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Abstract: This paper constructs an emergency quantity discount contract to explore the inherent
law of the contract coordinating the supply chain with stochastic market demand and price and
the risk-averse supplier. Meanwhile, the conditional value-at-risk (CVaR) risk measure criterion
is revised to study the influence of supplier’s risk aversion attitude on supply chain coordination.
The results show that supplier risk aversion will cause the bifurcation of the relevant factors in the
supply chain under the stochastic price. Within the bifurcation region, the supply chain cannot be
coordinated; out of the bifurcation region, the supply chain can achieve coordination. The supply
chain related factors’ variation range in the bifurcation region is related to the step size of the risk
aversion factor and the normal distribution function’s variance of the market demand, and it increases
with the latter.

Keywords: stochastic price; suppliers risk aversion; quantity discount contract; supply chain coordi-
nation; CVaR

1. Introduction

The use of contracts to coordinate the supply chain is an important research field in the
current supply chain management field. There are many types of supply chain contracts. A
quantity discount contract is the most commonly used one, and it has many forms. The
quantity discount contract in this paper refers to an agreement in which the unit wholesale
price provided by the supplier is inversely proportional to the retailer’s order quantity. The
contract is mainly used for small profits, but the quick turnover of industrial products or
time-sensitive fresh agricultural and sideline products or seasonal clothing industries.

The initial research on the use of quantity discount contract to coordinate supply
chains was mostly carried out on the premise of fixed market prices and a stable market
external environment. Monahan [1] took the lead in researching quantity discount contract.
Cachon [2] applied quantity discount contract to coordinate the simplest secondary supply
chain. Huang et al. [3] introduced quantity discount contracts to restrain retailers’ potential
incentives to encourage returns. Sun et al. [4] investigated the effectiveness of quantity
discount contracts in slowing down the spread of bankruptcies among supply chain
members. Ogier et al. [5] proposed a batch model integrating quantity discounts for local
planning problems. Kwong et al. [6] used Stackelberg game theory to establish a joint
optimization model of manufacturers and retailers considering quantity discount contracts.

The above studies are all about the benchmark quantity discount contract. Later
scholars have conducted extensive research on the application of quantity discount con-
tracts in practical problems. The research involves delayed payment, energy, trade credit,
transportation, and so on. Yu et al. [7] proposed a power supply chain coordination model
based on quantity discount contracts. Sheen and Tsao [8] considered the coordination of
the quantity discount contract and delayed payment of the retailer’s transportation cost.
Wang and Liu [9] studied the role of trade credit and quantity discounts in supply chain co-
ordination after considering the impact of sales efforts on market demand. Zhang et al. [10]
studied the use of quantity discount contracts to coordinate supply chains when there is a
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risk of trade credit default. Zhou and Kim [11] proposed the optimal concession contract
design method between the port authority and two container terminal operators under
different quantity discount revenue sharing schemes. Zhang et al. [12] discussed the issue
of the multi-period newsvendor problem with stable demand and quantity discounts.

With gradual deepening of research, the scope of study gradually involves supply
chain coordination issues under the circumstances of market demand fluctuations and
changes in production costs. Peng et al. [13] explored the quantity discount contract model
of the fashion supply chain under uncertain income and random demand. Zhao et al. [14]
investigated the supply chain coordination problem of demand interruption in the fashion
supply chain with revenue-sharing contract and linear quantity discount contract. Lee [15]
studied the quantity discount contract between the manufacturer and the retailer under
a stochastic two-period inventory model. Most of the research mentioned above objects
are the most straightforward secondary supply chains, and some scholars have studied
more complex supply chains. Nie and Du [16] discussed the quantity discount contract
coordination mechanism in a binary supply chain composed of one supplier and two
retailers. Huang et al. [17] studied the quantity discount contract to coordinate a supply
chain composed of a retailer and multiple suppliers. Zhang et al. [18] considered the
fixed life of the product and explored the coordination problem of a production-inventory
integrated system with a quantity discount under the condition of limited productivity
and deterministic demand. Zheng et al. [19] considered the quantity discount contract of
the new product supply chain composed of one supplier and multiple retailers under the
two independent procurement and joint procurement cases.

After the 2008 financial crisis, scholars and business managers recognized the im-
portance of supply chain risk management. Scholars have begun to study the problem
of diversifying risks when participants are averse to risks due to emergencies under the
premise of stable market prices. Agrawal and Seshadri [20] proposed using quantity
discount contracts to diversify the losses caused by risk-averse retailers. The research
mentioned above mainly studies the methods of diversifying risks without quantitative
estimation of risks. Later, many scholars introduced quantitative risk management meth-
ods in financial management into supply chain risk management. Liang et al. [21] studied
a supply chain system with a risk-neutral manufacturer as the leader and a risk-averse
retailer as the follower based on the VaR (value-at-risk) method. Bai and Liu [22] proposed
a robust optimization method to solve the supply chain network design problem using the
variable probability distribution through the fuzzy VaR modelling method. Rockfellar and
Uryasev [23,24] proposed to use conditional value-at-risk (CVaR) as a risk measurement
criterion for the limitations of VaR theory. As a result, CVaR has become a popular method
for studying supply chain risk management. Tao et al. [25] proposed a CVaR way to
measure overdue penalties to incorporate decision-makers risk aversion. Chen et al. [26]
established an improved newsboy model with random default probability to reduce the
default loss using CVaR as the measurement criterion.

Analyzing the literature shows that some consider the random changes in market
prices caused by emergencies, but the supply chain participants remain risk-neutral. Some
thought participants’ risk aversion caused by emergencies but did not consider the random
fluctuations of market prices. The literature that considers multi-factor disturbances such as
random changes in market prices and risk aversion among participants is still relatively rare.
Therefore, this paper considers whether the supply chain can be effectively coordinated
using quantity discount contracts under the simultaneous disturbance of multiple factors
such as random market demand, random market prices, and supplier risk aversion.

In summary, the main contributions of this paper are as follows: (1) Analyze and
revise the existing ‘profit-CVaR’ risk measure criteria. (2) Introduce stochastic price into
the field of supply chain risk management and construct an emergency quantity discount
contract model under multi-factor disturbance. (3) The phenomenon of bifurcation and
mutation in supply chain coordination is discovered and analyzed.
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The rest of the paper is structured as follows: Section 2 constructs the benchmark
quantity discount contract model, the emergency quantity discount contract model under
the condition of price stability, and the emergency quantity discount contract model under
the stochastic price. In Section 3, the limitations of the existing “profit-CVaR” risk measure
criteria are analysed, and relevant proofs are given. On this basis, an emergency quantity
discount contract model under the condition of stochastic price and supplier risk aversion
is further constructed. Section 4 provides a specific numerical example and analyzes the
results of the example in detail. The conclusion is given in Section 5.

2. Quantity Discount Contract Model and Assumptions
2.1. Benchmark Quantity Discount Contract

Take the simplest secondary supply chain as the research object to construct the
benchmark quantity discount contract. Let p0 be the market equilibrium price of the
product, which is a fixed value. cs and cr are the marginal production cost and sales
cost of the product, and c = cr + cs; gs and gr are the marginal stock-out loss costs of
suppliers and retailers, respectively, and g = gr + gs. v is the marginal residual value of
the missing commodity. w(q) is the wholesale price provided by the supplier, which is
inversely proportional to the order quantity q. x is the random market demand, and D(x) is
the market demand function. Its distribution function and probability density function are
F(x) and f (x) respectively, which are continuously differentiable and differentiable. The
expectation of the demand function is E[D(x)] =

∫ ∞
0 x f (x)dx = µG and the expected sales

volume is S(q) = q−
∫ q

0 F(x)dx. Assuming that the product is a short-life cycle product
and the information between members of the supply chain is completely shared, then:

The retailer’s expected profit function is defined as

Eπr =
∫ q

0 [p0x + v(q− x)] f (x)dx +
∫ ∞

q [p0q− gr(x− q)] f (x)dx− crq− w(q)q
= (p0 + gr − v)S(q)− [w(q) + cr − v]q− gru

(1)

The supplier’s expected profit function is defined as

Eπs = w(q)q− csq− gs[µ− S(q)] = gsS(q) + [w(q)− cs]q− gsµ (2)

The expected profit function of the supply chain is defined as

Eπh = Eπr + Eπs = (p0 + g− v)S(q)− (c− v)q− gµ (3)

2.2. Emergency Quantity Discount Contract under the Condition of Stable Price

When an emergency occurs, it only causes a change in market demand but does
not cause a change in market price. Therefore, the distribution function and probabil-
ity density function become H(x) and h(x). The market demand expectation becomes
E[D(x)] =

∫ ∞
0 xh(x)dx = µH , the expected sales becomes SH(q) = q −

∫ q
0 H(x)dx, the

ending inventory becomes I(q) = q− SH(q), and the shortage becomes L(q) = µH − Sh(q).
After an emergency occurs, when the market demand exceeds the original optimal order
quantity, the supplier will expand production, assuming that the marginal production
cost of expanding production is λ1. If the situation is reversed, the number of remaining
products will be increased, assuming that the marginal processing cost of these products is
λ2. Based on this, the expected revenue function of the retailer, supplier and supply chain
can be obtained respectively:

Eπc
r =

∫ q
0 [p0x + v(q− x)]h(x)dx +

∫ ∞
q [p0q− gr(x− q)]h(x)dx− crq− w(q)q

= (p0 − v + gr)SH(q)− [w(q) + cr − v]q− grµH
(4)

Eπc
s = w(q)q−

∫ ∞
q gs(x− q)h(x)dx− csq− λ1(q− q∗)+ − λ2(q∗ − q)+

= gsSH(q)− [cs − w(q)]q− gsµH − λ1(q− q∗)+ − λ2(q∗ − q)+
(5)
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Eπc
h = Eπc

r + Eπc
s = (p0− v+ g)SF(q)− (c− v)q− gµF− λ1(q− q∗)+− λ2(q∗ − q)+ (6)

2.3. Emergency Quantity Discount Contract under the Condition of Stochastic Price

Assume that emergencies cause rapid changes in market supply and demand and
cause market prices to change randomly and changes in the relationship between sup-
ply and demand. p represents the random market price of the commodity, and satisfies
dp = [p0 + a(x − q)]dx, where a is the market size coefficient. The market demand
distribution function and the probability density function become G(x) and g(x) respec-
tively, the market demand expectation becomes E[D(x)] =

∫ ∞
0 xg(x)dx = µG, and the

expected sales becomes SG = q−
∫ q

0 G(x)dx. Therefore, the ending inventory becomes
I(q) = q− SG(q) and the out-of-stock becomes L(q) = µG − SG(q). The expected profit
function of retailer, supplier, and supply chain can be expressed as

Eπu
r =

∫ q

0
[[p0 + a(x− q)]x + v(q− x)]g(x)dx +

∫ ∞

q
[[p0 + a(x− q)]q− gr(x− q)]g(x)dx− crq− w(q)q (7)

Eπu
s = w(q)q−

∫ ∞
q gs(x− q)g(x)dx− csq− λ1(q− q∗)+ − λ2(q∗ − q)+

= gsSH(q)− [−w(q) + cs]q− gsµG − ˆB(q)
(8)

Eπu
h = Eπu

r + Eπu
s = (p0 − v + g)SG(q)− (c− v)q− gµG + ˆA(q)− ˆB(q) (9)

where ˆA(q) =
∫ q

0 ax2g(x)dx−
∫ q

0 aqxg(x)dx +
∫ ∞

q axqg(x)dx−
∫ ∞

q aq2g(x)dx and ˆB(q) =

λ1(q− q∗)+ + λ2(q∗ − q)+.

3. Emergency Quantity Discount Contract of Supplier Risk Aversion under the
Condition of Stochastic Price
3.1. Analysis of the Existing ‘Profit-CVaR’ Risk Measure

Conditional value at risk (CVaR) is an investment risk measurement method de-
veloped by Rockafella and Uryasev [23,24] based on the value at risk (VaR). It refers to
the average loss value of the portfolio loss exceeding a given VaR value. The specific
mathematical expression of CVaR is

CVaRθπi(x) = E(−X| − X ≥ VaRθπi(x)) =
1
θ

∫
πi(x)<VaRθ∏ i(x)

πi(x) f (x)dx (10)

where −X(x > 0) represents random loss, VaRθ is the VaR value with risk factor θ, and
πi(x) is the profit function.

To simplify the calculation of CVaRθπi(x), RockafeUar and Uryasev proposed and
proved a more general equivalent definition of CVaRθπi(x)

CVaRθπi(x) = max
V∈R

{
V − 1

θ
E[−πi(x) + V]+

}
(11)

Many scholars believe that despite the outstanding advantages of the CVaR criterion,
it is not difficult to find from its definition that CVaR only reflects the situation where
the loss exceeds a given VaR value. In contrast, the case when the profit is higher than
the given level is insufficiently considered. Therefore, it is further proposed to take the
weighted average of the risk-averse person’s expected profit and CVaR as the measurement
criterion, and the maximum measurement criterion is defined as

max{ρEπi(x) + (1− ρ)CVaRθπi(x)} (12)

where ρ ∈ [0, 1].
The analysis shows that although this decision-making method considers the profit of

the entire supply chain system while considering the risk, the optimal ordering strategy
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is derived under decentralized decision-making. Under decentralized decision-making,
it is easy to produce double marginalization effects so that the income of supply chain
members and the income of the entire supply chain cannot reach Pareto optimal at the same
time. Therefore, this paper revises the risk measure criterion under decentralized decision-
making to the risk measure criterion under centralized decision-making. This criterion is
used to study the supply chain coordination problem under centralized decision-making.
The specific expression is defined as

max
{

Eπi(x) + CVaRΘπj(x)
}

(13)

Proposition 1. The revised ‘profit-CVaR’ criterion is better than the original ‘profit-CVaR’ criterion
in measuring risk. It is manifested in that the optimal order quantity obtained under the revised
criterion is not lower than the optimal order quantity obtained under the pre-modified criterion.

Proof. Without loss of generality, take the benchmark quantity discount contract as an
example to prove it. The expected profit function of the retailer, the expected profit function
of the supplier and the expected profit function of the supply chain are respectively

Eπr =
∫ q

0 [p0x ++v(q− x)] f (x)dx +
∫ ∞

q [p0q− gr(x− q)] f (x)dx− crq− w(q)q
= (p0 + gr − v)S(q)− [w(q) + cr − v]q− gru

(14)

Eπs = w(q)q− csq− gs[µ− S(q)] = gsS(q) + [w(q)− cs]q− gsµ (15)

Eπh = Eπr + Eπs = (p0 + g− v)S(q)− (c− v)q− gµ (16)

Under centralized decision-making, from Equation (10), we can get

∂Eπh
∂q

= (p0 + g− v)[1− G(q)]− (c− v) (17)

∂2Eπh
∂q2 = −(p0 + g− v)g(q) < 0 (18)

Equation (12) shows that Equation (10) is a strictly concave function. Let Equation (11)
be equal to zero, and we can get

q∗h = G−1
[

p0 + g− c
p0 + g− v

]
(19)

Under decentralized decision-making, from Equation (10), we can get

Eπs = Eπh − Eπr (20)

According to common sense, the retailer has an optimal order quantity, let

∂Eπs

∂q
=

∂Eπh
∂q
− ∂Eπr

∂q
= 0 (21)

then
(p0 + g− v)[1− G(q)]− (c− v)− ∂Eπr

∂q
= 0 (22)

(p0 + g− v)[1− G(q)]− (c− v) ≥ 0 (23)

q∗s ≤ G−1[
p0 + g− c
p0 + g− v

] = q∗h = q∗ (24)
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Let
Z(q) = max{ρEπs + (1− ρ)[V − 1

Θ
E(V − πs)

+]} (25)

Finding the first-order derivative and the second-order derivative of Equation (19),
respectively, we can get

dZ(q)
dq

= (ρ +
1− ρ

Θ
)

∂Eπs

∂q
(26)

d2Z(q)
dq2 = (ρ +

1− ρ

Θ
)

∂2Eπs

∂q2 < 0 (27)

From Equation (21), we can see that there is an optimal order quantity. Let Equa-
tion (20) be equal to zero, that is, q∗z can be found. The analysis is easy to know that
q∗z = q∗s .

Further, let

Y(q) = max{Eπr(x) + CVaRΘπs(x)} = max{Eπr + [V − 1
Θ

E(V − πs)
+]} (28)

The same can be obtained: q∗y = q∗h = q∗. Namely, q∗y ≥ q∗z .
Therefore, this paper revises the expression of the risk measure criterion as

Y(q) = max
q
{Eπr(x) + CVaRΘπs(x)} (29)

�

3.2. Emergency Quantity Discount Contract Model with Stochastic Price and Supplier
Risk Aversion

Under the new assumptions, the revised ‘profit-CVaR’ criterion is used to measure
risk. A quantity discount contract model of supplier risk aversion is established under
centralized decision-making to coordinate the supply chain. The supplier’s conditional
value-at-risk utility function is defined as

CVaR(πs) =
1
Θ{w(q)q−

∫ q
Θ

q gs(x− q)g(x)dx− csq− λ2 −
∫ ∞

q
Θ

gs(x− q
Θ )gs(x− q

Θ )g(x)dx

= 1
Θ [Eπu

s + gs
∫ ∞

q
Θ
( q

Θ − q)g(x)]dx
(30)

The retailer’s expected return function is defined as

Eπu
r =

∫ q
0 [[p0 + a(x− q)]x + v(q− x)]g(x)dx +

∫ ∞
q [[p0 + a(x− q)]q− gr(x− q)]g(x)dx− crq− w(q)q

= (p0 − v + gr)SG(q)− [cr + w(q)− v]q− grµG + ˆA(q)
(31)

Find the first derivative of Equation (24) to get

∂CVaR(πs)

∂q
=

1
Θ
{∂Eπu

s
∂q

+ gs(
1
Θ
− 1)[1− G(

q
Θ
)]− gsq(

1
Θ
− 1)

1
Θ

g(
q
Θ
)} (32)

Find the second derivative of Equation (24) to get

∂2CVaR(πs)

∂q2 =
1
Θ
{∂2Eπu

s
∂q2 − gs(

1
Θ
− 1) f (

q
Θ
)− gs(

1
Θ
− 1)

1
Θ

f (
q
Θ
)− gsq(

1
Θ
− 1)

1
Θ2 f ′ (

q
Θ
)} < 0 (33)

It can be seen from Equation (27) that Equation (24) is a strictly concave function, so
there is a unique optimal order quantity q∗s . Let ∂CVaR(πs)

∂q = 0, the solution obtained is q∗s .
Find the first derivative of Equation (25) to get

∂Eπu
r

∂q
= (p0 + gr − v)[1− G(q)]− ∂w(q)

∂q
− (cr + w(q)− v)− ∂Â(q)

∂q
(34)
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Find the second derivative of Equation (25) to get

∂2Eπu
r

∂q2 = −(p0 + gr − v)g(q)− ∂2w(q)
∂q2 − ∂w(q)

∂q
− 2a[1− G(q)] < 0 (35)

It can be seen from Equation (29) that Equation (26) is a strictly concave function, so let
∂Eπ

µ
r

∂q = 0, we can get the only optimal order quantity q∗r . When q∗r = q∗s = q∗h, the supply
chain system can achieve Pareto optimal and achieve coordination.

4. Numerical Example

Assuming that a company sells certain emergency supplies, the various parameters
of the goods under the stable market conditions are: po = 300, cr = 50, cs = 100, gr = 10,
gs = 10, v = 80 (see the preceding text for the meaning of the above parameters). Suppose
that the market demand under emergencies obeys the distributions X ∼ N(50, 000, 1002),
X ∼ N(50, 000, 802), X ∼ N(50, 000, 502), and X ∼ N(50, 000, 302) respectively. Discuss
the influence of the change of the risk aversion factor θ in the interval [0.1, 1] and [0.91, 1]
with 0.1 and 0.01 as the steps respectively on the optimal order quantity. See Tables 1 and 2
for details. The impact of the risk aversion factor θ in interval [0.965, 1] with 0.001 as the
step size on various decision variables in the supply chain is shown in Figures 1–5.

Table 1. Changes of the optimal order quantity in different σ when θ ∈ [0.1, 1].

σ = 100 σ = 80 σ = 50 σ = 30

θ = 0.1 48,750 48,750 48,750 48,750
θ = 0.2 48,750 48,750 48,750 48,750
θ = 0.3 48,750 48,750 48,750 48,750
θ = 0.4 48,750 48,750 48,750 48,750
θ = 0.5 48,750 48,750 48,750 48,750
θ = 0.6 48,750 48,750 48,750 48,750
θ = 0.7 48,750 48,750 48,750 48,750
θ = 0.8 48,750 48,750 48,750 48,750
θ = 0.9 48,750 48,750 48,750 48,750
θ = 1 48,750 48,750 48,750 48,750

Table 2. Changes of the optimal order quantity in different σ when θ ∈ [0.91, 1].

σ = 100 σ = 80 σ = 50 σ = 30

θ = 0.91 48,750 48,750 48,750 48,750
θ = 0.92 48,750 48,750 48,750 48,750
θ = 0.93 48,750 48,750 48,750 48,750
θ = 0.94 48,750 48,750 48,750 48,750
θ = 0.95 48,750 48,750 48,750 48,750
θ = 0.96 48,750 48,750 48,750 48,750
θ = 0.97 48,846 48,787 48,750 48,750
θ = 0.98 48,702 48,743 48,797 48,801
θ = 0.99 48,775 48,775 48,775 48,775
θ = 1 48,750 48,750 48,750 48,750

As can be seen from the data in Table 1, when θ changes in the interval of [0.1, 1] with
a step size of 0.1, the optimal order quantity under the risk aversion of the supplier is equal
to the optimal order quantity under the risk neutrality of the participants regardless of the
variance change. It shows that in this case, both risk aversion and variance have no effect
on the performance of the supply chain, and the supply chain can achieve coordination.

It can be seen from Table 2 that in the case of random prices and supplier risk aversion,
when θ changes in the interval [0.91, 1] with a step length of 0.01, the optimal order quantity
under different variances begins to change. When θ is equal to 1, it is the same as the
optimal order quantity in the risk-neutral case.
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Figure 1. The bifurcation figure of optimal order quantity.

Figure 2. The bifurcation figure of retailer’s expected profits.
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Figure 3. The bifurcation figure of the supplier’s expected profits.

Figure 4. The bifurcation figure of the supply chain’s expected profits.



Mathematics 2021, 9, 1791 10 of 12

Figure 5. The trend figure of “πs + CVaR(πr)”.

The X-axis in Figures 1–5 represents the risk aversion factor, that is, the supplier’s
risk aversion degree. The Y-axis of Figures 1–5 respectively represent the optimal order
quantity, retailer’s expected revenue, supplier’s expected revenue, supply chain’s expected
revenue, and the value of “πs + CVaR(πr)”. Figure 1 shows that when σ = 30 and the
risk aversion factor θ = 0.973, the retailer’s optimal order quantity begins to change and
is no longer equal to 48,750. When σ = 50 the optimal order quantity starts to change
when θ = 0.971. When σ = 80 and θ = 0.969, the optimal order quantity begins to
change. When σ = 100, the optimal order quantity starts to change at θ = 0.967. From
the above changes, it can be seen that the optimal order quantity under the coordination
of the quantity discount contract will vary with the evolution of the risk aversion factor.
However, when the risk aversion factor tends to 1, the optimal order quantity under
different market demand distributions will gradually align with the optimal order quantity
under risk-neutral conditions.

In addition, when σ = 30, the optimal order quantity q∗ begins to show bifurcation
mutation from θ = 0.973, and the change interval of q∗ is [48, 561, 48, 867]. The value of q∗

is the smallest when θ = 0.973 and the largest when θ = 0.975. When σ = 50, the optimal
order quantity q∗ begins to show a bifurcating mutation from θ = 0.971, and the change
interval of q∗ is [48, 607, 48, 881], and the value of q∗ is the smallest when θ = 0.975 and
the largest when θ = 0.973. When σ = 80, the optimal order quantity q∗ begins to show
bifurcation mutation from θ = 0.969, and the change interval of q∗ is [48, 588, 49, 017], and
the value of q∗ is the smallest when θ = 0.976 and the largest when θ = 0.975. When
σ = 100, the optimal order quantity q∗ begins to show bifurcation mutation from θ = 0.967,
and the change interval of q∗ is [48, 550, 49, 070], and the value of q∗ is the smallest when
θ = 0.976 and the largest when θ = 0.975.

Similarly, the expected revenue of the retailer in Figure 2, the expected revenue of
the supplier in Figure 3, and the expected revenue of the supply chain in Figure 4 all
have corresponding changes in the corresponding intervals. Figures 1–4 show that in
the bifurcation mutation interval when σ is larger, the optimal order quantity, retailer’s
expected revenue, supplier’s expected revenue, and the entire supply chain’s expected
revenue will oscillate in a wider area, and the above-mentioned factors will oscillate up
and down. On the other hand, Figure 5 shows that the revised ‘Profit-CVaR’ chart shows
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no significant oscillations, indicating that the revised ‘Profit-CVaR’ is more stable as a risk
measure criterion.

5. Conclusions

Under the premise of random market prices, an emergency quantity discount contract
model of retailer’s risk neutrality and supplier’s risk aversion is constructed. This paper
revises the existing risk measurement criteria, studies the coordination problem of the
supply chain under the new risk measurement, and analyzes a numerical example. The
following conclusions can be drawn after the analysis.

In the case of market price randomness and supplier risk aversion, the bifurcation and
mutation phenomenon appears when the quantity discount contract is used to coordinate
the supply chain. Supply chain coordination cannot be achieved in the region of bifurcation
mutation, while supply chain coordination can be achieved outside the region of bifurcation
mutation. Therefore, it can be seen that when suppliers are averse to risk, the managers
in the supply chain should try to avoid the phenomenon of bifurcation and mutation in
the supply chain; in other words: avoid cooperation in the bifurcation and sudden change
areas. Otherwise, the supply chain members will not be able to maximize their benefits at
the same time.

When the decision-maker encounters a risk for the first time, the risk decision-maker
may have an ‘allergic reaction’, that is, the decision-maker will be overly nervous and
even at a loss when facing a small risk. When the risk is large to a certain extent, or the
decision-maker realizes that the risk is very likely to occur, on the contrary, he will not
be particularly sensitive to the risk. The above phenomenon is consistent with objective
reality. For example, when the decision-maker has no experience in handling risks at the
beginning of preventing risks, he is abnormally uncomfortable with the first coming of
risks, and various decision-making errors will often occur. On the other hand, when the
decision-makers have experienced risks, or when the risks must occur, they will calmly
respond instead. This kind of irrational phenomenon at the beginning of the defence risk
can be regarded as a normal objective phenomenon, and managers should treat it correctly.

When a quantity discount contract is used to coordinate a supply chain with random
prices and supplier risk aversion, the relevant elements of the supply chain will undergo
bifurcation and mutation. The larger the standard deviation of the market demand distribu-
tion function, the larger the bifurcation mutation area of each element in the supply chain.
The upper and lower amplitude of each element will increase accordingly. However, the
maximum order quantity that appears in the bifurcation region does not correspond to the
maximum expected return of the supply chain. There is a phenomenon of diseconomies
of scale. This shows that risk decision-makers should try to prevent the occurrence of
bifurcation and mutation when making centralized decisions in management practice.
When risks are about to arise, and the situation is unclear, do not decide to cooperate lightly
and wait until the situation is clear before making a decision.

The research of this paper is based on the premise of complete information symmetri-
cal. Therefore, it only considers the coordination problem of the secondary supply chain
with supplier risk aversion and retailer risk-neutral under the condition of random price.
On this basis, we can further study supply chain coordination in the case of information
asymmetry and risk aversion at the same time between supply and sales parties.
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