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Abstract: In this paper, a modified Rao-2 (MRao-2) algorithm is proposed to solve the problem of
optimal power flow (OPF) in a power system incorporating renewable energy sources (RES). Quasi-
oppositional and Levy flight methods are used to improve the performance of the Rao algorithm. To
demonstrate effectiveness of the MRao-2 technique, it is tested on two standard test systems: an IEEE
30-bus system and an IEEE 118-bus system. The objective function of the OPF is the minimization of
fuel cost in five scenarios. The IEEE 30-bus system reflects fuel cost minimization in three scenarios
(without RES, with RES, and with RES under contingency state), while the IEEE 118-bus system
reflects fuel cost minimization in two scenarios (without RES and with RES). The achieved results of
various scenarios using the suggested MRao-2 technique are compared with those obtained using five
recent techniques: Atom Search Optimization (ASO), Turbulent Flow of Water-based Optimization
(TFWO), Marine Predators Algorithm (MPA), Rao-1, Rao-3 algorithms, as well as the conventional
Rao-2 algorithm. Those comparisons confirm the superiority of the MRao-2 technique over those
other algorithms in solving the OPF problem.

Keywords: modified Rao algorithm; renewable energy sources; fuel cost minimization; optimal
power flow

1. Introduction

In recent decades, the optimal power flow (OPF) problem has had an important role
in the operation and planning of electrical systems [1]. OPF aims to adjust the independent
control variables parameters of power systems to reach the needed objective function,
which are normally reducing the fuel cost, emission, and active power loss, to satisfy the
needed demand load, concurrently meeting the boundaries of inequality and equality
constraints [2].

The critical necessity to address global warming and climate change have placed
renewable energy sources (RES) such as solar energy systems, wind energy systems, and
hydropower plants in the center of energy conversion as well as the quickly dropping
renewable power generation costs, we need to face the challenges, arising from using
a high scale of renewable energy sources in the power system [3]. In recent years, RES
contributes to decreasing the power losses of the grid, enhancing the quality and reliability
of the electrical grid [4]; furthermore, they affect the electricity market. By increasing the
added energy from RES inside the electrical power grid, it is required to set the best energy
production for the system to satisfy the objective functions such as minimizing the fuel
cost, total emission from the conventional power generation stations, and transmission
losses and enhancing the voltage profile [5].

The OPF problem is generally non-convex, non-smooth, and non-differentiable ob-
jective functions. Consequently, it is very significant to develop new techniques to reach
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the global best solution for this problem. The conventional approaches such as Gradient’s
method [6], nonlinear programming [6], quadratic programming [7], and interior-point
methods [8] have been successfully applied in the previous researches to solve the OPF
problem. The nonlinear properties may produce the obtained solutions to be confined
in local minima, and these methods need a huge quantity of computational effort and
time. Therefore, several optimization techniques need to be developed to defeat these
weaknesses [9].

Thus, different heuristic techniques are utilized to solve the OPF problem such as a
multi-objective hybrid firefly and PSO (MOHFPSO) [10], modified grasshopper optimiza-
tion algorithm (MGOA) [11], forced initialized differential evolution algorithm [12], an
adaptive multiple teams perturbation-guiding Jaya (AMTPG-Jaya) technique [13], modi-
fied Sine-Cosine algorithm (MSCA) [14], Developed Grey Wolf Optimizer (DGWO) [15],
improved salp swarm algorithm (ISSA) [16], Barnacles Mating Optimizer (BMO) [17], and
Lévy Coyote optimization algorithm (LCOA) [18].

Although these three versions of the Rao algorithm have been recently published,
many optimization problems have been solved using them and using their modifications
such as the photovoltaic cell parameter estimation [19–22], design optimization of mechani-
cal system components [23], selected thermodynamic [24], Optimal weight design of a spur
gear train [25], 2D truss structures [26], multi-objective design optimization of selected
heat sinks [27], optimal reactive power dispatch with renewable energy and time-varying
demand uncertainty [28], and Classification of Parkinson disease [29].

In this article, the main contribution is summarized as follows.

• The proposed MRao-2 technique is used to achieve the accurate values of control
variables of the OPF problem without RES, with RES, and with RES under contin-
gency state.

• The fuel cost is the main objective function in five scenarios for the two IEEE 30 -bus
and 118-bus systems to test the validation of the proposed algorithm.

• To check the robustness of this modified algorithm, its results are compared with
five recent algorithms—ASO, TFWO, MPA, Rao-1, and Rao-3—as well as the original
Rao-2 which are the strong algorithms in solving the modern power system problems
and they are used in many published papers in the last two years so far.

The rest of the paper is organized as follows. The problem formulation is presented in
Section 2. Section 3 introduces the proposed MRao-2 algorithm applied to solve the OPF
problem with various scenarios. Section 4 gives a discussion and analysis of the simulation
results. Section 5 presents the conclusion.

2. Problem Formulation
2.1. General Structure of OPF

The OPF solution provides the best value of the control variables by minimizing an
objective function with satisfying equality and inequality limitations. Commonly, the
mathematical formulation of the optimization problem may be expressed as follows [30]:

Minimize F(x, u) (1)

Subject to
gi(x, u) = 0 i = 1, 2, 3, . . . , m (2)

hj(x, u) ≤ 0 j = 1, 2, 3, . . . , n (3)

where F is the objective function; x, u are the state variables (dependent variables) and
the control variables (independent variables) vectors, respectively; gi is the equality
constraints; m is the number of equality constraints; hj is the number of inequality con-
straints; and n is the number of inequality constraints.
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The state variables are represented in a vector as follows [16]:

x = [PG1, VL1 . . . VLNPQ, QG1 . . . QGNPV, STL1 . . . STLNTL] (4)

where PG1 refers to the active power generation of slack bus, VL is the voltage magnitude
of the load bus, NPQ is the number of load buses, QG is the generated reactive power,
NPV is the number of generation buses, STL is the loading of transmission line, and NTL is
Number of transmission lines.

The control variables are represented in a vector as follows [16]:

u = [PG2 . . . PGNG, VG1 . . . VGNG, QC1 . . . QCNC, T1 . . . TNT] (5)

where PG is the generated active power, and NG is the number of generators. VG is the
voltage magnitude of the generation bus. QC is the injected imaginary power by the shunt
compensator. NC is the number of shunt compensators. T is the tapping ratio of the
transformer. NT is the number of transformers.

2.2. Objective Functions
2.2.1. Quadratic Total Fuel Cost

The total fuel cost of all thermal generation units is represented based on the polyno-
mial quadratic function as the following equation [2]:

F1 =
N

∑
i=1

(
aiP2

gi + biPgi + ci

)
$/h (6)

where ai, b, and ci are the cost coefficients of ith generator.

2.2.2. Total Emission

Various types of noxious emissions are emitted from those plants because of using
several types of fossil fuels in thermal power plants. Newly, one of the principal goals of
the OPF problem is reducing these emissions without affecting the generated power to
satisfy the load demands in the electrical power system. This emission is calculated from
the following equation: [31]:

E =
N

∑
i=1

[
10−2(αi + βiPi + γiP

2
i )
]

(7)

where αi, βi, and γi represent the emission coefficients for the ith unit.

2.2.3. Power Loss Function

The total active power losses in the system can be expressed as follows [32]:

Ploss =
nl

∑
k=1

Gk

[
V2

i + V2
j − 2ViVj cos(δi − δj)

]
MW (8)

where nl is the number of network nodes; Vi and Vj are the voltage magnitudes for the i-th
and j-th nodes, respectively; δi and δj are the node voltage angles of the i-th–j-th branch;
and Gk refers to the conductivity between node i and node j.

2.2.4. Voltage Deviation (VD) Function (Voltage Profile Improvement)

One of the effective methods is the voltage magnitude fluctuation from 1.0 per unit at
each load bus which is defined as follows [32]:

VD =
NL

∑
p=1

∣∣∣VLp − 1
∣∣∣ (9)
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where VLp is the ith voltage of load buses.

2.3. Constraints
2.3.1. Equality Constraints

The balanced load flow equations represent the equality constraints. The following
equations express the active and reactive power constraints that fulfill the load demands
requirements and also the power losses of the transmission line [33]:

PGi − PDi = Vi

NB

∑
j=1

Vj[Gij cos
(
δi − δj

)
+ Bij sin

(
δi − δj

)
] (10)

QGi −QDi = Vi

NB

∑
j=1

Vj[Gij cos
(
δi − δj

)
− Bij sin

(
δi − δj

)
] (11)

where PG is the generated real power, QG is the reactive power generation, NB is the
number of buses, and PD and QD are the real and imaginary load demands, respectively.
Gij and Bij are the conductance and substance between buses i and j. δi and δj are the
voltage angles bus i and j.

2.3.2. Inequality Constraints

The inequality constraints are described as follows [34]:
(a) Generator constraints (thermal or renewable as applicable):

Pmin
Gi ≤ PGi ≤ Pmax

Gi i = 1, 2, . . . , NG (12)

Vmin
Gi ≤ VGi ≤ Vmax

Gi i = 1, 2, . . . , NPV (13)

Qmin
Gi ≤ QGi ≤ Qmax

Gi i = 1, 2, . . . , NPV (14)

(b) Security constraints

SLi ≤ Smax
li i = 1, 2, . . . , NTL (15)

Vmin
i ≤ Vi ≤ Vmax

i i = 1, 2, . . . , NPQ (16)

(c) Shunt VAR compensator constraints:

Qmin
ci ≤ QCi ≤ Qmax

ci i = 1, 2, . . . , NC (17)

(d) Transformer constraints:

Tmin
i ≤ Ti ≤ Tmax

i i = 1, 2, . . . , NT (18)

The mathematical formulation of the fitness function combined with the quadratic
penalty is as follows:

Fg(x, u) = Fi(x, u) + Penalty (19)

Penalty = λp(∆PG1)
2 + λv

NPQ

∑
i=1

(∆VLi)
2 + λQ

NPV

∑
i=1

(∆QGi)
2 + λs

NTL

∑
i=1

(∆SLi)
2 (20)

∆PG1 =

{
PG1

max − PG1 PG1 > PG1
max

PG1 − PG1
min PG1 < PG1

min (21)

∆VLi =

{
∆VLi

max − ∆VLi ∆VLi > ∆VLi
max

∆VLi − ∆VLi
min ∆VLi < ∆VLi

min (22)

∆QGi =

{
∆QGi

max − ∆QGi ∆QGi > ∆QGi
max

∆QGi − ∆QGi
min ∆QGi < ∆QGi

min (23)
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∆SLi =

{
∆SLi

max − ∆SLi ∆SLi > ∆SLi
max

∆SLi − ∆SLi
min ∆SLi < ∆SLi

min (24)

where λp,λv,λQ, λs are the Penalty factors.

2.3.3. Power Balance Considering RES

Adding the RES to the power system has different shapes in the studying of the OPF
problem. In this article, the RES is employed as a negative load [35,36]. This implies that all
RES (such as solar, wind, hydro, and biomass) that are added to the system will be utilized
first to produce the part of the required power to loads then the remainder of the loads and
power losses will be covered from the thermal power plants.

3. The Proposed Optimization Technique
3.1. Rao Algorithm

Rao algorithms have recently been implemented in [37]. The key benefit of these algo-
rithms is that they do not need any complex control parameters, only ordinary parameters
such as population size and the number of iterations are required. Rao-1, Rao-2, and Rao-3
are three algorithms that have been developed in [37]. The Rao-2 algorithm is used in this
study as it has a high convergence rate.

The following equation can be used to describe the mathematical formulation of the
Rao-2 algorithm:

X′j,kp,i = Xj,kp,i + Rd1,j,i

(
Xj,best,i − Xj,worst,i

)
+ Rd2,j,i

(∣∣∣Xj,kp,ior Xj,lm,i

∣∣∣− (Xj,lm,ior Xj,kp,i

))
(25)

where Xj,kp,i denotes the value of jth variable design for kpth candidate solution after the ith
iteration, and X′j,kp,i denotes the updated value of the next iteration. Xj,best,i and Xj,worst,i are
the values of the j for the best and worst candidate solutions during the ith iteration,
respectively. Rd1,j,i and Rd2,j,i are random numbers in the range [0, 1] for the jth variable
during the ith iteration.

The terminology (Xj,kp,i or Xj,lm,i and Xj,lm,i or Xj,kp,i ) are used to compare the fitness
values of a candidate solution k and a randomly chosen candidate solution.

The following are the key steps of the Rao-2 algorithm.

• Step 1: Randomly distribute the population within the vector ranges.
• Step 2: Determine the objective value for each variable.
• Step 3: Define the worst and best solutions depending on the objective function’s values.
• Step 4: Upgrade the solutions by (25).
• Step 5: If any of the updated values fall outside of the range, they should be returned.
• Step 6: Evaluate the value of each search agent’s objective function.
• Step 7: Increase the number of iterations of the new one it = it + 1
• Step 8: If the iteration has reached its end, return the best value so far. If not, go on to

Step 3.

Figure 1 illustrates the main flowchart for the Rao-2.

3.2. Modified Rao Algorithm

The quasi-oppositional and Levy flight methods are used to enhance the conventional
Rao technique in this paper.

3.2.1. Quasi-Oppositional

Opposition-based learning (OBL) [38] is a commonly used way to enhance several opti-
mization algorithms such as Quasi-oppositional swine influenza model-based optimization
with quarantine (QOSIMBO-Q) [39], quasi-oppositional teaching-learning (QOTLBO) [40],
quasi oppositional bonobo optimizer (QOBO) [41], and Oppositional Jaya Algorithm [42].
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Figure 1. Flowchart of Rao-2 algorithm.

The OBL can be improved by simultaneously using the candidate solution and the op-
posite. Therefore, this work will express the opposite solution of Xi

B in the Rao algorithm as

X′qi
j,kp,i =

 C + r1

(
C− X′j,kp,i

)
,
∣∣∣ X′j,kp,i) < C

C− r1

(
X′j,kp,i

)
− C),

∣∣∣ X′j,kp,i) ≥ C
(26)

where r1 is a random number between [0, 1], and C is a middle point between Xi
min and

Xi
max, which can be calculated as follows:

C =
Xi

min + Xi
max

2
(27)

3.2.2. Levy Flight

The delivery of levy flight is used to boost the exploration phase using the follow-
ing equation:

X′j,kp,i
levy = X′j,kp,i + S× LF(D) (28)

where D is the problem dimension, and S is a vector of random values with size 1×D. The
LF is the levy flight function, which is calculated by the following equations:

LF(x) = 0.01× µ× σ

|v|
1
β

(29)
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σ =

 Γ(1 + β)× sin
(
πβ

2

)
Γ
(

1+β
2

)
× β× 2(

β−1
2 )


1
β

(30)

where µ and v are random values inside (0,1), β is a default constantset to 1.5, and Γ is a
gamma function.

The updated Rao positions will then be chosen based on the value of the objec-
tive function where if the objective function of the updated Rao position using levy
F
(

X′j,kp,i
levy
)

is lower than the objective function of the conventional Rao position F
(

X′j,kp,i

)
then the new position will be the X′j,kp,i

levy otherwise the position will not be updated.
Therefore, the following equation can be used to update the modified Rao:

X′j,kp,i =

 X′j,kp,i if F
(

X′j,kp,i

)
< F

(
X′j,kp,i

levy
)

X′j,kp,i
levy, if F

(
X′j,kp,i

levy
)
< F

(
X′j,kp,i

) (31)

4. Simulation Results
4.1. Test Systems

In this paper, the IEEE 30-bus and IEEE 118-bus systems are used to prove the efficient
performance of the proposed MRao-2. The data of lines and buses for the IEEE 30-bus
system can be found in [43], while the data of lines and buses for the IEEE 118-bus system
can be found in [28,44]. The IEEE 30-bus system has 41 transmission lines and 6 generating
units. Bus 1 is selected as the slack bus and the load demand is 283.4 MW. Table 1 displays
the upper and lower limits of the control variables in 30- bus system. The IEEE 118-bus
system has 54 generation units and 186 transmission lines. Bus 69 is chosen as the slack
bus and the total load of the network is 3733.07 MW [45]. The upper and lower limits of
the control variables in 118-bus systems are also displayed in Table 1 [4]. The emission
coefficients of the generators are taken from [46].

Table 1. Limit setting for control variables of the all-test systems [4].

IEEE 30-Bus System IEEE 118-Bus System

Variables Lower limit Upper limit Lower limit Upper limit

Voltages for all generator bus 0.95 p.u 1.1 p.u 0.94 p.u 1.06 p.u
Voltages for all load bus 0.95 p.u 1.05 p.u 0.95 p.u 1.05 p.u

Tap setting 0.9 p.u 1.1 p.u 0.9 p.u 1.1 p.u
Reactive power of capacitor banks 0 0.05 p.u 0 0.3 p.u

The modification to the IEEE 30-bus system is by adding the RES. The selection of
the proper location of these RES in the test system is based on the power loss sensitivity
and generation cost to each real and imaginary power as stated in [47]. The results in [47]
presented that the optimum location is bus 30 and the value chosen of RES is 20MW.
Figure 2 shows a single line diagram of the modified IEEE 30-bus system.

The modification to the standard IEEE 118-bus test system is by adding RES based
on that in [48]. The location and values of the RES in the IEEE 118-bus test systems are
tabulated in Table 2. A single line diagram of the modified IEEE 118-bus system is presented
in Figure 3.

In this article, the numerical simulations studies have been run on an Intel ®® core TM
i5-7200U CPU with 8 GB of RAM using MATLAB 2016a. The proposed MRao-2 technique
is employed to find the best solution for the OPF problem in different cases considering the
fuel cost, emission, transmission loss, and improvement of the voltage profile. The results
of MRao-2 are compared with the ASO Algorithm [49], TFWO [50], MPA [51], and Rao
algorithms: Three metaphor-less simple algorithms (Rao-1, Rao-2, and Rao-3) [37]. The
parameters settings of the different optimization techniques are shown in Table 3.
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Figure 2. Single-line diagram of the modified IEEE 30-bus test system.

Table 2. The location and values of the RES in the IEEE 118-bus test systems.

Type of RES No. of Bus Value (MW)

biomass 12 18.2
wind 31 156
solar 54 264

hydro 76 77
hydro 116 286

Table 3. The parameter settings of different optimization techniques.

Algorithms Parameters Setting

Common settings

• Population size: nPop = 30
• Maximum iterations: Max_iter = 200 for IEEE 30-bus test system

and Max_iter = 300 for IEEE 118-bus test system.
• Number of independent runs: 20.

ASO • depth weight a = 50.
• multiplier weight β = 0.2.

MPA FADs = 0.2, P = 0.5, C = 0.05, e = 0.25
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Figure 3. Single-line diagram of IEEE 118-bus test system.

4.2. Case 1: The OPF without RES for the IEEE 30-Bus System

The proposed MRao-2 is used in this case to achieve the best solution for the OPF
problem without RES and considering the fuel cost, power loss, emission, and voltage
profile improvement. Table 4 presents the results of the MRao-2 algorithm in comparison
with other techniques. These results confirm that the MRao-2 technique outperforms
other algorithms. Its objective function (Fuel Cost = 800.4412 $/h) is better than all other
algorithms and it performs without any violation of the constraints. The voltage profile of
the proposed MRao-2 is displayed in Figure 4. It can be observed from this figure that all
voltage magnitudes at all buses of the power system are within the boundaries presented
in Table 1. Given the convergence characteristics of all algorithms for the optimal solutions
that have been achieved by the ASO, TFWO, MPA, Rao algorithms, and MRao-2 in this
case, the proposed MRao-2 has a smooth convergence characteristics curve to the best
solution with a rapid convergence rate and without oscillations in comparison with all
other techniques as displayed in Figure 5. It is shown in Figure 5 that the supremacy of the
MRao-2 over the recent other techniques is proven in the last iterations as it converges to
the best solution.

Furthermore, Figure 6 shows graphic comparisons for 20 individual runs (i.e., fuel cost)
obtained from the proposed algorithm compared with the other six algorithms in the form
of a boxplot graph. These boxplots present the mean performance of techniques that can be
compared visually. There are five elements that can be defined from each boxplot as follows:
first quartile, minimum, third quartile, maximum, and median. The median value is the
line inside the box. These boxplots are drawn after 20 individual runs for each technique,
and they display the classification precision. It can be seen that the MRao-2 algorithm has
a lower boxplot compared to the other well-known techniques. Furthermore, the median
of the proposed MRao-2 has a minimum value compared to the other techniques. It can
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be observed from this figure that the proposed MRao-2 is competitive and often superior
to the other recent algorithms. Furthermore, the proposed MRao-2 technique delivers
the optimal results in terms of precision and reliability compared to the other techniques.
The optimal fuel cost listed in Table 5 shows that the proposed MRao-2 technique is more
effective than other approaches in obtaining the best solutions as its fuel cost is less than
those of others.

Table 4. Results of the proposed MRao-2 algorithm and other algorithms for case 1.

ASO TFWO MPA Rao-1 Rao-2 Rao-3 MRao-2

PG1 (MW) 176.9732 177.2422 176.8351 179.8369 177.887 177.5088 176.3625
PG2 (MW) 48.91006 48.64558 48.67575 49.49712 49.36524 48.76959 49.07412
PG5 (MW) 21.30213 21.36803 21.45982 22.21521 21.54786 20.94155 21.24651
PG8 (MW) 20.9253 21.35596 21.88621 18.77388 21.6564 21.53046 21.37135

PG11 (MW) 12.45411 11.86476 11.54409 10.38348 10.00796 11.80911 12.21261
PG13 (MW) 12.00137 12.00148 12.02418 12 12.04775 12.0039 12.10508

V1 (p.u.) 1.080029 1.079984 1.082237 1.078675 1.084304 1.080698 1.083304
V2 (p.u.) 1.080992 1.030047 1.083237 1.027824 1.094344 1.099999 1.092657
V5 (p.u.) 1.028033 1.082677 1.031479 1.085737 1.031264 1.028262 1.029766
V8 (p.u.) 1.034358 1.035451 1.037666 1.033404 1.037539 1.036411 1.037062
V11 (p.u.) 1.006403 1.05873 1.065692 1.078167 1.077243 1.031184 1.059477
V13 (p.u.) 1.036055 1.067677 1.029076 1.057387 1.034243 1.099824 1.046984
T11 (6–9) 0.96365 0.972727 0.963545 1.014786 1.031208 0.916034 1.002334

T12 (6–10) 1.014561 1.012358 1.05331 0.983026 0.9 1.099979 0.953247
T15 (4–12) 1.056913 0.994481 0.989785 1.001 0.964418 1.031275 0.971027
T36 (28–27) 0.99403 0.971573 1.000675 0.975213 0.980459 0.987251 0.971058

QC10 (MVAR) 3.0526 4.9784 3.2035 0.5727 0.1362 0.00562 3.7024
QC12 (MVAR) 3.5939 0.5594 4.639 0.7186 1.3228 0.00426 2.0306
QC15 (MVAR) 2.5611 4.635 3.9502 5 4.9242 4.9567 2.2152
QC17 (MVAR) 1.6444 3.7878 1.5066 3.3725 4.2338 0.0702 4.6995
QC20 (MVAR) 1.9898 4.5001 4.8618 4.4774 3.1484 4.9871 3.859
QC21 (MVAR) 3.4191 4.1061 3.5977 3.9993 0.2586 4.8557 4.8858
QC23 (MVAR) 4.7618 0.00168 4.3476 0.818 3.2847 0.0451 3.9984
QC24 (MVAR) 1.1282 2.1995 4.5618 4.9692 4.9243 4.9741 4.8289
QC29 (MVAR) 1.5646 0.4415 3.5686 2.1977 4.9685 2.3785 1.6698
Fuel cost ($/h) 801.0005 800.6477 800.5804 800.8944 800.6166 800.848 800.4412

Emission (ton/h) 0.295736 0.296049 0.295644 0.297821 0.296313 0.296384 0.295152
Power loss (MW) 9.177889 9.083431 9.036827 9.312149 9.123883 9.163424 8.983817

Voltage deviation (p.u.) 0.334805 0.749458 0.575301 0.707313 0.916652 0.469378 0.868108
Time (s) 95.06342 104.1479 166.5552 101.91743 94.84023 101.83725 169.6059

Figure 4. The voltage profile of the MRao-2 for the best solutions of case 1.
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Figure 5. Convergence characteristics of the proposed MRao-2 and other recent algorithms for case 1.

Figure 6. Boxplot graph of best Fuel cost in 20 runs of the proposed MRao-2 and other recent
algorithms for case 1.

4.3. Case 2: OPF Incorporating RES for the IEEE 30-Bus System

The proposed MRao-2 technique is employed in the second case to reach the optimum
solution for the OPF problem incorporating RES, considering the generation cost, transmis-
sion loss, emission, and improvement of voltage profile. Next, the obtained results using
the proposed MRao-2 algorithm are compared with ASO, TFWO, MPA, Rao-1, Rao-2, and
Rao-3 algorithms. The results of all the techniques for this case are listed in Table 6.
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Table 5. Simulation results of MRao-2 and other algorithms for Case 1.

Algorithm Min Max Average

MRao-2 800.4412 800.553 800.4872
Rao-2 800.6166 800.7965 800.7118
Rao-1 800.8944 801.2647 800.9678
Rao-3 800.848 800.9628 800.9067
MPA 800.5804 800.8416 800.6659

TFWO 800.6477 803.8754 801.1159
ASO 801.0005 801.4358 801.101

MGOA [11] 800.4744 NA NA
ABC [52] 800.6600 800.8715 801.8674
Jaya [47] 800.4794 800.4928 800.5306

ARCBBO [53] 800.5159 800.6412 800.9262
MSA [54] 800.5099 NA NA

Hybrid SFLA SA [55] 801.79 NA NA
HHO [33] 801.4228 NA NA

HHODE [33] 800.9959 NA NA
DE [56] 801.23 801.622 801.282

Table 6. Results of the proposed MRao-2 algorithm and other algorithms for case 2.

ASO TFWO MPA Rao-1 Rao-2 Rao-3 MRao-2

PG1 (MW) 166.3103 167.0352 166.5015 167.7043 167.5941 167.2709 167.2508
PG2 (MW) 45.88087 46.29256 46.03059 47.38566 45.71914 47.19775 46.42704
PG5 (MW) 20.9709 20.64382 20.45905 20.90393 20.6118 20.69004 20.64984
PG8 (MW) 15.69756 15.68206 15.17763 13.74229 15.13705 14.47554 15.27324

PG11 (MW) 10.79724 10.00009 11.10394 10 10.53956 10.00813 10
PG13 (MW) 12.00262 12 12.32851 12 12.03885 12.04529 12

V1 (p.u.) 1.077967 1.081966 1.0788 1.077875 1.080078 1.080089 1.07852
V2 (p.u.) 1.072375 1.006269 1.1 1.094477 1.051656 1.063304 1.1
V5 (p.u.) 1.033146 1.057191 1.031388 1.076221 1.077262 1.0572 1.032235
V8 (p.u.) 1.031798 1.036781 1.038591 1.038888 1.039808 1.040699 1.026295
V11 (p.u.) 1.02098 1.099826 1.093579 1.049587 1.04657 1.078359 1.047772
V13 (p.u.) 1.042508 1.022207 1.014105 1.01495 1.009777 1.022799 1.062827
T11(6–9) 0.986874 0.989094 1.027745 0.99534 1.09646 0.991078 0.98482

T12(6–10) 1.005378 1.1 0.957009 0.928192 0.908495 1.073045 0.977984
T15(4–12) 0.975554 0.987607 0.981413 0.981491 0.971842 0.970377 0.981403
T36(28–27) 1.001887 0.99311 0.99195 0.997822 1.017273 1.010252 1.001331

QC10 (MVAR) 4.1156 4.7537 2.7651 4.7977 2.8059 4.9307 4.9494
QC12 (MVAR) 2.8466 4.821 3.8682 3.6157 1.4147 0.0171 0
QC15 (MVAR) 3.4126 4.8818 0.5251 4.3005 1.2958 3.8049 0.0184
QC17 (MVAR) 2.9106 4.2942 4.9994 0.3354 4.6224 3.1239 4.8752
QC20 (MVAR) 2.3832 2.9394 4.6997 4.691 4.394 3.1954 4.8711
QC21 (MVAR) 2.9478 5 0.3764 1.8647 3.3121 0 5
QC23 (MVAR) 1.4159 1.9167 2.9807 1.0238 4.9937 5 5
QC24 (MVAR) 2.6985 5 0.8889 3.9491 4.9191 4.7007 4.9522
QC29 (MVAR) 2.7382 0.3091 2.0465 1.5414 4.2786 2.302 2.282
Fuel cost ($/h) 729.9074 729.6002 729.6347 729.6406 729.5025 729.5657 729.3429

Emission (ton/h) 0.287894 0.288436 0.288163 0.288493 0.289114 0.28828 0.288559
Power loss (MW) 8.271074 8.264871 8.212681 8.341641 8.245904 8.293049 8.21248

Voltage deviation (p.u.) 0.487935 0.587188 0.723005 0.74643 0.599303 0.554658 0.890863
Time (s) 96.3905 101.40315 154.3002 93.26448 92.40164 95.84038 166.5166

It is seen from these results that the MRao-2 technique is also more effective than other
techniques in reaching the best solution for the OPF problem with fuel cost and RES. Its
fitness function (Fuel cost = 729.3429 $/h) is less than all other algorithms and it does not
violate the constraints. Furthermore, the objective function of the MRao-2 technique is
reduced from 800.4412 $/h (case 1) to 729.3429 $/h (case 2) by 8.88% after incorporating the
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RES as expected. By entering the RES as a negative load, the total load of the power system
is decreased, which reduces the generation cost of the conventional thermal generators.

Furthermore, as in the previous case, the voltage magnitude of all buses is within
their boundaries as shown in Figure 7. After incorporating the RES, the proposed MRao-2
has also smooth and speedy convergence curves in comparison with other algorithms
as presented in Figure 8. The Boxplot graph of best Fuel cost in 20 runs of the proposed
MRao-2 and other recent algorithms for case 2 is presented in Figure 9.

Figure 7. The voltage profile of the MRao-2 for case 2.

Figure 8. Convergence characteristics curves of all algorithms for case 2.

4.4. Case 3: OPF Incorporating RES under Contingency State for IEEE 30-Bus System

In this case, a contingency state is simulated by the outage of two lines. These lines
are line (10–17) and line (10–21). Table 7 tabulates the obtained results using the proposed
MRao-2 and other algorithms. According to these results, the proposed MRao-2 technique
provides the best solution for the fitness function in comparison with other algorithms
including RES during the contingency state and without any violation of the constraints.
Figure 10 displays the voltage profile of the MRao-2 technique, while Figure 11 shows the
convergence characteristics of all algorithms. From these figures, it is clear that all voltage
magnitudes are within the constraints and the proposed MRao-2 has smooth convergence
features with speedy convergence in comparison with other techniques. Furthermore,
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Figure 12 displays the Boxplot graph of best Fuel cost in individual 20 runs of the proposed
MRao-2 and other recent algorithms for this case.

Figure 9. Boxplot graph of best Fuel cost in 20 runs of the proposed MRao-2 and other recent
algorithms for case 2.

Table 7. Results of the proposed method and other methods for case 3.

ASO TFWO MPA Rao-1 Rao-2 Rao-3 MRao-2

PG1 (MW) 169.1157 167.646 168.4079 166.1685 168.162 168.2884 167.6707
PG2 (MW) 47.10122 46.38156 46.73768 46.29319 46.34349 46.35133 46.43635
PG5 (MW) 20.77245 20.68947 20.8021 20.22988 20.61748 20.70681 20.82097
PG8 (MW) 12.4257 15.29242 13.2599 17.28305 14.80192 14.45443 14.76838

PG11 (MW) 10.9089 10 10.93876 10 10.09605 10.24194 10.22822
PG13 (MW) 12.0136 12 12.00331 12.02535 12.00538 12.00845 12.05377

V1 (p.u.) 1.071178 1.080797 1.082793 1.088881 1.082847 1.081143 1.08205
V2 (p.u.) 1.091177 1.0925 1.033038 1.063013 1.084106 1.082092 1.083835
V5 (p.u.) 1.018346 1.031645 1.086276 1.054294 1.031456 1.026707 1.032011
V8 (p.u.) 1.023794 1.036661 1.037818 1.034209 1.033635 1.033571 1.03592
V11 (p.u.) 1.038897 1.071995 1.083139 1.059527 1.029808 1.074468 1.029754
V13 (p.u.) 1.019225 1.042984 1.047633 1.039893 1.046966 1.045277 1.04714
T11 (6–9) 0.966049 0.965995 1.05369 0.973616 1.040438 1.078513 1.06788

T12 (6–10) 0.970151 1.099986 0.939359 1.016485 0.906038 0.9 0.900135
T15 (4–12) 0.96075 0.984042 0.957996 0.961999 0.984907 0.988115 0.980633
T36 (28–27) 1.014058 1.006899 1.011424 1.01808 1.017749 1.010059 1.010374

QC10 (MVAR) 3.3514 1.8078 1.993 4.6449 0.0643 0.1501 0.0246
QC12 (MVAR) 2.4055 4.5298 2.4846 0.515 0.9183 3.2165 0.0275
QC15 (MVAR) 3.0776 5 4.3023 4.5803 4.4913 4.9203 1.5989
QC17 (MVAR) 3.3283 5 2.7311 4.2387 4.9964 4.7269 4.994
QC20 (MVAR) 3.9248 0 2.5187 0.2183 1.9472 0.0149 4.8959
QC21 (MVAR) 4.4199 5 0.24 3.2204 5 5 4.9499
QC23 (MVAR) 2.5112 0.702 1.7923 4.9999 4.9924 0 3.431
QC24 (MVAR) 4.5875 5 2.9447 1.9501 4.8343 4.9989 5
QC29 (MVAR) 2.7613 0 2.76 × 10−5 0 0.00259 0.0514 0.0739
Fuel cost ($/h) 731.4898 730.6851 731.0095 731.0468 730.6201 730.688 730.583

Emission (ton/h) 0.289802 0.288885 0.289341 0.287874 0.289345 0.289416 0.288841
Power loss (MW) 8.949145 8.620926 8.755022 8.605339 8.63787 8.662901 8.589888

Voltage deviation (p.u.) 0.595555 0.626741 0.73608 0.693286 0.695892 0.665941 0.665648
Time (s) 94.1653 98.40031 153.3302 95.61418 98.2997 97.24576 164.5099
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Figure 10. The voltage profile of the MRao-2 for case 3.

Figure 11. Convergence characteristics of all methods for case 3.

Figure 12. Boxplot graph of best Fuel cost in 20 runs of the proposed MRao-2 and other recent
algorithms for case 3.
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The statistical results of the proposed MRao-2 and the other recently algorithms for
20 individual runs for each case are presented in Table 8. Most researchers choose the
minimum, mean, median, maximum, and standard deviation (STD) values to demonstrate
the superiority and effectiveness of a technique. Table 8 shows the minimum, average,
median, maximum, and STD values of the fuel cost as the objective function for all cases.
These results confirm the supremacy of the proposed algorithm on the other algorithms.

Table 8. Statistical results comparison of investigated cases for IEEE 30-bus system for different
recent optimization algorithm.

Case No. Algorithm Min Average Median Max STD

Case 1

MRao-2 800.4412 800.4872 800.4769 800.553 0.038822
Rao-2 800.6166 800.7118 800.7135 800.7965 0.052478
Rao-1 800.8944 800.9678 800.9277 801.2647 0.111619
Rao-3 800.848 800.9067 800.9167 800.9628 0.0403
MPA 800.5804 800.6659 800.6347 800.8416 0.081797

TFWO 800.6477 801.1159 800.855 803.8754 0.975128
ASO 801.0005 801.101 801.0422 801.4358 0.152133

Case 2

MRao-2 729.3429 729.4065 729.4001 729.4615 0.042289
Rao-2 729.5025 729.5599 729.5596 729.6205 0.040197
Rao-1 729.6406 729.6845 729.6815 729.7441 0.031135
Rao-3 729.5657 729.5888 729.5903 729.6361 0.021254
MPA 729.6347 729.674 729.6771 729.7095 0.024818

TFWO 729.6002 730.1646 729.782 732.1079 0.813312
ASO 729.9074 730.3542 730.251 731.555 0.513813

Case 3

MRao-2 730.583 730.6588 730.6266 730.8189 0.09241
Rao-2 730.6201 730.7573 730.747 730.9311 0.141165
Rao-1 731.0468 731.132 731.1247 731.2359 0.090685
Rao-3 730.688 730.8235 730.8296 730.9879 0.113336
MPA 731.0095 731.136 731.14 731.2927 0.111756

TFWO 730.6851 730.9124 730.8677 731.3553 0.23962
ASO 731.4898 731.8588 731.6576 732.9515 0.546641

4.5. Case 4: OPF without RES for the IEEE 118-Bus System

In this case, the MRao-2 is utilized to find the optimum solution for the OPF problem
for the IEEE 118-bus system considering the fuel cost, transmission loss, and improvement
of the voltage profile and without considering the RES. In this paper, this system is chosen
to test the scalability of the MRao-2 technique and demonstrate its robustness to apply it
to solve the OPF for large-scale systems. Table 9 presents the obtained results using the
proposed MRao-2 algorithm. These results are compared with ASO, TFWO, MPA, Rao-1,
Rao-2, and Rao-3, and this comparison is listed in Table 10. These results confirm the
supremacy of the MRao-2 algorithm over other techniques in achieving the best solution
for the OPF problem with the Fuel cost as an objective function for the large-scale electrical
power system without considering the RES.

The MRao-2’s objective function (Fuel cost = 131,457.8 $/h) is less than the fitness
function of other algorithms without any violation of the restraints. Figure 13 displays the
magnitudes of the voltages of all buses are within the limits. Moreover, the MRao-2 has
smooth and speedy convergence curves in comparison with other algorithms as shown in
Figure 14.

4.6. Case 5: OPF Incorporating RES for the IEEE 118-Bus System

In this case, the proposed MRao-2 technique is applied to the IEEE 118-bus system
to check the ability of the proposed algorithm to solve the OPF for the large-scale system
considering the RES. Table 11 tabulates the obtained results using the proposed MRao-2
algorithm. Furthermore, the results of the MRao-2 technique and other algorithms for this
case are presented in Table 12. These results of the fuel cost for this case by ASO, TFWO,
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MPA, Rao-1, Rao-2, Rao-3, and MRao-2 algorithms are 103,847.47, 101,747.68, 101,981.69,
101,981.17, 101,078.92, 101,297.12, and 100,738.54 $/h, respectively. These results show
that the proposed MRao-2 achieves a better solution than other algorithms in solving the
OPF considering RES using the large-scale system and without any violation of the limits.
Furthermore, adding RES to the IEEE 118-bus system decreases the fuel cost as an objective
function of the MRao-2 by 23.4%. Figure 15 displays the magnitudes of the voltage of all
buses of the MRao-2 are within the limits. Figure 16 shows that the proposed MRao-2
has smooth and speedy convergence curves in comparison with other techniques even for
large-scale systems.

Table 9. Optimal settings of control variables for case 4 using MRao-2.

Variables Value Variables Value Variables Value Variables Value Variables Value

PG1 (MW) 1.984061 PG62 (MW) 0.04968 PG113
(MW) 86.1052 VG59 (p.u.) 0.94707 VG111 (p.u.) 1.05221

PG4 (MW) 0.351443 PG65 (MW) 343.880 PG116
(MW) 4.20199 VG61 (p.u.) 1.02331 VG112 (p.u.) 1.04184

PG6 (MW) 1.344034 PG66 (MW) 340.152 VG1 (p.u.) 0.94 VG62 (p.u.) 0.95129 VG113 (p.u.) 1.02649
PG8 (MW) 10.24637 PG69 (MW) 415.633 VG4 (p.u.) 1.00609 VG65 (p.u.) 0.94352 VG116 (p.u.) 0.96645

PG10 (MW) 376.1126 PG70 (MW) 4.69474 VG6 (p.u.) 1.00546 VG66 (p.u.) 1.01735 T8 (8–5) 0.91057
PG12 (MW) 76.80127 PG72 (MW) 7.50899 VG8 (p.u.) 0.94545 VG69 (p.u.) 1.03288 T32 (25–26) 1.09451
PG15 (MW) 1.528393 PG73 (MW) 10.3911 VG10 (p.u.) 0.94035 VG70 (p.u.) 0.97696 T36 (17–30) 1.09266
PG18 (MW) 46.72157 PG74 (MW) 5.8267 VG12 (p.u.) 0.99321 VG72 (p.u.) 1.03499 T51 (37–38) 0.9
PG19 (MW) 0.067021 PG76 (MW) 20.4488 VG15 (p.u.) 1.01157 VG73 (p.u.) 0.98931 T93 (59–63) 1.00128
PG24 (MW) 2.611653 PG77 (MW) 5.51401 VG18 (p.u.) 0.96454 VG74 (p.u.) 0.99958 T95 (61–64) 1.03762
PG25 (MW) 196.2022 PG80 (MW) 451.524 VG19 (p.u.) 1.04577 VG76 (p.u.) 0.99539 T102 (65–66) 0.95931
PG26 (MW) 280.9463 PG85 (MW) 0 VG24 (p.u.) 0.99640 VG77 (p.u.) 0.97826 T107 (68–69) 0.95758
PG27 (MW) 98.34095 PG87 (MW) 0.95058 VG25 (p.u.) 0.97686 VG80 (p.u.) 1.01302 T127 (80–81) 1.05250
PG31 (MW) 0.751755 PG89 (MW) 483.822 VG26 (p.u.) 0.94265 VG85 (p.u.) 0.97493 QC34 (MVAR) 3.111
PG32 (MW) 18.9298 PG90 (MW) 2.75380 VG27 (p.u.) 1.01799 VG87 (p.u.) 0.94034 QC44 (MVAR) 29.931
PG34 (MW) 0.070676 PG91 (MW) 0 VG31 (p.u.) 1.03403 VG89 (p.u.) 1.03117 QC45 (MVAR) 29.497
PG36 (MW) 4.986125 PG92 (MW) 1.17943 VG32 (p.u.) 0.99471 VG90 (p.u.) 1.02089 QC46 (MVAR) 28.169
PG40 (MW) 1.913409 PG99 (MW) 16.5592 VG34 (p.u.) 1.00824 VG91 (p.u.) 1.04970 QC48 (MVAR) 0
PG42 (MW) 1.394682 PG100 (MW) 200.116 VG36 (p.u.) 0.99818 VG92 (p.u.) 1.01643 QC74 (MVAR) 24.96
PG46 (MW) 13.76368 PG103 (MW) 23.1161 VG40 (p.u.) 0.99148 VG99 (p.u.) 1.02329 QC79 (MVAR) 28.765
PG49 (MW) 209.701 PG104 (MW) 99.6802 VG42 (p.u.) 1.02358 VG100 (p.u.) 0.99312 QC82 (MVAR) 27.479
PG54 (MW) 48.30631 PG105 (MW) 0.13269 VG46 (p.u.) 0.98153 VG103 (p.u.) 1.05004 QC83 (MVAR) 24.519
PG55 (MW) 26.09714 PG107 (MW) 0.19020 VG49 (p.u.) 1.00041 VG104 (p.u.) 1.05559 QC105 (MVAR) 27.063
PG56 (MW) 80.54259 PG110 (MW) 0.42630 VG54 (p.u.) 0.99326 VG105 (p.u.) 0.96614 QC107 (MVAR) 6.934
PG59 (MW) 128.7814 PG111 (MW) 33.7688 VG55 (p.u.) 1.05871 VG107 (p.u.) 0.94274 QC110 (MVAR) 29.781
PG61 (MW) 146.4049 PG112 (MW) 5.1539 VG56 (p.u.) 1.05977 VG110 (p.u.) 1.00997

Fuel cost ($/h) 131457.8
Power loss (MW) 96.68278

Voltage deviation (p.u.) 0.730363

Table 10. Results of the proposed MRao-2 algorithm and other algorithms for case 4.

Algorithm ASO TFWO MPA Rao-1 Rao-2 Rao-3 MRao-2

Fuel cost ($/h) 133,610.8 132,132.2 131,942.6 131,817.9 131,490.7 131,793.1 131,457.8

Power loss (MW) 61.83332 65.55476 71.94402 93.85931 95.46617 93.95222 96.68278
Voltage deviation (p.u.) 0.658779 0.961026 1.152593 1.328297 0.998901 1.192274 0.730363

Time (s) 800.709 809.028 1022.262 807.969 804.5724 806.71149 1160.264
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Figure 13. The voltage profile of the MRao-2 for case 4.

Figure 14. Convergence characteristics of all methods for case 4.

Figure 15. The voltage profile of the MRao-2 for case 5.
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Table 11. Optimal settings of control variables for case 5 using the proposed MRao-2.

Variables Value Variables Value Variables Value Variables Value Variables Value

PG1 (MW) 3.0911 PG62 (MW) 6.37571 PG113
(MW) 7.09147 VG59 (p.u.) 1.036427 VG111 (p.u.) 1.03604

PG4 (MW) 7.265278 PG65 (MW) 298.824 PG116
(MW) 0 VG61 (p.u.) 0.956257 VG112 (p.u.) 0.97545

PG6 (MW) 79.79656 PG66 (MW) 284.31 VG1 (p.u.) 1.01134 VG62 (p.u.) 1.054308 VG113 (p.u.) 1.04051
PG8 (MW) 0.20039 PG69 (MW) 400.029 VG4 (p.u.) 1.03191 VG65 (p.u.) 0.974536 VG116 (p.u.) 0.97347
PG10 (MW) 332.3392 PG70 (MW) 7.71916 VG6 (p.u.) 1.02025 VG66 (p.u.) 1.00127 T8 (8–5) 1.09856
PG12 (MW) 73.21883 PG72 (MW) 0.27496 VG8 (p.u.) 0.94257 VG69 (p.u.) 1.020322 T32 (25–26) 0.90257
PG15 (MW) 6.500848 PG73 (MW) 6.45688 VG10 (p.u.) 0.94115 VG70 (p.u.) 0.979919 T36 (17–30) 0.9
PG18 (MW) 5.979357 PG74 (MW) 5.52285 VG12 (p.u.) 0.97438 VG72 (p.u.) 1.030921 T51 (37–38) 0.90084
PG19 (MW) 1.346065 PG76 (MW) 2.53255 VG15 (p.u.) 1.05303 VG73 (p.u.) 1.005468 T93 (59–63) 1.09369
PG24 (MW) 1.582226 PG77 (MW) 0.22016 VG18 (p.u.) 1.04361 VG74 (p.u.) 1.020992 T95 (61–64) 0.96853
PG25 (MW) 159.4184 PG80 (MW) 363.967 VG19 (p.u.) 0.98928 VG76 (p.u.) 1.019236 T102 (65–66) 0.93325
PG26 (MW) 215.2208 PG85 (MW) 0.07633 VG24 (p.u.) 0.96523 VG77 (p.u.) 1.034034 T107 (68–69) 0.91076
PG27 (MW) 0.110372 PG87 (MW) 4.60698 VG25 (p.u.) 1.04943 VG80 (p.u.) 1.036756 T127 (80–81) 0.9
PG31 (MW) 1.978596 PG89 (MW) 434.560 VG26 (p.u.) 1.00787 VG85 (p.u.) 1.049239 QC34 (MVAR) 0.20760
PG32 (MW) 2.320654 PG90 (MW) 0.12767 VG27 (p.u.) 0.97993 VG87 (p.u.) 1.059658 QC44 (MVAR) 0.00941
PG34 (MW) 0.120587 PG91 (MW) 17.5246 VG31 (p.u.) 0.98609 VG89 (p.u.) 1.010104 QC45 (MVAR) 0.26098
PG36 (MW) 5.158081 PG92 (MW) 1.45348 VG32 (p.u.) 0.94097 VG90 (p.u.) 0.963199 QC46 (MVAR) 0.07600
PG40 (MW) 32.66632 PG99 (MW) 4.11549 VG34 (p.u.) 0.94553 VG91 (p.u.) 1.042132 QC48 (MVAR) 0.24244
PG42 (MW) 3.238611 PG100 (MW) 206.177 VG36 (p.u.) 1.00105 VG92 (p.u.) 1.040622 QC74 (MVAR) 0.2194

PG46 (MW) 4.574268 PG103 (MW) 35.1167 VG40 (p.u.) 0.97223 VG99 (p.u.) 0.943471 QC79 (MVAR) 5.6 ×
10−5

PG49 (MW) 161.9397 PG104 (MW) 1.01542 VG42 (p.u.) 0.97289 VG100 (p.u.) 0.951227 QC82 (MVAR) 0.00622
PG54 (MW) 28.01801 PG105 (MW) 15.1016 VG46 (p.u.) 0.98664 VG103 (p.u.) 1.004165 QC83 (MVAR) 0.27248
PG55 (MW) 0.389909 PG107 (MW) 0 VG49 (p.u.) 1.00712 VG104 (p.u.) 0.987921 QC105 (MVAR) 0.03938
PG56 (MW) 12.21136 PG110 (MW) 18.5235 VG54 (p.u.) 1.04523 VG105 (p.u.) 0.943759 QC107 (MVAR) 0.27336
PG59 (MW) 108.0116 PG111 (MW) 35.5095 VG55 (p.u.) 1.05831 VG107 (p.u.) 0.960449 QC110 (MVAR) 0.23428
PG61 (MW) 122.726 PG112 (MW) 2.19141 VG56 (p.u.) 0.96064 VG110 (p.u.) 1.00083

Fuel cost ($/h) 100738.5
Power loss (MW) 88.04623

Voltage deviation (p.u.) 0.778536

Table 12. Results of the proposed MRao-2 algorithm and other algorithms for case 5.

Algorithm ASO TFWO MPA Rao-1 Rao-2 Rao-3 MRao-2

Fuel cost ($/h) 103,847.47 101,747.68 101,981.69 101,981.17 101,078.92 101,297.12 100,738.54

Power loss (MW) 58.3333 85.062475 71.168974 89.992651 90.296046 91.006497 88.04623
Voltage deviation (p.u.) 0.6645742 04387701 0.7712916 1.1227076 1.1595186 0.9923019 0.778536

Time (s) 792.735 802.82732 1013.509 800.827 803.4047 798.4426 1136.06

Figure 16. Convergence characteristics of all methods for case 5.
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5. Conclusions

In this article, a new technique has been proposed for finding the optimum solution
to the OPF problem incorporating renewable energy sources considering the fuel cost,
transmission loss, emission, and improvement of the voltage profile. To overcome the
shortcomings of the original Rao-2, the MRao-2 algorithm has been proposed using the
quasi-oppositional and levy methods. The superiority and effectiveness of MRao-2 have
been checked based on two standard test systems (IEEE 30-bus system and IEEE 118-bus
system) with or without RES. It is obvious from the results that the MRao-2 provided a
better solution of the objective function for all cases over other algorithms employed in the
comparison. The obtained results using MRao-2 in comparison with those obtained using
other recent techniques show that the proposed MRao-2 is superior to these algorithms for
normal, contingency states and with incorporating RES whatsoever the scale of the power
system which shows the strength of the MRao-2 to solve the real-life application.
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