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Abstract: The severity of software bug reports plays an important role in maintaining software quality.
Many approaches have been proposed to predict the severity of bug reports using textual information.
In this research, we propose a deep learning framework called MASP that uses convolutional
neural networks (CNN) and the content-aspect, sentiment-aspect, quality-aspect, and reporter-aspect
features of bug reports to improve prediction performance. We have performed experiments on
datasets collected from Eclipse and Mozilla. The results show that the MASP model outperforms
the state-of-the-art CNN model in terms of average Accuracy, Precision, Recall, F1-measure, and the
Matthews Correlation Coefficient (MCC) by 1.83%, 0.46%, 3.23%, 1.72%, and 6.61%, respectively.

Keywords: bug reports; severity prediction; multi-aspect features; deep learning

1. Introduction

In software maintenance and development, bug reports play an important role be-
cause they provide much valuable information describing the problems encountered in
software operations. Based on this information, one or more analysts, namely triagers,
decide processing priorities and assign bug reports to software developers for correction.
As shown in past studies [1–6], the severity attribute of a bug report is an important factor
that influences its processing priority in the schedule of bug fixing activities that follow.
When a bug report is submitted to a bug tracking system (BTS), such as Bugzilla (https:
//www.bugzilla.org, accessed on 7 July 2021) or MantisBT (https://www.mantisbt.org,
accessed on 7 July 2021), the reporter generally assigns a severity level to the bug re-
port based on personal judgement. However, the manual severity assignment process
can be subjective and error-prone [3–6]. Therefore, research on severity prediction has
attracted much attention [5,6]. Many schemes have been proposed that use machine
learning [2–4,7–23] or information retrieval techniques [3,4,7,14,16,17,24].

To predict the severity level of a bug report, many features of the bug report have
been investigated, including the unstructured text in the Summary and Description fields,
the Product and Component attributes, and Reporter information. Figure 1 shows as
an example bug report #576700 of Mozilla Firefox in which a severity level of Major is
assigned. Although research studies have been conducted to investigate the effectiveness of
severity prediction using multiple features, e.g., [9,10,21,23], to the best of our knowledge,
deep learning techniques have not been comprehensively applied to exploit the abundant
information in the multiple features of bug reports.

In this paper, we propose a deep learning approach we call Multi-Aspect-based
Severity Prediction (MASP) that uses convolutional neural networks (CNN) [25–27] to
learn the content-, sentiment-, quality-, and reporter-aspect features of bug reports. With
the effectiveness of the learning capability of the CNN model, MASP achieves performance
improvements for severity prediction. In particular, this paper answers the following
research questions:
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1. Does MASP outperform the state-of-the-art approaches in bug severity prediction?
2. How does each aspect feature influence the prediction performance?
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Figure 1. An example of Mozilla Firefox bug report #576700.

To investigate the effectiveness of MASP, we have performed experiments on seven
datasets extracted from Eclipse and Mozilla and have compared its performance to that
of two other severity prediction schemes [20,23]. The results show that the proposed
MASP model outperforms the state-of-the-art CNN model eCNN [20] in terms of average
Accuracy, Precision, Recall, F1-measure, and the Matthews Correlation Coefficient (MCC)
by 1.83%, 0.46%, 3.23%, 1.72%, and 6.61%, respectively. The main contributions of this
study are summarized as follows:

• We propose a novel severity prediction approach called MASP to predict the severity
of bug reports using convolutional neural networks to learn multi-aspect features of
bug reports.

• We perform experiments on two large open source projects (Eclipse and Mozilla).
The experimental results show that MASP outperforms the state-of-the-art CNN
model eCNN [20] in terms of average Accuracy, Precision, Recall, F1-measure, and
MCC. MASP also outperforms another prediction model RF-PSO [23] considering
multi-aspect features in terms of average Accuracy, Precision, F1-measure, and MCC.

• We also perform extensive experiments with a variety of feature configurations to
investigate the influence of various aspect features. The sentiment-aspect and reporter-
aspect features show the benefits in improving Precision and MCC. The quality-aspect
features are beneficial for improving Accuracy, Recall, and F1-measure.

The rest of this paper is organized as follows. Section 2 presents an overview of the
related work. Section 3 describes the problem definition and explains the proposed MASP
model in detail. Section 4 describes the experimental process and its results. Section 5
discusses threats to the validity of this research. Section 6 concludes this paper.

2. Related Work

As machine learning technology is applied to mining software artifacts, various text-
based severity prediction schemes for bug reports have been proposed. For example,
Menzies and Marcus proposed a prediction scheme called SEVERIS that uses information
gain to extract informative words and then learns the classification rules with a rule-based
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classifier for the bug reports of the NASA PITS dataset [2]. Lamkanfi et al. [3] proposed
a prediction scheme using the Naïve Bayes (NB) model and applied the scheme on three
open source projects, Eclipse, Mozilla, and GNOME. Later, they investigated the prediction
performance of four classification models, namely, NB, Multinomial Naïve Bayes (MNB),
1-Nearest Neighbor (1NN), and Support Vector Machines (SVM) [4]. As shown in a recent
survey [6] of 27 research papers published from 2010 to 2017, many machine learning
classification models, such as k-Nearest Neighbor (kNN) [24], SVM [4], Random Forest [12],
and the Bagging Ensemble model [11], have been used to construct bug severity prediction
models. This survey also shows that 26 types of features were investigated in these papers.
Most studies consider a small number of bug report features, and 96% of the surveyed
studies exploit unstructured text data. Among the surveyed papers, only one study [10]
considered nine quantified bug features that the authors studied more extensively for bug
severity and fix-time prediction in their later work [21].

With advances in prediction schemes, more bug report features are being discussed in
recent research. Sabor et al. [22] extended their previous work [13] to propose a severity
prediction scheme that considers the similarity of stack traces and equivalence relationships
of categorical features. Although their experimental results show that utilizing stack traces
can improve prediction performance, their experiments only consider bug reports with at
least one stack trace. Tan et al. [28] in response to the abundant discussions on software
bugs in social media, proposed a prediction scheme using the logistic regression model. In
their approach, bug reports are enhanced with sentences extracted by BM25 [29] from the
Stack Overflow website. However, they do not discuss other features. In [23], an ensemble
approach called Random Forest–Particle Swarm Optimization (RF-PSO) is proposed to
train a Random Forest (RF) model with various features. A Particle Swarm Optimization
(PSO) scheme is used to adjust the weights of the features. The experimental results show
that RF-PSO achieves the highest prediction performance with the configuration of content-,
quality-, and reporter-aspect features.

With the rapid development of deep learning technologies, prediction schemes for
severity prediction have been proposed recently. In the work of Ramay et al. [20], a severity
prediction scheme using a convolutional neural network (CNN) model is proposed to
learn the emotion and textual information in historical bug reports. Their experimental
results show that the CNN model can outperform a previous prediction model, EWD-
Multinomial [16], which uses the MNB approach. However, this CNN model only considers
emotion and textual features. In the work of Kukkar et al. [18], a prediction scheme called
BCR is proposed that uses a CNN and Random Forest with boosting. As opposed to the
CNN model used as a classifier in [20], the CNN model in the BCR scheme extracts feature
vectors from n-gram data. It then uses the RF model with boosting processes to process the
feature vectors for severity prediction. Compared with a hybrid scheme using the MNB
model [15], BCR achieves significant improvements in prediction performance. However,
BCR exploits only textual features.

Based on the above literature review, the deep learning technology shows a promising
development trend in the severity prediction work. Considering multi-aspect features
also plays an important role in helping the prediction model achieve higher performance.
These observations motivate this work to design a deep learning approach considering
multi-aspect features.

3. Research Methodology
3.1. Problem Definition

In this work, the severity prediction problem is modeled as a binary classification
problem to sort an incoming bug report bri in a set of bug reports B into one of two severity
groups: Severe and Non-severe. We denote the class of bug reports by CB. Consequently,
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the severity prediction problem for a bug report bri is defined to predict the severity ŝi of
bri with a classification model h:

ŝi = argmax
j

P
(

CB = cj

∣∣∣bri, θh

)
(1)

where cj ∈ {Severe, Non− severe} and θh represents the parameter set of the classification
model h.

For this work, bug reports maintained by Bugzilla for various software projects are
used to construct the learning model. In Bugzilla, the severity of each bug report is
classified according to seven categories: Blocker, Critical, Major, Normal, Minor, Trivial,
and Enhancement. Table 1 provides their definitions [30]. For this study, bug reports with
the severity levels of Blocker, Critical, and Major are considered Severe. Bug reports with
the severity levels of Minor and Trivial are considered Non-severe. The bug reports with the
Enhancement level are ignored because these reports are requests for new functionalities.
The bug reports with the Normal level are also neglected as in past studies [3,31,32] because
the Normal level is the default option in bug reporting and requires further inspection to
confirm its severity [33].

Table 1. Severity levels used in Bugzilla.

Severity Description

Blocker The bug may block the development and/or testing work. No workaround
exists.

Critical The report describes critical bugs, such as crashes, loss of data, and severe
memory leaks.

Major The report describes a major loss of a function.

Normal The reported bug is a routine issue, such as some loss of functionality
under specific circumstances.

Minor The report describes a minor loss of a function or another problem where
an easy workaround exists.

Trivial The reported bug is a cosmetic problem.
Enhancement The report is a request for an enhancement.

3.2. Approach Overview

In this paper, a deep learning prediction model, MASP, is proposed that uses convolu-
tional neural networks to predict the severity of a bug report bri. In MASP, various features
are extracted from bug reports according to four features: the content-aspect feature f C

i , the
sentiment-aspect feature f E

i , the quality-aspect feature f Q
i , and the reporter-aspect feature

f R
i . Therefore, the bug report bri is expressed as:

bri = f C
i , f E

i , f Q
i , f R

i (2)

f C
i =wi

1, wi
2, . . . , wi

j, . . . (3)

f E
i =ei (4)

f Q
i =qR

i , qS
i , qA

i , qL
i (5)

f R
i =ri (6)

where wi
j represents the j-th word token in bri, ei is the emotion score from sentiment

analysis, qR
i is the number of the steps to reproduce in bri, qS

i is the line number of the stack
traces, qA

i is the number of attachments, qL
i is the line number of bri, and ri is the reporter

importance score.
Figure 2 illustrates the prediction process of MASP. The features of the four aspects are

extracted from training bug reports (Section 3.3). In MASP, the CNN prediction models are



Mathematics 2021, 9, 1644 5 of 16

trained using these features (Section 3.4). Then, the multi-aspect features are also extracted
from testing bug reports for severity prediction.
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Figure 2. Prediction process of MASP.

3.3. Feature Processing

Four aspects of features are extracted from the bug reports: content-aspect, sentiment-
aspect, quality-aspect, and reporter-aspect. In this section, the processing steps for these
features are described.

3.3.1. Content Feature Processing

In this work, the unstructured text data of the Summary field are extracted as the
content-aspect information because they provide important descriptions about the prob-
lems encountered. In MASP, the text data are first processed through four steps to extract
word tokens: tokenization, stopword removal, word inflection, and lemmatization. Table 2
illustrates the processing steps for Mozilla bug report #332186. Thereafter, word embedding
vectors are used to represent these word tokens.

(1) Tokenization: The unstructured text data generally contain words, punctuation marks,
and symbols. In this step, the symbols in “[ ] > < = * + − ( ) & \/# $ % ‘ ’ “ ” { } ˜

| ˆ” are removed because they do not convey meaningful information for severity
prediction. The word tokens are also separated.

(2) Stopword Removal: The second step is to remove the stopword tokens, including
function words such as articles and prepositions that are mainly used in accordance
with grammatical rules and common words that usually do not contribute to the main
semantics of the document [34]. Since stopwords commonly appear in documents,
they are not valuable for classification tasks. In this work, we use the English stopword
list of the Natural Language Toolkit (NLTK) [35] to remove stopwords.

(3) Word Inflection: The third step is to perform a simple inflection process by converting
words from their plural form into their singular form. Otherwise, the same word will
have different word vectors for its plural and singular forms.

(4) Lemmatization: In this step, each word is converted to its base form. For example,
“selecting” is converted to “select” as shown in Table 2. This step also converts the
uppercase letters to lowercase letters.
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Table 2. Text preprocessing in MASP.

Operation Output

Original Text The wrong message is quoted if a different email message is highlighted
when selecting ‘quote message’

Tokenization ‘The’, ‘wrong’, ‘message’, ‘is’, ‘quoted’, ‘if’, ‘a’, ‘different’, ‘email’,
‘message’, ‘is’, ‘highlighted’, ‘when’, ‘selecting’, ‘quote’, ‘message’

Stopword Removal ‘wrong’, ‘message’, ‘quoted’, ‘different’, ‘email’, ‘message’, ‘highlighted’,
‘selecting’, ‘quote’, ‘message’

Word Inflection ‘wrong’, ‘message’, ‘quoted’, ‘different’, ‘email’, ‘message’, ‘highlighted’,
‘selecting’, ‘quote’, ‘message’

Lemmatization ‘wrong’, ‘message’, ‘quote’, ‘different’, ‘email’, ‘message’, ‘highlight’,
‘select’, ‘quote’, ‘message’

To construct a CNN classification model, the content-aspect features are converted
into word embedding vectors because word embedding is effective in representing the
contextual semantic information [36,37]. In this work, Word2Vec [38] is used to generate
word embedding vectors. In the Word2Vec model, there are two approaches for word vector
generation: the Continuous Bag-of-Words (CBOW) model and the Skip-gram model [39].
In the CBOW model, the vector of the target word is calculated based on a window of
the surrounding words. In the Skip-gram model, the target word is used to predict the
surrounding words. Previous work [38,39] has shown that the Skip-gram model is slower
than the CBOW model but provides better representation for infrequent words.

In this work, MASP uses the Skip-gram model to compute the word embedding
vectors. The dimensionality of the word vectors is 100 and the window size is 5. The
datasets constructed by Lamkanfi et al. [40] are used to train the word embedding vectors.
The datasets contain bug reports of Eclipse and Mozilla from January 2006 to December
2013. The datasets do not include duplicate bug reports nor reports of severity level
Enhancement. Bug reports of severity level Normal are discarded in this work. From the
datasets, we choose bug reports of seven open-source products: CDT, JDT, Platform, Core,
Firefox, Bugzilla, and Thunderbird. The bug reports of PDE are not considered because
their number is less than 1000 after report removal. Table 3 shows the details of the datasets.

Table 3. Datasets for word vector training and severity prediction.

Project Product # Severe BR # Non-Severe BR Total

Eclipse
CDT 734 359 1093
JDT 1367 1140 2507

Platform 4123 1761 5884

Mozilla

Core 15,237 2931 18,168
Firefox 16,313 5920 22,233

Thunderbird 4936 1864 6800
Bugzilla 958 1181 2139

3.3.2. Sentiment Feature Processing

In software engineering research, various sentiment analysis schemes, such as
EmoTxt [41], SentiCR [42], SentiStrength-SE [43], and Senti4SD [44], have been proposed
to perform polarity detection for software artifacts. In general, the emotion score of each
text is calculated and the text is accordingly classified into one of three classes: positive,
negative, or neutral.

In this work, we use Senti4SD to calculate the emotion score because it achieves
superior performance over SentiCR and SentiStrength-SE, as shown in [44]. For each
bug report, Senti4SD calculates the emotion score based on the textual information. For
example, the sentiment polarity of Mozilla bug report #332186 is negative.
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3.3.3. Quality Feature Processing

Quality-aspect features improve the performance of severity prediction [9,23] and
provide important information on bug resolution for software maintenance [45–48]. We
follow previous work [9,23] to extract four kinds of quality-aspect features for training
CNN prediction models.

(1) The number of the steps to reproduce qR
i : The steps needed to reproduce can provide

important information for developers to reproduce the stated bug. In general, the
Pearson Chi-square univariate tests in [23] show that this feature is statistically sig-
nificant for the Severe decision in their study. MASP uses a parser to calculate the
number of steps in each bug report.

(2) The line number of stack traces qS
i : Stack traces reveal the execution information of

call stacks. As studied in [48] for Eclipse, stack traces provide candidate locations
for the resolution of almost 60% of bug reports with stack traces. In a study [23],
the line number of the stack traces is statistically significant for the Severe decision
if a considerable number of bug reports have stack traces. MASP uses a parser to
calculate the line number of the stack traces.

(3) The number of attachments qA
i : On the BTS, bug reporters may use attachments such

as code segments or screenshots to explain the stated bugs. As shown in a study [23],
the number of attachments is statistically significant for the Severe decision in most
cases. In this work, MASP extracts this number as a quality-aspect feature.

(4) The number of lines in the bug report qL
i : As shown in a study [23], a more severe

bug report is generally longer. In this study, the line number of each bug report is
calculated as a quality-aspect feature for MASP.

These four quality-aspect features are calculated from the content of bug reports. They
are normalized in the range of 0 to 1 for further CNN model training and prediction.

3.3.4. Reporter Feature Processing

In a BTS, a bug report usually accumulates threads of comments or discussions about
the stated bug and the possible resolutions. The interactions among the reporters can be
modeled as a social network. Based on the social networking model, the importance of
the reporter to the software development is calculated as a reporter-aspect feature. In
this work, we adopt the Developer Prioritization (DP) model [8], an extension of Leader-
Rank [49], as the social networking model to calculate the reporter-aspect feature. As shown
in [8,23], the reporter importance feature is beneficial for improving the performance of
severity prediction.

Algorithm 1 illustrates the DP model. To construct a social network of n reporters, a
pseudo-root node u0 is added with bi-directional links to every reporter ui. The adjacency
matrix A denotes the comment relationships among the reporters, where aij is the number
of comments from ui to uj. The score si(t) of ui is the node score at time t, and Ts is a
constant to control the convergence time to a steady state. For node ui, the out-degree is oi.

Algorithm 1 Importance scoring for reporter-aspect features.

Input: the adjacency matrix A for reporters u0, . . . , un
Output: the importance score sRI

i for ui
1: Initialize si(0) = 1, 1 ≤ i ≤ n, and s0(0) = 0
2: for t = 1 to Ts do

3: Calculatesi(t) =
n
∑

j=0

aji
oj

sj(t− 1)

4: end for

5: Return sRI
i =

s0(Ts )
n +si(Ts)

s0(Ts )
n +max

1≤i≤n
si(Ts)

for each ui.

The importance score sRI
i . shows the degree of influence of reporter ui in the social

interactions. If sRI
i is close to 1, reporter ui is very active in participating in the resolution
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activities and is also often involved in discussions of severe bug reports. In this work, the
convergence constant Ts is 85.

3.4. CNN-Based Prediction Model

In this work, we construct a prediction model using CNN [25–27] to learn the char-
acteristics of multi-aspect features. Figure 3 depicts the CNN model. The content-aspect
features are first converted to word vectors in the embedding layer. The embedding
layer also converts the sentiment-aspect, quality-aspect, and reporter-aspect features to
a one-dimensional vector to represent the meta-information of the bug report. Then, the
word vectors are processed in a convolutional layer, and another convolutional layer is
constructed to process the one-dimensional metadata vector. Both convolutional layers are
constructed using a CNN model with 128 neurons of kernel size 1. The activation function
is tanh. In the convolutional layers, the convolution filter (the kernel) is applied on the
input data to generate feature maps. The main idea is to acquire the most important feature.
Therefore, the important features can be identified.
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Figure 3. CNN prediction model.

The output of the convolutional layer is forwarded to a max-pooling layer to reduce
its dimensionality. This is a down-sampling process to extract the most significant charac-
teristics. The max-pooling layer can reduce the training time and decrease the overfitting
effect. Then, a join layer is used to merge the output data of the max-pooling layers from
feature representations together. A fully connected layer is used as the hidden layer to
learn more knowledge. Finally, a 2-node fully connected layer is used as the output layer
to derive the final prediction results.

4. Experiments

To validate the effectiveness of the proposed approach, this study follows the perfor-
mance validation approach adopted in previous severity prediction studies [3,20] using
datasets collected from real software projects. Experiments were conducted with bug
reports from real software projects to evaluate the effectiveness of the proposed MASP
model. This section first describes the setup of the experiments and then discusses the
results in relation to the research questions.
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4.1. Setup of Experiments

In the experiments, we use the datasets collected by Lamkanfi et al. [40] to evaluate
MASP and other prediction schemes. Details of the datasets used in the experiments are
given in Table 3. In the experiments, we follow the cross-product validation approach used
in [20] for performance evaluation. The bug reports of six products are used as the training
data, and the bug reports of the remaining product are used as the test data. The validation
process is iterated 7 times and the 7 products are tested in rotation.

The MASP model is implemented with TensorFlow 2.2 and Keras 2.3.1. Table 4 shows
the implementation parameters used in this work to construct the MASP model. We also
implement two other prediction models for performance comparison: eCNN [20] and
RF-PSO [23]. Since there are various configurations of the RF-PSO model using different
features to train the Random Forest model, this work evaluates the RF-PSO model that
achieves the highest prediction performance with the configuration of content-aspect,
quality-aspect, and reporter-aspect features.

Table 4. The implementation parameters of the MASP model.

Layer (Type) Output Shape Param # Connected to

Input_1 (None, 6, 1) 0
Input_2 (None, 100) 0
Embedding_1 (None, 100, 100) 362600 Input_2
Convolution_1 (None, 6, 128) 256 Input_1
Convolution_2 (None, 100, 128) 12928 Embedding_1
Max_pooling_1 (None, 1, 128) 0 Convolution_1
Max_pooling_2 (None, 1, 128) 0 Convolution_2
Flatten_1 (None, 128) 0 Max_pooling_1
Flatten_2 (None, 128) 0 Max_pooling_2
Concatenate_1 (None, 256) 0 Flatten_1, Flatten_2
Dense_1 (None, 128) 32896 Concatenate_1
Dense_2 (None, 2) 258 Dense_1

In the experiments, the prediction models are evaluated with five metrics: Accuracy,
Precision, Recall, F1-measure, and the Matthews Correlation Coefficient (MCC) [50]. The
metrics Accuracy, Precision, Recall, and F1-measure are general performance metrics to
evaluate classification models. As shown in [51], MCC has advantages over Accuracy and
F1-measure in binary classification problems because MCC is a symmetric measure that
considers all categories in the confusion matrix. The metrics are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 =
2× Precision× Recall

Precision + Recall
(10)

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(11)

where TP is the number of the correctly predicted severe reports, TN is the number of
the correctly predicted non-severe reports, FP is the number of the bug reports that are
incorrectly predicted as severe, and FN is the number of the bug reports that are incorrectly
predicted as non-severe. Table 5 shows the confusion matrix.
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Table 5. The confusion matrix for severity prediction.

Actual Class

Predicted Class Severe Non-Severe

Severe (Positive) TP FN

Non-severe (Negative) FP TN

4.2. Results

Two research questions are studied in the experiments:

(1) Does MASP outperform the state-of-the-art approaches in bug severity prediction?
(2) How does each aspect feature influence the prediction performance?

To answer the first research question RQ1, we compare the MASP model against
two severity prediction models: eCNN [20] and RF-PSO [23]. eCNN is a state-of-the-
art severity prediction model that is constructed using CNN. Moreover, eCNN exploits
content-aspect and sentiment-aspect features to achieve performance improvements over
EWD-Multinomial [16] and a topic-enhanced prediction scheme [14]. The experimental
results in [20] show that the CNN model can effectively achieve performance improvements
over the MNB model used in EWD-Multinomial [16]. RF-PSO is an ensemble approach
achieving high prediction performance using content-aspect, quality-aspect, and reporter-
aspect features by adjusting their weights. However, the contextual information of content-
aspect features is not considered in the Random Forest model. In this study, these two
models are evaluated because they use features of multiple aspects.

4.2.1. RQ1: Performance Comparisons

Tables 6–8 show the performance results of the cross-product validation for MASP,
eCNN, and RF-PSO with different datasets. From these tables, we see that MASP outper-
forms eCNN and RF-PSO on average in terms of Accuracy, Precision, F1-measure, and
MCC. RF-PSO outperforms MASP and eCNN in terms of average Recall, but it has the
lowest average Accuracy, Precision, and MCC scores. The results show that RF-PSO has
more False-Positive (FP) results in the experiments. Therefore, although RF-PSO has the
best average Recall score, programmers may need to spend more time in processing bug
reports wrongly predicted as severe.

Table 6. Prediction performance of MASP.

Product Accuracy Precision Recall F1 MCC

CDT 0.7363 0.7856 0.8349 0.8095 0.3841
JDT 0.7264 0.7275 0.7966 0.7605 0.4454

Platform 0.7565 0.8470 0.7963 0.8209 0.4438

Core 0.8633 0.9151 0.9226 0.9188 0.4858
Firefox 0.7743 0.8075 0.9089 0.8552 0.3641

Thunderbird 0.7708 0.8109 0.8924 0.8497 0.3796
Bugzilla 0.6665 0.5843 0.8840 0.7035 0.3981

Average 0.7563 0.7825 0.8623 0.8169 0.4144
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Table 7. Prediction performance of eCNN.

Product Accuracy Precision Recall F1 MCC

CDT 0.7271 0.7828 0.8213 0.8016 0.3665
JDT 0.7084 0.6992 0.8164 0.7533 0.4093

Platform 0.7405 0.8552 0.7579 0.8037 0.4319

Core 0.8484 0.9139 0.9045 0.9092 0.4517
Firefox 0.7699 0.8227 0.8750 0.8480 0.3796

Thunderbird 0.7684 0.8107 0.8885 0.8478 0.3749
Bugzilla 0.6361 0.5678 0.7837 0.6585 0.3072

Average 0.7427 0.7789 0.8353 0.8031 0.3887

MASP Impr. 1.83% 0.46% 3.23% 1.72% 6.61%

Table 8. Prediction performance of RF-PSO.

Product Accuracy Precision Recall F1 MCC

CDT 0.7262 0.7242 0.9563 0.8242 0.3148
JDT 0.6645 0.6266 0.9525 0.7559 0.3593

Platform 0.7624 0.7715 0.9391 0.8471 0.3722

Core 0.8708 0.8895 0.9660 0.9262 0.4412
Firefox 0.7617 0.7636 0.9779 0.8576 0.2673

Thunderbird 0.7600 0.7598 0.9789 0.8555 0.2887
Bugzilla 0.5075 0.4759 0.9885 0.6424 0.2068

Average 0.7219 0.7158 0.9656 0.8156 0.3215

MASP Impr. 4.77% 9.32% −10.70% 0.16% 28.9%

The significance of the performance differences was further statistically analyzed
using t-tests on their results of Accuracy, F1-measure, and MCC. For MASP and eCNN, the
null hypothesis H11

0 is that there is no difference between MASP and eCNN. If p ≤ 0.05,
the null hypothesis H11

0 is rejected. Similarly, the second null hypothesis H21
0 is that there is

no difference between MASP and RF-PSO. In the t-tests, the p-value is 0.00125 for H11
0 and

the p-value is 0.00326 for H21
0. Both null hypotheses are rejected. Moreover, the confidence

interval for the average accuracy of MASP from cross-product validation is calculated. The
95% confidence interval is [0.743, 0.770]. This shows that the accuracy of MASP is satisfied.

The performance results and the statistical analysis results show that MASP effectively
outperforms eCNN on average. The improvements mainly come from the quality-aspect
and reporter-aspect features. These results show the promising effectiveness of MASP.

4.2.2. RQ2: Influence of Features

Various aspect features are used to train the CNN models in MASP. In RQ2, we
investigate the influence of the content-aspect (C), sentiment-aspect (S), quality-aspect
(Q), and reporter-aspect (R) features. MASP uses combinations of these features (CS,
CQ, CR, CSQ, CSR, CQR, and CSQR) to perform severity predictions. Table 9 shows the
performance results of these configurations.
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Table 9. Average prediction performance of various configuration of MASP.

Configuration Accuracy Precision Recall F1 MCC

CS (eCNN) 0.7427 0.7789 0.8353 0.8031 0.3887
CQ 0.7523 0.7783 0.8537 0.8122 0.3998
CR 0.7486 0.7841 0.8509 0.8098 0.4109

CSQ 0.7508 0.7812 0.8505 0.8113 0.4056
CSR 0.7504 0.7854 0.8534 0.8118 0.4161
CQR 0.7524 0.7788 0.8575 0.8134 0.4031

CSQR 0.7563 0.7825 0.8623 0.8169 0.4144

The results show that CSQR outperforms other configurations in terms of Accuracy,
Recall, and F1-measure. We also find that the quality-aspect and reporter-aspect features
can be especially beneficial for improving prediction performance. For the configurations
with only two kinds of multi-aspect features, CQ achieves the best performance in terms
of average Accuracy, Recall, and F1-measure, while CR achieves the best performance in
terms of average Precision and MCC. Although eCNN is a special case of MASP with
configuration CS, we notice that eCNN achieves the lowest performance in terms of
average Accuracy, Recall, F1-measure, and MCC. For the configurations with only three
kinds of multi-aspect features, CQR achieves the best performance in terms of average
Accuracy, Recall, and F1-measure, and CSR achieves the best performance in terms of
average Precision and MCC.

The significance of the performance differences was further statistically analyzed
using t-tests. In the statistical analysis, t-tests were conducted with three null hypotheses
for the configurations with only two kinds of multi-aspect features on their results of
Accuracy, F1-measure, and MCC. For CS and CQ, the null hypothesis H12

0 is that there is
no difference between CS and CQ. If p ≤ 0.05, the null hypothesis H12

0 is rejected. Similarly,
the second null hypothesis H22

0 is that there is no difference between CS and CR, and the
third null hypothesis H32

0 is that there is no difference between CQ and CR. In the t-tests,
the p-value is 0.00020 for H12

0, the p-value is 0.04181 for H22
0, and the p-value is 0.74558 for

H32
0. The results suggest that there is a significant performance difference for CS and CQ as

for CS and CR. For CQ and CR, the null hypothesis H32
0 is not rejected because CQ cannot

consistently outperform CR in terms of Accuracy, F1-measure, and MCC.
From these results, the sentiment-aspect and reporter-aspect features show the benefits

in improving Precision and MCC. The quality-aspect features are beneficial for improving
Accuracy, Recall, and F1-measure.

5. Threats to Validity and Limitation

The proposed prediction model can help the triaging process in handling bug reports.
The prediction results can be also applied to other tasks of mining software artifacts, such
as code smell prediction [52] and developer recommendation [53]. However, there are
some possible threats of this study. These factors include the construct validity, internal
validity, and external validity.

• Construct Validity: The first threat to the construct validity is related to the suitability
of our evaluation metrics: Accuracy, Precision, Recall, F1-measure, and MCC. Because
these metrics have been used in many bug severity studies, this threat is limited by the
research. Another threat to the construct validity is that we use Senti4SD to calculate
the emotion scores of bug reports. Although Senti4SD is a state-of-the-art approach, it
is constructed with Stack Overflow documents, not bug reports. However, the threat
of using Senti4SD should be limited in performance comparisons because eCNN also
uses Senti4SD to calculate emotion scores [20]. Another threat to the construct validity
is related to the setting of hyperparameters for deep learning algorithms. In this
work, we do not adopt an optimization algorithm to fine-tune the hyperparameters.
Although the performance of MASP reported in this paper may not be the best, this
threat should be limited for the generalizability of the proposed MASP model.
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• Internal Validity: We implemented eCNN from scratch, based on paper [20]. Although
we verified the implementation and the results, there could be some implementation
differences and undiscovered bugs. Another threat to the internal validity is that the
implementation details of text preprocessing for stopword removal, word inflection,
and lemmatization also affect the performance. However, these threats should have
limited effects on the performance comparisons.

• External Validity: We applied the sentiment-aspect, quality-aspect, and reporter-aspect
features to the MASP model to predict the severity of bug reports for two projects,
Eclipse and Mozilla. There is a threat that the results may not be generalizable to other
projects. The second threat to the external validity is that we only consider bug reports
managed by Bugzilla. However, the current results are promising.

The proposed prediction model has the following limitations. First, a large scale
dataset is required because the deep learning model has the small data challenge [54].
Therefore, the performance of the proposed prediction model is limited if the number of
bug reports of the software project is small. Second, the word embedding processing of the
proposed prediction model also needs a large-scale text corpus to train high-quality word
vectors. Therefore, the performance of the proposed prediction model is also limited if the
text corpus for word vector training is small.

6. Conclusions

Severity prediction for bug reports has attracted much attention and many schemes
have been proposed. In this study, we consider content-aspect, sentiment-aspect, quality-
aspect, and reporter-aspect features to improve prediction performance. A CNN-based
classification approach, MASP, is proposed for predicting the severity of bug reports.

To investigate the effectiveness of MASP, experiments were conducted using cross-
product validation with bug reports collected from the Eclipse and Mozilla projects. The
experimental results show that MASP outperforms the state-of-the-art CNN approach
eCNN and outperforms another prediction model RF-PSO in most performance metrics.
There are two main reasons for the effectiveness of MASP. Firstly, more types of aspect
features are considered in MASP than in eCNN. Therefore, MASP achieves higher average
F1 and MCC scores than eCNN. Secondly, the deep learning layers in MASP consider the
contextual relationships existing in the multi-aspect features. However, the features are
considered independent in RF-PSO. Therefore, MASP also achieves higher average F1 and
MCC scores than RF-PSO.

Overall, the promising results of this work demonstrate that the CNN deep learning
model can effectively learn the characteristics of multi-aspect features for handling the
binary severity prediction problem. Considering features of many aspects is potentially
beneficial for improving the prediction performance. Therefore, more distinctive features,
such as the quality measures of software products [55], will be explored for further perfor-
mance improvements. Moreover, the hyperparameter optimization problem issues will
be investigated. A systematic scheme will be devised to fine-tune the hyperparameters
of the deep learning CNN model. In the future, the performance of MASP on software
projects maintained in different BTS systems will also be studied. These investigations will
be beneficial for achieving more improvements in future severity prediction models.
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