, as [28] suggests, we promote
the many model thinking approach. We propose that students learn to select models and
adjust them to better fit a real-world situation.

3. Results

The face-to-face seminar attracted almost nine hundred teachers. Most of them also
attended the mathematical modeling workshop. The workshop was well evaluated by the
teachers. A total of 130 teachers answered a written survey. The average satisfaction of the
teachers was 5.7 on a scale of 1 to 7, where 1 is completely dissatisfied and 7 is completely
satisfied. They appreciated the modeling exercises for different grade levels and with
practical examples. They also valued the association of mathematics with experiences and
areas that they had never thought could be related to mathematics. However, the biggest
concerns were how to evaluate this new modeling skill.

Not all of the teachers brought a device that could connect to internet and the Conec-
taIdeas platform. We received responses from 457 teachers: 175 male and 282 female
teachers. Virtually all of the teachers who answered at least one item went on to complete
all four (Table 1). However, there may have been teachers who had suitable devices but
chose not to respond. The data is in Supplementary Materials.
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Table 1. Percentage of teachers and students who answered each item.

Subjects N % Item 1 % Item 2 % Item 3 % Item 4

Teachers 457 99.6 99.3 98.9 98.9
Students 90 42.2 95.6 76.7 72.2

In the case of students, we contacted eight schools that satisfied three conditions: (a)
School must be classified as a low socioeconomic status school according to the official clas-
sification of the Ministry of Education. (b) School must be located within the metropolitan
region. (c) At least one teacher of the school had attended the seminar. Five schools agreed
to participate in the coming month. The first three schools that had available a computer
lab were selected. A total of 90 fourth-grade students participated (51 boys and 39 girls).
The majority of students answered all of the items, with the exception of Item 1 (Table 1).
Only 42.2% of the students answered Item 1. However, 95.6% of the students answered
Item 2, which is very similar to Item 1 and has the same level of difficulty. Item 1 was a
basic item used mainly to check understanding and how to use the platform.

The teachers and students’ performance was well above chance (Table 2). The first two
scores (computed as the percentage of correct answers) are well above random selection.
For Item 1, each of the three questions has many possible answers. Even if only empty
neighboring cells are considered, there are eight options for the first move alone. Therefore,
the probability of randomly choosing the correct option is just 1/8. This is followed by the
second move, where the probability of randomly choosing the correct option is again 1/8.
The probability of randomly getting the 2 moves right is (1/8)2. With three movements, the
probability decreases to (1/8)3. The probability of randomly getting all three questions right
in 3 moves each is (1/8)3(1/8)3(1/8)3 = 0.000000008. This means that choosing neighboring
cells at random gives an expected score of 0.0000008 points. The real expected score is
even lower since some trajectories are longer than 3 moves. Thus, in practical terms, the
probability of answering correctly by chance is zero. Similarly, for Item 2 the expected score
is 0.19 points when choosing at random. For Item 3, selection by chance gives 50 points.
This means that the teachers and students in our study scored above chance with a 95%
confidence level. The closest to chance is Item 3. However, the scores minus the Confidence
Interval (CI) width do not hit the chance score. Therefore, the score is above chance with a
95% confidence level. Interestingly, the students performed significantly better than the
teachers on Item 3 (Figure 7). This is indeed the only item where students did better than
teachers. However, we have to consider a critical fact: that only 76.7% of the students
answered this item, compared with 98.9% of the teachers. Item 4 has 5 options. Therefore,
the expected score is 20 points when choosing at random.

Table 2. Average score by teachers and fourth grade students.

Subjects Item 1 Item 2 Item 3 Item 4

Teachers 52.3 59.7 60.8 56.8
Students 43.2 49.7 77.5 50.1
Chance 0 0.19 50 20

The response times for the teachers was almost twice that of the students (Table 3).
This is because the teacher data includes a number of very long response times. Some
teachers opened the question during the workshop and answered them once the workshop
had finished. In the case of the students, they all responded during the session. Item 1 takes
a longer time to answer because it has three questions, each of them requiring a separate
trajectory. Item 3 and 4 take less time to answer because they do not require a trajectory.
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Table 3. Average response times (in seconds) for each item.

Subjects Item 1 Item 2 Item 3 Item 4

Teachers 730 537 204 140
Students 478 219 78 79

4. Discussion

There are many algorithms that are taught in elementary mathematics. Most of them
stem from previous advances in mathematics and technology, such as the abacus and
the positional system. Nevertheless, today there are a number of new algorithms that
are particularly relevant to more modern applications. The steepest descent (or ascent)
algorithm is an extremely popular and useful algorithm in STEM and Computer Sciences.
However, it is not taught in the K12 school system. Our research question therefore looked
to determine whether this powerful algorithm and its use in mathematical modeling can
be learned by elementary school students. In this study, we have implemented a practical
experience of mathematical modeling with scalar potentials using this algorithm. Following
a 10 min introduction, we have found that teachers and fourth grade students were able to
understand and apply the algorithm to a series of an increasingly complex models. The
users started by directly applying the models, before moving on to selecting and adjusting
said models. These are more complex and advanced modeling tasks that require less direct
and more creative mathematical thinking.

Item 3 requires users to select a model that, when applying the steepest ascent algo-
rithm, generates the desired behavior. This task was not similar to the ones used in the
introduction. It was completely new to users. It requires them to mentally simulate the
dog’s behavior in both models and generate the corresponding trajectories. Furthermore,
the user can also translate the problem to another problem: determining in which model
there are two local maximums. Of the teachers, 98.9% answered this problem, with an
average score of 60.8 points. In the case of the students, 76.7% of them answered the
problem, with an average score of 77.5 points. In both cases, the scores suggest that the
users understood the problem since they are statistically above chance. While the scores
might also suggest that the students understood the problem better than the teachers, we
have to consider that just over a quarter of the students failed to answer. Furthermore,
practically all of the teachers answered said item.

Item 4 also proposes a completely new situation. It is not directly related to the initial
training nor to the first two items. Here, the user is given five options on the board where
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they can modify the value in the respective cell. In each case, the user must think about the
impact it will have on the dog’s behavior and its corresponding trajectory, regardless of
wherever it starts. This means mentally exploring a huge number of possible trajectories.
Simulating them all is not possible given the capacity of the working memory of each user.
Even if the subject is writing them down, it would take a great deal of time. The way to
solve the problem is to imagine that it boils down to finding a way to make sure the board
has only one local maximum. This requires a leap in the conception of the problem. Of
the teachers, 98.9% answered this item and scored an average of 56.8 points, and 72.7%
of the students answered the same item and managed an average score of 50.1 points. In
both cases, the scores are far above chance. Furthermore, the students’ average score is
statistically equal to the teachers’ average score. However, again it must be considered that
just over a quarter of the students did not answer this item.

Items 3 and 4 test a computational way of thinking. Students must imagine that the
world is modeled on a board or array with discrete cells, containing numbers that represent
nutrients, and they must conceive the behavior of organisms as if they were automata
that follow precise rules. The results show that in this computational representation, they
manage to think of changes in the environment as changes in the numbers of the cells.
Therefore, students begin to model behavior in a fully computational way.

The activities were an enriching experience that modeled and applied the steepest
descent algorithm to everyday problems that are of interest to the students. Children are
naturally attracted to animals and their behavior. One activity is about the navigation
of bacteria. Bacteria are a familiar topic for the students as they learn that millions of
them live and move within their bodies; some helping with digestion, while others cause
diseases. Another activity is about dogs and their sense of smell. This is undoubtedly
the closest animal to children. Understanding how the dog moves when it looks for food
using its sense of smell is an activity that is very close to the students’ daily lives. In both
cases, mathematics helps them understand phenomena that they experience every day,
and that go beyond the arithmetic exercises typical of school textbooks that are largely
circumscribed to transactions in commerce. These are enriching activities that initiate
students in modeling social behavior. This is a rich and growing field. Ref. [42] reviewing
social models of Anasazi, an ancient Native American culture, states that “a promising
approach to this general problem is ‘agent-based modelling’, which populates specified
spatial landscapes with agents that assess the landscape and behave according to a set
of decision rules” [42] (p. 567). Another example of agent-bases modeling is a model of
the birth and dissemination of large-scale societies in Afroeurasia during 1500 BCE–1500
CE [43]. The authors developed an agent-based model that try to explain how human
societies evolved from small groups to the huge anonymous societies of nowadays. Another
set of such models are the ones proposed by Nobel Prize winner Thomas Schelling to study
segregation, a critical social problem that we have to understand in order to be able to deal
with it.

One critical challenge in STEM education is integration [44]. However, one of the most
powerful thinking tools that the experts use for Mathematical Modeling across disciplines
is the scalar potential. It is used in physics (gravity and electromagnetism), chemistry
(chemotaxis), and biology (tropisms of microorganisms, bacterial chemotaxis) [45,46].
Here, we have shown that by using steepest descent algorithm, this tool can be taught to
elementary school students integrating biology with mathematics.

Additionally, the activities can be perfectly aligned to the requirements of the current
curriculum, both for Mathematics and Science. They can be easily adapted to be taught
using different media: inside the classroom on paper or whiteboards, outdoors in school
yards, or on students´ smartphones. Our results show that it is feasible to introduce the
algorithm in elementary schools.
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5. Conclusions

We conducted an experience with 475 teachers and then repeated exactly the same
experience with 90 fourth-grade students. In both cases, the users answered 4 items
containing a total of 7 questions. We found that in both cases there is an understanding
of the models and the algorithm. Furthermore, on two completely new items for teachers
and students, we found empirical evidence that suggests they were able to generalize
and gain insight. This is a particularly encouraging finding that answers the first research
question. It suggests that these powerful STEM concepts and tools can be easily introduced
into the school system. In other words, despite the potential difficulties foreseen by the
evolutionary trap, students can quickly understand this algorithm in navigation problems.
One possible explanation is that the navigation problem that organisms solve by using
local information from their environment to move to where there are more nutrients or
intensity of nutrient odors is, ultimately, a basic foraging problem that all animals and our
ancestors have repeatedly solved for survival. In this sense, the steepest descent (or ascent)
algorithm is equivalent to a navigation rule for which our brain is very well adapted.

Additionally, to answer the second research question, we introduced this algorithm
in activities that mathematically model real-life situations that are of great interest to
fourth graders. These are activities that promote the integration of STEM; in this case
mathematics and biology. Students can do similar examples integrating mathematics with
other sciences and engineering. Moreover, the steepest descent algorithm is a powerful
example of Computational Thinking. It is a way of thinking and modeling the world with
an important impact on a great variety of problems. It is also at the core of two pillars
of Computational Thinking: Machine Learning and Computational Modeling [14,15].
Moreover, we have introduced agent-based that moves in a spatial domain. These are
really very ancient types of models: “Board games are a singular human construct, and
were common feature on the early Egyptian dynasties (3000 B.C. and earlier) [37] (p. 22).
As [37] highlights board games are very important to model the world: “Board games are
not usually accorded the same primacy as numbers, but to my mind they are an equally
important cornerstone in the scientific endeavor. In particular, I think board games, as well
as numbers, mark a watershed in human perception of the world” [37] (p. 202).

We can therefore conclude that introducing the steepest descent (or ascent) algorithm
is both feasible in elementary education and attractive to students, while also allowing
greater integration in STEM and successfully promoting Computational Thinking.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/math9111197/s1.
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