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Abstract: The Collatz dynamic is known to generate a complex quiver of sequences over natural
numbers for which the inflation propensity remains so unpredictable it could be used to generate
reliable proof-of-work algorithms for the cryptocurrency industry; it has so far resisted every attempt
at linearizing its behavior. Here, we establish an ad hoc equivalent of modular arithmetics for Collatz
sequences based on five arithmetic rules that we prove apply to the entire Collatz dynamical system
and for which the iterations exactly define the full basin of attractions leading to any odd number. We
further simulate these rules to gain insight into their quiver geometry and computational properties
and observe that they linearize the proof of convergence of the full rows of the binary tree over odd
numbers in their natural order, a result which, along with the full description of the basin of any odd
number, has never been achieved before. We then provide two theoretical programs to explain why
the five rules linearize Collatz convergence, one specifically dependent upon the Axiom of Choice
and one on Peano arithmetic.

Keywords: Collatz sequence; Peano arithmetic; Hydra game; modular arithmetic; dynamical systems;
non-ergodic systems

1. Introduction

In 1937, Lothar Collatz established a conjecture known as the 3n + 1 problem, also
known as Kakutani’s problem, the Syracuse algorithm, Hasse’s algorithm, Thwaites conjec-
ture, and Ulam’s problem. The Collatz problem involves the iterative sequence defined as
follows (see OEIS [1] for the definition of the Collatz map):

an =

{
an−1/2, if an−1 is even
3an−1 + 1, if an−1 is odd

(1)

Among others, Erdős and Conway [2] conjectured that, given any initial term a0,
the sequence always terminates at 1. Conway proved that there is no nontrivial cycle
with a length less than 400, with Lagarias [3] later increasing this lower bound to 275,000.
Conway [2], and Kurtz and Simon [4] also proved that the generalization of the Collatz
problem is undecidable. The conjecture was first verified up to 5.6× 1013 by Leavens et
al. [5] and then to 1015 − 1 by Vardi [6]; then, Oliveira [7] further extended the results
to 5.48× 1018, and as of 2020, it had been verified beyond 268. The Collatz problem is
often stated differently, for example by Terras [8,9], to essentially compress the division by
2 [10,11]:
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an =

{
an−1/2, if an−1 is even
(3an−1+1)/2, if an−1 is odd

(2)

Researchers have tried to model the problem in various ways. Wolfram [12] rep-
resented it as an eight-register machine. Cloney et al. [10] and Bruschi [13] modeled it
as a quasi-cellular automaton, with Zeleny [14] specifically modeling it as a six-color
one-dimensional quasi-cellular automaton. Among some notable recent developments,
Machado [15] provided an interesting clustering perspective on the Collatz conjecture and
Tao [16] demonstrated that almost all Collatz orbits attain almost bounded values.

The dynamical system generated by the 3n + 1 problem is known to create complex
quivers (a quiver is simply a collection of arrows between points forming a set [17], where
the Collatz quiver used here is simply defined as the set of all arrows connecting any natural
number to the next one under the Collatz map) over N, with one of the most picturesque
being the so-called “Collatz Feather” or “Collatz Seaweed”, a name popularized by Clojure
programmer Oliver Caldwell in 2017 [18]. The inflation propensity of Collatz orbits remains
so unpredictable that Bocart showed that it can form the core of a reliable proof-of-work
algorithm for Blockchain solutions [19], with groundbreaking applications to the field of
number-theoretical cryptography as such algorithms are unrelated to primes yet, being
based on the class of congruential graphs and still allowing for a wide diversity of practical
variants. If Bocart thus demonstrated that graph-theoretical approaches to the 3n + 1
problem can be very fertile to applied mathematics, the authors have also endeavored to
demonstrate its pure number-theoretical interest prior to this work [20–24]. In this article,
we refer to the Bocart proof in that expanding it and more precisely endowing it with a
scannable certificate is an important side-result of our approach.

Our methodology consists of using the complete binary tree and the complete ternary
tree (the complete binary tree over odd numbers is defined as 2N∗ + 1 endowed with
the following two linear applications {·2− 1; ·2 + 1} and all their possible combinations,
with the complete ternary tree over the same set in turn defined as 2N∗ + 1 endowed
with operations {·3− 2; ·3; ·3 + 2} and all their possible combinations) over 2N∗ + 1 as a
general coordinate system for each node of the feather. We owe this strategy to earlier
discussions with Feferman [25] on his investigations on the continuum hypothesis, as it is
known that the complete binary tree over natural numbers is one way of generating real
numbers. The last author’s discussion with Feferman argued that morphisms, sections,
and origamis of n-ary trees over N could be a promising strategy to define objects of
intermediate cardinalities between ℵn and ℵn+1, in a manner inspired from Conway’s
construction of surreal numbers [26], which itself began by investigating the branching
factor of the game of Go. Central to our contribution to the Collatz conjecture in this paper
is also the analysis of the branching factor of a zero-player cellular game developing in the
complete binary tree over odd numbers.

2. Related Research
2.1. Goodstein Sequences and Hydra Games

The idea of attacking the Collatz conjecture from the angle of logic and set theory is
not new. Hydra games were first introduced by Kirby and Paris [27], and Arzarello [28]
provided a rather wide outline of how their consideration could, in fact, lead to a set
theoretical solution of the Collatz conjecture. The convergence of Goodstein sequences
indeed, which form the core of Kirby and Paris’ demonstration that no Hydra game can
be lost, cannot be proven in Peano arithmetics alone. Their founding element, however,
which is the base-k hereditary representation of a number n, can be defined without the
axiom of choice.

Definition 1. Let us write any given number n as a sum of powers of a base k. Let us further write
the exponents themselves as sums of powers of a base k; this process continues until we reach 1 in
the exponent. This representation is denoted as the base-k hereditary representation of n.
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The Goodstein sequence is generated by repeatedly increasing or “bumping” base k to
k + 1 and then by subtracting 1. Mathematically, it can be defined by the recursive sequence
G0(n) = n and Gk(n) = B[k + 1](Gk−1(n))− 1. Here, the operator B[b](n) takes the base-k
hereditary representation of n and then substitutes the base with k + 1. An example, as
given by Klein [28], starts with 266:

u0 = 222+1
+ 22+1 + 21 = 266

u1 = 333+1
+ 33+1 + 31 − 1 = 333+1

+ 33+1 + 2 ≈ 1038

u2 = 444+1
+ 44+1 + 2− 1 ≈ 10616

u3 = 555+1
+ 55+1 ≈ 1010,921

Goodstein [29] proved that any such sequence always terminates at 0, but Kirby and
Paris [27] also demonstrated that his theorem cannot be proven in Peano arithmetics alone.
The idea of a Hydra game is similar to the Goodstein sequences, with the name “Hydra”
coming from Greek mythology and describing Hercules’ battle with the Hydra of Lerna,
with any of its multiple heads growing two more each time it is cut. In this game, a tree
represents the Hydra and the game consists of cutting a branch of it (or one of the multiple
“heads") turn by turn. The Hydra then grows according to a set of rules, by growing a
finite number of new heads in response to the cutting. Kirby and Paris [27] proved that
the Hydra is killed by Hercules regardless of the strategy used to cut its heads. They also
proved that, similar to Goodstein sequences, this property cannot be proven by Peano
arithmetics alone, as they more precisely demonstrated that, if the well-ordering hypothesis
for integers (i.e., within Peano arithmetics) could be used to demonstrate the convergence,
then the theorem regarding Goodstein sequences could be reduced to the famous result of
Gentzen [30] named “Gentzen’s consistency proof”, meaning that, from solving the Hydra
game, one may prove the consistency of Peano arithmetics, which cannot be achieved
within Peano arithmetics, as known from Gödel’s incompleteness theorem [31]. Cichon [32]
and Hodgson [33] discussed a similar sequence to that of Goodstein, now called a “weak
Goodstein sequence” and also used in Arzarello [28]. The weak sequence of 266 becomes

u0 = 28 + 23 + 21 = 266

u1 = 38 + 33 + 31 − 1 = 38 + 33 + 2 = 6590

u2 = 48 + 43 + 2− 1 = 48 + 43 + 1 = 65, 601

u3 = 58 + 53 + 1− 1 = 390, 750

Cichon [32] proved the convergence of all weak Goodstein sequences by showing that
one can assign the m-tuplet of the coefficients of the decomposition in base n + 2 to each
term un of any such sequence and then demonstrated that the m-tuplets are well-ordered
in a purely decreasing lexicographic way. In contrast with the Goodstein sequences, the
convergence of the weak sequence can be proven in Peano arithmetics. The abovementioned
results of Cichon [32], and Kirby and Paris [27] were alternatively proven by Caicedo [34]
using proof from the theoretic results of Lob–Wainer’s fast growing hierarchy of functions.
Another excellent work discussing the independence of Goodstein sequences and the
axioms of Peano arithmetics has been produced in Kaplan [35] and Miller [36]’s respective
theses. Kaplan further demonstrated a method for finding non-standard models of Peano
arithmetics (introduced by Thoralf Skolem in 1934, non-standard models of arithmetic
not only behave isomorphically to Peano arithmetic for a well-ordered initial segment
of their set but also contain elements that do not belong to this segment) that satisfy
Goodstein’s theorem using indicator theory, but a more significant contribution is that of
Stępień and Stępień 2017 [37] with their groundbreaking approach to the demonstration
of the consistency of arithmetics.
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Recently, Barina [38] introduced a new algorithmic approach for computational con-
vergence verification of the Collatz problem; his parallel OpenCL implementation reached
a speed of 2.2× 1011 128-bit numbers per second on an NVIDIA GeForce RTX 2080 GPU.
In conformity with the approach of Koch et al. [23], he exploited the particular optimiza-
tion advantage of operating on integers represented in base 2, which we use as well in
this article because the base 2 representation of whole numbers is the most natural when
representing them in a complete binary tree.

It is also worth mentioning that, in an interesting preprint that has not yet been
peer-reviewed as of the writing of this article, Kleinnijenhuis et al. [39] attempted to
apply Hilbert’s paradox of the Grand Hotel to the Collatz problem and used Wolfram
Mathematica for their computations on very large numbers, which has also been simulated
by Christian Koch. (See the Collatz Python Library hosted by his GitHub repository [40].)

2.2. L-Systems and Analogies with Statistical Physics

The founding concept of our approach is to identify inevitable collisions within the
phase space of the Collatz dynamical system between numbers proven to converge and
numbers supposedly not converging to 1. To that end, we first defined an ad hoc coordinate
system of the Collatz phase space, starting from the complete binary tree over 2N∗+ 1. Then,
to describe the non-ergodicity of Collatz orbits, we specifically studied the distribution
of the intersections of the binary and ternary trees, as shown in Section 10. The most
important contribution of this paper to solving the Collatz conjecture is the identification
and demonstration of the five fundamental laws that characterize the basin of attraction of
any odd number, which we can recursively apply to define an infinite L-system (initially
developed by biologist Aristid Lidenmayer in 1968, L-systems are alphabets endowed with
recursive production rules that allow, among others, for the easy representation of biological
growth, in particular in botanics, where they show extensive industrial applications in
generating vegetable shapes in the video game industry) developing within the complete
binary tree and the characterization of some of their most essential emerging properties,
in particular their comparative branching factor. Thus, the objective is to demonstrate
that the L-system starting from number 1 cannot fail to finitely collide with the L-system
starting from any other number, a methodology that may rightly evoke ergodic theory
and statistical physics. Indeed, demonstrating on the one side that the Collatz dynamical
system tends to compress trajectories to certain bottlenecks of its phase space and using
this element of proof to further demonstrate that finite collisions between any two pairs of
trajectories is therefore inevitable is a proof program we borrowed from statistical physics.
However, if the already existing representations of the “Collatz feather” do already exhibit
obvious bottlenecks and phase space confinements, the most essential contribution to their
further understanding lies in establishing an ad hoc coordinate system, endowed with a
practical metric to characterize and demonstrate the nature of these confinements precisely.

3. Contributions to the State-of-the-Art

In acknowledgement of the intellectual influence of the study of quantum non-
ergodicity to the study of discrete dynamical systems (for a more precise example, see [41])
we meant to not reduce this article to its mathematical proofs but rather to accompany
them with novel 3D visualizations of the Collatz phase space, along with specific empirical
measurements of its behavior. As explained in the previous section, both the mathematical
proofs and 3D visualizations are based on the ad hoc algebraic foundations, in particular,
the coordinate system consisting of studying the intersections of both the binary and ternary
trees over odd numbers that we established to gain further insight into the chaoticity of the
Collatz feather. In Figure 1, we outline the fundamental contributions we intend to make
here. Green charts indicate the results obtained from a two-dimensional coordinate system;
purple charts indicate those obtained from a 3D analysis of the feather; and the blue chart
indicates a result obtained from both.
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Figure 1. Structure of the original contributions of this paper.

Fundamentally, our most essential theorems consist of the five rules that exactly define
the basin of attraction of any odd number in the Collatz dynamical system. However, the
emerging properties of those five rules are hard to predict and can be counterintuitive.
They require equally novel developments in mathematical visualization and beyond a
few novel concepts as well. This interplay between conceptual and visual progress is the
reason we endeavored to develop many figures and frameworks, both in 2D and in 3D, and
from graph theory to cellular automata, transfinite set theory, space-filling L-systems, and
caustics. Though not intended ab initio, these many approaches practically complement
each other in achieving what we believe to be one of the finest understandings of the
fundamental chaoticity of Collatz orbits ever achieved.

4. Binary and Ternary Trees as a Novel Coordinate System for the Collatz Basins
of Attraction

Note 0. For all intents and purposes, we define Syr(x) or the "Syracuse action" as "the next
odd number in the forward Collatz orbit of x". Whenever two numbers a and b have a common
number in their orbit, we also note a≡b, a relation that is self-evidently transitive:

(a ≡ b) ∧ (b ≡ c)⇒ a ≡ c

The choice of symbol “≡” is a deliberate one to acknowledge a kinship between our method and
modular arithmetic.

Definition 2. Actions G, V and S: For any natural number a,

1. G(a) := 2a− 1
2. S(a) := 2a + 1.
3. V(a) := 4a + 1 = G ◦ S(a)

Definition 3. Rank: The rank of any odd natural number a is its number of consecutive end digits

1 in base 2. For computer scientists, the rank is thus strictly equivalent to the “number of trailing
ones” or “number of trailing 1 bits” of its binary representation (the number of trailing zeros in any
binary string is also known as count trailing zeros (ctz), and the number of trailing ones are known
as count trailing ones (cto)).
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Definition 4. Types A, B, and C:

1. A number a is of type A if its base 3 representation ends with the digit 2.
2. A number b is of type B if its base 3 representation ends with the digit 0.
3. A number c is of type C if its base 3 representation ends with the digit 1.

In other words, a number of type A belongs to the residue class [2]3, a number of type B belongs
to the residue class [0]3, and a number of type C belongs to the residue class [1]3 in the ring Z/3Z.
In modular arithmetic, using the standard definition of “≡”, we simply have ≡ 2 (mod 3), b ≡ 0
(mod 3), and c ≡ 1 (mod 3). However, we adopted this ABC nomenclature as a simpler way
to assign types to numbers when coding our linearizing algorithms, especially when combining
different properties (e.g., Bup or Ag in Section 2.1, which would have been too cumbersome in the
current notations of modular arithmetic. To remember which is which, one need only remember the
order of ABC: if a, b, and c are respectively of types A, B, and C, then a+1 is dividable by 3, as is c-1;
thus, a is on the left of b and c is on the right of b.

We intend to use the quiver of Figure 2 as a general coordinate system for each node
of the Collatz feather. Paramount to our investigation is the comparative analysis of the
branching factor of the feather compared with that of the binary tree.

1

3

5 7

1513119

17 19 21 23 25 27 29 31

G

G

V

S

V

S S G

V

S

S

S

S

V

S S S

V

G

G

G

G

Figure 2. Quiver connecting all odd numbers from 1 to 31 with the arrows of actions S , V, and G.
The set 2N∗ + 1 is thus endowed with three unary operations without a general inverse that are
noncommutative with G ◦ S = V. Whenever we mention the inverse of these operations, we assume
that they exist on N. Type A numbers are circled in teal, type B is in gold, and type C is in purple.

Figure 3 visualizes the orbits of all numbers from 1 to 15,000 in 3D, with the colors set
by the types of Definition 3: the type A numbers are in teal, the type B ones are in gold, and
the type C ones are in purple. Each branch is generated from the complete sequence of each
number: for an even number, the current branch is rotated in one direction and rotated
in the opposite one for an odd number. Two points, pre and cur containing the previous
and current points of the orbit in the form [x, y, z], are handed over to the rotation function,
which executes the rotation of the current point around a predefined axis. Rotating in
opposite directions for even and odd numbers creates the feather-like construct shown in
the figure.
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Figure 3. Collatz feather rendered in Blender, this time with the same ternary typology as defined in
Definition 4 [42].

Listing 1. Code for rotating the branches of the feather in Figure 3, see [42].
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Figure 3. Collatz feather rendered in Blender, this time with the same ternary typology as defined in
Definition 4 [42].

1 def oddRotation(pre, cur, rot, counter):
2 vec = [cur[0]-pre[0],cur[1]-pre[1],cur[2]-pre[2]]
3 rotation_degrees = -rot/30
4 rotation_radians = np.radians(rotation_degrees)
5

6 axis = [1,0,1]
7

8 rotation_axis = np.array(axis)
9

10 rotation_vector = rotation_radians * rotation_axis
11 rotation = R.from_rotvec(rotation_vector)
12 rotated_vec = rotation.apply(vec)
13 x = pre[0] + rotated_vec[0]
14 y = pre[1] + rotated_vec[1]
15 z = pre[2] + rotated_vec[2]
16

17 return [x,y,z]

Listing 1. Code for rotating the branches of the Feather in Figure 3, see [42].

Although the Collatz feather has often been represented in the literature and in popular
mathematics circles, its fundamental geometry remains very poorly understood. In the
next section however, we identify the five fundamental rules that define the complete basin
of attraction of any point of the feather.

Although the Collatz feather has often been represented in the literature and in popular
mathematics circles, its fundamental geometry remains very poorly understood. In the
next section, however, we identify the five fundamental rules that define the complete
basin of attraction of any point of the feather.
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5. The Five Fundamental Rules of the Collatz Dynamical System

Theorem 1. The following arithmetic rules apply anywhere over the system 2N∗ + 1 endowed
with the Collatz dynamic. Their iteration ad infinitum from any odd number precisely defines the
entirety of the basin of attraction leading to it. (The reader should note that, although we call
them “rules” in anticipation of their use in programming our linearizing algorithm, they
are in fact theorems, which we prove in the next subsections, where operator

∧
is defined as

n∧
i=1

(xi) = x1 ∧ ...∧ xn︸ ︷︷ ︸
n

, with ∧ representing the “AND” boolean operator.)

• Rule One: ∀x odd, V(x) ≡ (x)
• Rule Two: ∀x ∈ N if x is odd, then, SkV(x) ≡ Sk+1V(x) with k odd. If x is even

SkV(x) ≡ Sk+1V(x) with k even.
• Rule Three:

∀{n; y} ∈ N2, ∀x odd non B, 3nx ≡ y⇒
n∧

i=1
(V(4i3n−ix)) ∧ S(V(4i3n−ix)) ≡ y

• Rule Four:

∀{n; y} ∈ N2 , ∀x odd non B, S(3nx) ≡ y⇒
n∧

i=1
(S(4i3n−ix) ∧ S2(4i3n−ix)) ≡ y

• Rule Five:
∀n ∈ N, ∀y ∈ N, ∀x odd non B where 3nx is of rank 1, a ≡ y, a = G(3nx)

⇒
n∧

i=0
(Si(G(3n−ix)) ∧ Si+1(G(3n−ix))) ≡ y

Let us now demonstrate that each of these rules is in fact a theorem.

Definition 5. In reference to Figure 2, we call "vertical odd" a number that can be written V(o),
where o is odd, and "vertical even" if it can be written V(e), where e is even. For example, 5 is the
first vertical odd in N because 5 = 4× 1 + 1 and 9 is the first vertical even number in N because
9 = 4× 2 + 1.

5.1. Proving Rule One

If a is written 4b + 1, then 3a + 1 = 12b + 4 = 4(3b + 1); therefore, a ≡ b.

5.2. Proving Rule Two

Lemma 2. Let a be a number of rank 1; thus, with an odd number p such that a = G(p),
Syr(S(a)) = G(3· p). Let a be a number of rank n so that S−(n−1)(a) = G(p); then,
Syrn−1(a) = G(3n−1· p)

Proof. If a = 2p− 1, p is odd; then, it follows that

S(a) = 4p− 1

3 · S(a) + 1
2

=
12p− 2

2
= 6p− 1 = G(3 · p)

Syr(S(a)) = G(3 · p)
Let us now generalize to the n. If Syr(S(a)) can be written G(3 · p), it is also of rank 1,

whereas S(a) is of rank 2; therefore, the Syracuse action (defined in Note 0) made it lose one
rank. All we have to prove now is that Syr(S2(a)) = S(Syr(S(a))) under those conditions:

3 · (S2(a)) + 1
2

= 6a + 5

S(Syr(S(a))) = S(3a + 2) = 6a + 5 = Syr(S2(a))

If a is of rank n > 1, Syr(a) is of rank n− 1 and Syr(S(a)) = S(Syr(a)).
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Note 3. Since the 3n + 1 action over an odd number n always yields an even result, for any odd
number, the Collatz map is equivalent to computing

(
(n + 1) + n+1

2
)
− 1 or, in plain English,

adding one to the odd number, then halving the result, and then subtracting one. How many
recursive times one can add a half of itself to an even number or, equivalently, what is the largest
k such that 3k

2k n is a natural number for any even n directly depends on the base 2 representation
of n, in particular, the number of n of trailing zeroes in this base. If we consider the Collatz map
of Mersenne numbers m for example, which are defined as m = 2x − 1 with x ∈ N, for any of
them, one can consecutively multiply m + 1 by 3

2 and still yield a natural number for a number of
times equal their rank − 1. Indeed, 31, which is written as 11, 111 in base 2 is of rank 5 because
32 = 25; therefore, if one repeats the action “add to the number+1 half itself”, this yields an even
result exactly four consecutive times. Thus, any strictly ascending Collatz orbit concerns only
numbers a of rank n > 1 and is defined by

(a + 1) ·
(

3
2

)n−1
− 1

While this may seem partly recreational, this property of Collatz orbits is in fact extremely
useful to compress and characterize their non-decreasing segments, as the previous expression
describes the one and only way an orbit can increase under the Syracuse action.

Lemma 4. Let a be an odd number of rank 1 that is vertical even; then, 3a is of rank 2 or more,
and 9a is vertical even. Let a be an odd number of rank 1 that is vertical odd; then, 3a is of rank 2
or more, and 9a is vertical odd.

Proof. If a is vertical even, it can be written as 8k + 1 ∀k : 3a = 24k + 3 and this number
admits an S−1 that is 12k + 1, which is an odd number; therefore, 3a is at least of rank 2.

Moreover, 9a = 72k + 9 and this number admits a V−1 that is 18k + 2, an even
number. Now, if a is vertical odd, it can be written as 8k + 5, and ∀k : 3a = 24k + 15 and
9a = 72k + 45. It follows that 3a admits an S−1 and 9a admits a V−1 of, respectively, 12k + 7
and 18k + 11 and that they are both odd.

Theorem 5. (Rule Two) Let a be a number that is vertical even; then, (a) ≡ S(a) and Sk(a) ≡ Sk+1(a)
for any even k. Let a be a number that is vertical odd; then, S(a) ≡ S2(a) and Sk(a) ≡ Sk+1(a) for
any odd k.

Proof. If a is vertical even, then it can be written as G(p), where p is necessarily ver-
tical (odd or even). We proved that 3p is then of rank 2 or more and that we have
Syr(S(a)) = G(p) so it is necessarily vertical odd (since 3d is of rank 2 or more) so
Syr(a) = V−1(Syr(S(a)) and, therefore, a ≡ S(a). This behavior we can now generalize to
n because, if a is vertical even with a = G(p), then the lemmas we used also provide that
Syrn(Sn(a)) = G(3n · p) and therefore Syrn(Sn(a)) is vertical even for any even n because
3n · p is vertical (even or odd, depending on p only) for any even n.

Now, if a is vertical odd, it can be written as G(p) and p is necessarily of rank 2 or more
because G ◦ S = V. Thus, 3p is vertical (even or odd), and therefore, Syr(S(a)) = G(3p) is
vertical even.

Note 6. Observe that, in the process of proving Rule Two, we also demonstrated that any number
of rank 2 or more is finitely turned into a rank 1 number of type A by the Collatz dynamic and that
any number x of rank 2 or more so that x ≡ S(x) under Rule Two is finitely mapped to a type
A number that is vertical even; therefore, proving the convergence of such numbers is enough
to prove the Collatz Conjecture. In the upcoming sections, they are called the “Ag” numbers
(which one may admit is more practical than calling them “the intersection of residue classes [1]2,
[2]3, and [3]4”), and identified with set 24N∗ + 17.
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5.3. Proving Rules Three and Four

Theorem 7. (Rules Three and Four) Let a be a vertical even number with a = Gn+2(S(b)),
where n and b are odd; then, a ≡ 3

n+1
2 (b). Let a be a vertical even number with a = Gm+2(S(b)),

where m is even (zero included) and b is odd; then, a ≡ S(3
m
2 (b))

Proof. If a = Gn+2(S(b)), by definition, a = 2n+3b + 1. Then, 3 · a + 1 = 3(2n+3b + 1) +
1) = 2n+3 · (3b) + 4. As this expression can be divided by 2 no more than twice, we have
Syr(a) = 2n+13b + 1 = Gn(S(3b)).

Note that, if n = 1, then V−1(Syr(a)) = V−1(22 · (3a) + 1) = 22 · 1
4 · (3b) = 3b, which

is of course an odd number. Therefore, Syr(a) is vertical odd and V−1(Syr(a)) = 3b; thus,
we proved that a ≡ 3b.

If n = 0, then a = 23 · b + 1, so 3(a + 1) = 23 · 3b + 4; therefore, Syr(a) = S(3b) and
thus a ≡ S(3b). From this, we can generalize the progression of numbers that can be
written Gn(x), where x is of rank 2 or more.

Definition 6. Let x be any odd number:

• All "Variety S" numbers above x are written V(x · 22k−1) or S(x · 22k) = 22k+1 · x + 1 and
• all "Variety V" numbers above x are written V(x · 4k) or equivalently S(x · 22k+1) =

4k+1 · b + 1.

Any number g that can be written Gn(V(x)) with x odd and n > 0 may thus be
finitely reduced under the Collatz dynamic to a number that can be written either S(3mx)
or V(3mx) by the repeated following transformation:

(g− 1) ·
(

3
4

)k

+ 1

Therefore, we indeed have that,

• for variety S numbers, 22k+1 · b ·
( 3

4
)k

+ 1 = 2b · 3k + 1 = S(b · 3k), which proves
Rule Four and

• for variety V numbers, 4 · 4k · b ·
( 3

4
)k

+ 1 = 4b · 3k + 1 = V(b · 3k) which proves Rule
Three because Rule One already provides that V(b · 3k) ≡ b · 3k.

Just as in the process of proving Rule 2 we previously characterized and compressed
the only way in which an orbit can ascend under the Syracuse action, proving Rules 3 and
4 incidentally allows one to compress and characterize the only way in which an orbit
can descend under the Syracuse action as well, when Syr is still understood as “the next
odd number in the forward Collatz orbit”. If in plain English the ascending part could be
described as “add one to a number and then half of the result, and then remove one”, the
descending part may be equally described as “remove one from a number and then one
quarter of the result, and then add one”. The monotonicity of this iterated transformation
only depends on the base 2 representation of the initial number, hence the interest in using
{2N∗ + 1; ·2 + 1, ·2− 1} as a coordinate system for the Collatz orbits.

5.4. Proving Rule Five

Any type A number of rank 1 can be written a = G(b), where b is of type B. In
proving Rule Two, we showed that any number of rank n > 1 is finitely mapped by the
Collatz dynamics to G(3n−1 · G−1(S−(n−1)(a))), which combined with Rule Two itself
gives Rule Five.

Figure 4 shows a few applications of Rules Three, Four, and Five plotted in gold.
Rules One and Two are plotted in black. Whenever a number is connected to 1 by a finite
path of black and/or gold edges, it is proven to converge to 1.
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1 ≡
3⇒

1 ≡
17

1 ≡ 17⇒ 3 ≡ 7

3 ≡ 7⇒ 5 ≡ 9

1 ≡
9

1 ≡
9

3 ≡
9

9 ≡
19

3 ≡
7

11 ≡
33

45
≡

89

19 ≡
39

Figure 4. Just a few applications of the five rules starting from 1 ≡ 3 ≡ 5.

6. The Golden Automaton

Definition 7. On {2N+ 1; G, S}, the Turing machine recursively calculating the output of Rules
One, Two, Three, Four, and Five from number 1 onward, in the natural order on N is called the
“Golden Automaton”.

6.1. "Golden Arithmetic"

Our purpose is to develop an ad hoc multi-unary algebra that could found a congru-
ence arithmetic specifically made to prove the Collatz conjecture and which we intend
as an epistemological extension of modular arithmetic, hence our use of the symbol ≡ in
this article rather than the ∼ which is sometimes seen in Collatz-related literature. This
"Golden arithmetic" involves words taken in the alphabet {G; S; V; 3}, which we call in
their order of application, such as in turtle graphics. For example, VGS3 means 3 · S ◦G ◦V

Rules 3, 4, and 5 may now be reformulated as such, without loss of generality as long
as Rules One and Two are still assumed:

• Rule Three: Let b be of type B; then, b ≡ VGS3−1 from b. We will all this action
Rb(x) = 16 x

3 + 1 and it is defined in 6N∗ + 3.
• Rule Four: Let c be of type C; then, c ≡ GS3−1 from c. We call this action Rc(x) = 4x−1

3
and it is defined in 6N∗ + 1.

• Rule Five: Let a be of type A; then, a ≡ G3−1 from a. We call this action Ra(x) = 2x−1
3

and it is defined on 6N∗ + 5.

As Rules One and Two ensure that the quiver generated by the Golden Automaton
branches, with each type B number that is vertical even providing both a new A type and a
new B type number to keep applying, respectively, Rules 5 and 3, we may follow only the
pathway of type A numbers to define a single non-branching series of arrows, forming a
single infinite branch of the quiver. The latter, if computed from number 15, leads straight
to 31 and 27, solving a great deal of other numbers on the way:
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15 ≡ 81 Rule 3
81 ≡ 1025 First type A reached by Rule 3
1025≡ 303 Rule 5
303 ≡ 607 Rule 2
607 ≡ 809 Rule 4
809 ≡ 159 Rule 5
159 ≡ 319 Rule 2
319 ≡ 425 Rule 4
425 ≡ 283 Rule 5
283 ≡ 377 Rule 4
377 ≡ 111 Rule 5
111 ≡ 593 Rule 3
593 ≡ 175 Rule 5
175 ≡ 233 Rule 4
233 ≡ 103 Rule 5
103 ≡ 137 Rule 4
137 ≡ 91 Rule 5
91 ≡ 161 Rule 4
161 ≡ 31 Rule 5
31 ≡ 41 Rule 4
41 ≡ 27 Rule 5

Again, it is in no way a problem but rather a powerful property of the Golden
Automaton that this particular quiver branch already covers 19 steps because each of them
branches into other solutions.

We may follow another interesting sequence to show that, in the same way that
Mersenne number 15 finitely solves Mersenne number 31, Mersenne number 7 solves
Mersenne number 127. This time, we follow a different branch of the Golden Automaton
up to Syr6(127), which we proved is written G(36) because 127 is the Mersenne of rank 7.

By Rule 4, we have the first equivalence 7 ≡ 9 and 9 ≡ 25 ≡ 49.
Therefore, by Rule 2, we also have 25 ≡ 51.
Rule 3 gives 51 ≡ 273 and again 273 ≡ 1457 = G(729) ≡ 127.
The cases of 15 proving the convergence of 31 and 27 and of 7 proving the one of

127 naturally leads us to the following conjecture:

Conjecture 8. Suppose that all odd numbers up to 2n are proven to converge to 1 under the Collatz
dynamic; then, the Golden Automaton finitely proves the convergence of those up to 2n+1 in Peano
Arithmetic.

Indeed, we already have that the Golden Automaton starting with 1 proves 3 by Rule
One; then, 3 proves all numbers from 5 to 15, which in turn prove all numbers from 33 to
127. In the next subsection, we render larger quivers generated by the Golden Automaton
to provide a better understanding of their geometry and fundamental properties and to
demonstrate why it is so and, more generally, how, granted Goodstein sequences converge
(meaning this requires the axiom of choice), it can be proven that they can reach any
number in 2N∗ + 1.

7. The Golden Automaton Well-Behaves as a Collatz Convergence on the Binary Tree

Let us now represent each odd number in the binary tree over 2N∗ + 1 with a cell
having only three possible states:

• Black, meaning the odd number is not (yet) proven to converge under the iterated Collatz
transformation or, equivalently, that it is only equivalent to another black number;

• Gold, meaning the odd number is proven to converge and the consequences of its
convergence have not yet been computed, i.e., it can have an offspring; and
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• Blue, meaning the number is proven to converge and the consequences of its conver-
gence have been computed i.e., its offspring has already been turned gold.

In this ad hoc yet simpler “Game of Life"-like zero-player game, each gold cell yields
an offspring and then turns blue, and whenever a cell is blue or gold, the odd number it
represents is proven to converge. Starting with one cell colored in gold at the positions 1,
the game applies the following algorithm to each gold cell in the natural order of odd
numbers:

1. Rule 1: if a cell on x is gold, color the cell on V(x) in gold;
2. Rule 2: if a cell on x is gold, color the cell on S(x) in gold depending on the precise

conditions of rule 2;
3. If a cell on x of type A is gold, then color the cell on Ra(x) in gold;
4. If a cell on x of type C is gold, then color the cell on Rc(x) in gold; and
5. After applying the previous rules for a gold cell, turn it blue.

Note that, when applying Rb on a type B number equivalent to Rule 1, then for Rc,
the algorithm needs not implement a defined Rb and we can in fact compress it to only
four rules.

Whenever a complete series of odd numbers between 2n + 1 and 2n+1 − 1 is colored
in gold, the game takes it and returns what we call its "computational bonus" namely
all numbers that are higher than 2n+1 − 1 are colored blue and gold, thus giving a clear
measurement of the algorithmic time it takes the Golden Automaton to prove the conver-
gence of each complete level of the binary tree over 2N∗ + 1. From there, we later plot the
evolution of this bonus on linear and logarithmic scales.

Figure 5 illustrates the game we defined for the case n = 6. On the middle image, row
{5;7} was solved with a computational bonus of eight numbers also solved above it. On the
right image, row {9; 11; 13; 15} has a computational bonus of 6. As number 1 is the neutral
element of operation Rc, we leave it in gold during the simulations.

Note that this first implementation of the Golden Automaton was made in Python to
streamline its graphical output but that a later barebone version for maximal scalability
has also been implemented in C++, this time with no graphical output. The Python version
is called “GAI” and the C++ one is called “GAII” (see Section 8).

Figure 5. The five rules completing the binary tree row by row in our first Python implementation of
the Golden Automaton (“GAI”) [42].

Now that the functioning of the Golden Automaton appears in a clearer way, in spite
of the seeming complexity of its rules, we can scale it up to n = 12, which is detailed in the
next six figures (Figures 6–11) (produced by GAI):
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Figure 6. Case 12, instant state of the tree when the seventh row has just been completed.

Figure 7. Case 12, instant state of the tree when the eighth row has just been completed.

To facilitate the observation of each row of the binary tree being covered by the Golden
Automaton, we now zoom into each of them individually(Figure 8–11):

Figure 8. State of row 8 (129 to 255) when it has just been finished.

Figure 9. State of row 9 (257 to 511) when row 8 has just been finished.

Figure 10. At the same instant, state of row 10 (513 to 1023).
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Figure 11. At the same instant, state of row 11 (going from 1025 to 2047: each line has about 100 dots).

The charts shown in Figure 12 (created out of the results obtained by GAI) now plot
the bonus above any row n of the binary tree when the Golden Automaton just finished
proving its entire convergence. The chart on the right plots the result against a logarithmic
scale, with progressions 2.5n (orange line), 3n (green), and 3.5n (red) in comparison, giving
an early indication of the linear behavior of the Golden Automaton at the logarithmic scale,
solving the rows of the binary tree in their natural order and having also solved about 3n

additional odd numbers above any full row 2n that it just solved.

Figure 12. Amount of extra numbers proven to converge above row n when it has just been finished
by the Golden Automaton in either linear or log scales [42].

We also investigated the behavior of the Golden Automaton when mapped on the
ternary tree over odd numbers, that is, the set of odd numbers endowed with operations
{·3; ·3 + 2; ·3− 2}. The automaton still demonstrated the entire rows 3n one after another,
this time with about 6n extra numbers solved above each row. These graphs are shown in
Figure 13 (created out of results obtained by GAI).

Figure 13. Amount of extra numbers proven to converge above row n, this time in a ternary tree,
when it has just been finished by the Golden Automaton, in either linear or log scales [42].

From there, we can thus provide two strategies to finalize a proof of the Collatz
conjecture. The first would be to demonstrate that the Golden Automaton defines a game
that is strictly simpler than a Hydra game over the graph of all unsolved numbers up to any
arbitrary odd integer. The second would be to demonstrate that the comparative branching
factor of the Golden Automaton, as it is diagonal to the binary tree, is strictly above 2
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and that, thus, the population of solved dots can only finitely take over the population
of unsolved ones, or put in another way, that the basin of attraction of any supposedly
diverging odd number grows too fast not to collide with the basin of number 1.

8. Cost and Complexity of the Algorithms for Linearizing the Collatz Convergence

Following insightful comments from the reviewers, a second, leaner version of the
Golden Automaton was written in C++ by Baptiste Rostalski, an intern at Strasbourg
University’s department of computer science, which made it possible to push the results
to line 23 (that is, 223 in the binary tree) to further study its algorithmic complexity, in
particular, to which extent the proportion of unproven nodes above any proven line
n decreases in time. Here, we thus further describe the first version of our algorithm
(“Golden Automaton One” or “GAI”, implemented in Python) and the second, “lean” one
(“Golden Automaton Two or “GAII”, implemented in C++) for maximal scalability and the
reproducible metrics it outputs.

8.1. Golden Automaton I (implemented in Python)

The purpose of this first implementation, although it was conceived with scalability
in mind, remained modularity and the ability to easily output representations within the
binary tree (in 2D and 3D with Blender for the 3D outputs). To minimize complexity, all
numbers that have just been proven are stored in an array and sorted by size. To make sure
no new number is included in this array, it is compared with a second array storing all
previously used numbers, the relevant rule introduced in Subsection 6.1. (The previously
used numbers are now in blue in the 2D representation of Section 7. A binary search
function then executes all searches, and a binary insert function executes all inserts. When a
number is not included in the second array storing the already used numbers, it is inserted
at the correct position of the first array of the proven numbers. After applying all five rules
to all numbers in their normal ascending order, GAI deletes it from the first array (proven
numbers) and inserts it into the second one (used proven numbers). Thus, the algorithm
always takes the first of the proven number and applies it, depending on its type—see
Definition 4.) In this way, the algorithm ensures that the rows is completed as soon as
possible. The algorithm counts the proven numbers per row to output the bonus as soon
as it is completed. Remember that the bonus is the amount of proven numbers in all rows
above the completed row. This procedure allows us to follow the exact sequence of the
proven numbers as well as the exact time of completion of the individual rows.

8.2. Golden Automaton II (Implemented in C++) and Its Output

While the initial Python versions of the Golden Automaton were very modular and
flexible enough to produce various graphical outputs on the fly, during the review process
of this article, we also developed a barebone version to be executed in C++, which reached
line 23. The exact algorithm of this version is described in the Appendix A. The first
confirmation it provided was that the Golden Automaton solved every row while never
proving more than 3n+1 extra numbers above any of them which is shown in Figure 14.
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Figure 14. Amount of extra numbers proven by Golden Automaton II (log scale) after finishing any
row n of the binary tree (x-axis), fit to the 3n+1 function (red).

An even more interesting figure was the evolution of the relative difference between
any row n and its successor n + 1, meaning, when row n is finished, how many numbers
still remain to be solved in row n + 1, in which we confirmed an exponentially decreasing
trend (see Figure 15). This result somehow improved in [16] in that it evidences a trend of
the frequency of presumed unsolved numbers decreasing exponentially with n, yet while
Tao obtained that the complement of its set of presumed unproven numbers attained only
almost bounded values, here, the complementary set is that of proven numbers, of which
the orbit is therefore not almost bounded but bounded.

Figure 15. Log scale of the proportion (in %) of presumed unproven numbers in each row n + 1 when
row n is finished by Golden Automaton II. The line of 1.7(2−n) is shown in red for comparison.

Averaged across pairs of successive rows, the amount of presumed unproven numbers
in every row n + 1 when row n had been proven to exhibit a linear tendency (see Figure 16).
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Figure 16. Average difference between row n and n + 1 in absolute values (not proportion) and
not logarithmic ones.

Although the Golden Automaton II is RAM-intensive (needing a little less than 1.5
TByte of Random Access Memory to go all the way to row 23), we confirmed experimen-
tally that its computing time, which is shown in Figure 17, in n never exceeded 3n − 10,
which, given its barebone structure, is in accordance with the observation that the Golden
Automaton proved less than 3n+1 extra numbers above each row n when it finished.

Figure 17. Cumulative time to compute any row n, with 3n − 10 in red for comparison (log scale).

As Golden Automaton II is based on the same, unchanging five rules we demonstrated
at the beginning of this article, we can now posit that its time complexity is below O(3n),
although we only intend to demonstrate that it is finite with n in the next sections.

9. The Golden Automaton as a Hydra Game

As we mentioned in Section 2.1 the idea of attacking the Collatz conjecture from the
angle of transfinite arithmetic, in particular, the model of the Hydra game is not new, as
Arzarello and others considered it in 2015 [28]. Both Goodstein sequences and Collatz



Mathematics 2021, 9, 1898 19 of 33

sequences iterate base changes, but the Collatz sequences do so in a much less divergent
manner, involving only bases 2, 3, and 4, with each critical step of their trajectory obeying
the following rules:

1. If a number is written x 1 . . . 1︸ ︷︷ ︸
n

in base 2, then it is finitely mapped to the result of

operation G on the number written y 1 . . . 1︸ ︷︷ ︸
n

in base 3 with y = (x− 1)/2. Note that

this is the one and only way an orbit can grow in the Collatz dynamics.
2. If a number is written z 2 . . . 2︸ ︷︷ ︸

n

1 in base 4, then it is immediately mapped to a number

written x 1 . . . 1︸ ︷︷ ︸
2n+1

in base 2.

3. If a number is written s 0 . . . 0︸ ︷︷ ︸
2n+1

1 in base 2, then it is equivalent to the result of operation

S on r 0 . . . 0︸ ︷︷ ︸
n

in base 3 with r as the base 3 representation of s.

4. If a number is written v 0 . . . 0︸ ︷︷ ︸
2n

1 in base 2, then it is equivalent to w 0 . . . 0︸ ︷︷ ︸
n

in base 3

with w as the base 3 representation of v.

The purpose of this subsection is to identify provable fundamental properties of the
Golden Automaton by computationally scaling it up on the full binary tree over 2N∗ + 1,
but this time studying not the vertices but the edges of the graph. To streamline its algo-
rithmic scaling, we use the simplified rules we defined in the previous subsection, again,
without loss of generality. Our precise purpose is to pave the way for a formal demonstra-
tion that proving the convergence of odd numbers up to n is always isomorphic to a Hydra
game, which justifies that we now study edges and not vertices. In Figures 18–21, we color
all of the elements of 24N∗ + 17, for example {17, 41, 65, . . .}, in red; as we demonstrate in
the next section, they are precisely from the “heads” of the Hydra Game.
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Figure 18. Golden Automaton confined to numbers smaller than 32 [42].
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Figure 19. Golden Automaton confined to numbers smaller than 64 [42].
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Figure 20. Golden Automaton confined to numbers smaller than 128 [42].
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Figure 21. Golden Automaton confined to numbers smaller than 256 [42].

Theorem 9. If Goodstein sequences converge, the Collatz conjecture is true.

Definition 8. A Hydra is a rooted tree with arbitrarily many and arbitrarily long finite branches.
Leaf nodes are called heads. A head is short if the immediate parent of the head is the root and long
if it is neither short nor the root. The object of the Hydra game is to cut down the Hydra to its root.
At each step, one can cut off one of the heads, after which the Hydra grows new heads according to
the following rules:

• If the head was long, grow n copies of the subtree of its parent node minus the cut head, rooted
in the grandparent node.

• If the head was short, grow nothing.

Lemma 10. The Golden Automaton reaching any natural number is at worst a Hydra game over
a finite subtree of the complete binary tree over 24N∗ + 17.

Proof. The essential questions to answer in demonstrating either a homomorphism be-
tween a Hydra game and the Golden Automaton reaching any odd number, or that the
Golden Automaton is playing at worst a Hydra game are as follows:

• What are the Hydra’s heads?
• How do they grow?
• Does the Golden Automaton cut them according to the rules (at worst)?

These questions are answered in detail below.

Definition 9. A type A number that is vertical even is called an Ag. The set of Ag numbers is
24N∗ + 17. Type B numbers that verify b ≡ S(b) and type C numbers that verify c ≡ S(c) under
Rule Two are called Bups and Cups, respectively.
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9.1. What Are the Hydra’s Heads?

Ag numbers are the heads of the Hydra. They are 12 points apart on 2N∗ + 1 (24
in nominal value, e.g., 17 to 41), and any Bup or Cup of rank > 1 they represent under
Rule Five is smaller than them since action Ra strictly decreases. Thus, up to the nth Ag,
there are 2n (Bups + Cups) of rank 2 or more and half of them are equivalent to those Ag
(e.g., between 17 and 41, Bup 27 is equivalent to Ag 41, which is equivalent to Cup 31 by
Rule Four).

9.2. How Do They Grow?

Between any two consecutive Ag in 2N∗ + 1, there are

• Eight non-A numbers;
• One at most mapped to the second Ag;
• Three at most “ups” (Bup or Cup) of rank 2 or more.

Moreover, we always have the following:

• Let b be of type B; there are 2b
3 numbers of type Ag that are smaller than V2(b);

• Let c be of type C; there are S(c)
3 numbers of type Ag that are smaller than V2(c);

• Let 3c be of type B, where c is of type C; there are S(c)
3 numbers of type Ag up to Rb(3c)

included; and
• Let 3a be of type B, where a is of type A; there are G(a)

3 numbers of type Ag smaller
than Rb(3a),

which define the growth of the heads. Any supposedly diverging Ag forms a Hydra, as
24N∗ + 17 contains an image of all undecided Collatz numbers and any non-decreasing
trajectory identifies a subtree within this set.

9.3. Does the Golden Automaton Play a Hydra Game?

It could be demonstrated that the Golden Automaton plays an even simpler game as
it branches and thus cuts heads several at a time—unlike Hercules in the regular Hydra
game—in particular cutting some long heads without them doubling. (The reason the
Golden Automaton dominates 24N∗ + 17 so fast is that it plays a significantly simpler game
one could call “Hecatonchire vs. Hydra”, namely a Hydra game where Hercules’ number
of arms also multiplies at each step.) However, as this is needless for the final proof, we
can now simply demonstrate that, even under the worst possible assumptions, it follows at
least the rules of a regular Hydra game.

The computation of 15 ≡ . . . ≡ 27 that we detailed in Subsection 3.1 is one case of
playing the Hydra game by the Golden Automaton; we underlined each use of Rule 5
specifically so that the reader can now report it more easily because, each time this rule is
used, a head (that is, an Ag) has just been cut.

The demonstration that 27 and 31 converge corresponds to the cutting of heads 41 and
161, respectively. This single branch of the automaton having first cut head 17 reaches head
1025 via B-typed numbers 15 and 81. It therefore plays a Hydra game with 1025+7

24 = 43
heads, of which one (17) is already cut at this point and of which at least 8 are rooted (so
cutting them does not multiply any number of heads). This process being independent of
the targeted number, we now have that the reach of any number by the Golden Automaton
is at least equivalent to playing a Hydra game with n heads of which 0 < m < n are rooted.
Even without demonstrating more precise limit theorems for factors n and m (which could
still be a fascinating endeavor), the road is now open for a final resolution of the Collatz
conjecture.

From there, indeed, we know from Goodstein [29] and from Kirby and Paris [27] that
assuming ε0 is well-ordered (that is, assuming the axiom of choice), no Hydra game can be
lost. Since we have that reaching any number n is a Hydra game for the Golden Automaton,
we have that the Golden Automaton cannot fail to finitely reach any natural number.
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10. The Golden Automaton as a Winning Cellular Game Represented as a 3D
L-System, with Some Important Applications in Industrial Cryptography

Beyond graph theory, we want to outline here a different strategy towards a resolution
of the Collatz conjecture (this time in Peano arithmetics and thus independently of the
axiom of choice) by studying the Golden Automaton as a cellular game invading the phase
space defined by the complete binary tree over odd numbers. For this section, we need a
3D representation of the dynamic we studied in Section 7, designed to specifically display
potential collisions between the basins of attraction of number 1 and any supposedly
diverging other number. We employ the same game, that is, a zero-player game that is
significantly simpler than John Conway’s Game of Life and played on the complete binary
tree {2N∗ + 1; G, S}, except that we now allow it to start from any point rather than 1 and
study its development within the basin of 1. The purpose of this approach is both to identify
possibly provable patterns in the way any subbasin would be embedded in the 1-basin
and to simply observe whether the five rules, for any point, finitely spawn a population
of points between any starting number x and 2nx that is bigger than 2n, which would
imply that finite collisions between any two basins are inevitable. Moreover, in terms of
industrial cryptographic applications, this approach provides the first 3D visualization of
the Bocart [19] proof using the pseudorandomness of the inflation propensity of Collatz
orbits as the asymmetric number-theoretical problem to be used to authenticate blockchain
transactions yet that is independent of prime numbers. This 3D visualization, although it
does provide novel theoretical insight on the Collatz conjecture, is practically important
because it now makes the Bocart proof scannable, similar to a QR code.

Figures 22–25 provide a 3D-Visualisation of the Golden Automaton. Figure 22 shows
an orthogonal view of the Golden Automaton starting from 1 (in blue) merged with another
starting from 1457 (in green), which is the first Ag in the trajectory of 127. We input the Ag
rather than 127 itself to specifically study the impact of divergence on the form of the basin.

Let us now compare the inflation propensity of 31, for which Collatz orbit is much
more complex than 127, and observe that, as predicted by the five rules, the figure it
outputs now shows a much more voluminous basin of attraction. The reason this result
was expected is that, under the five rles, the assumed divergence of a number implies that
it leaves a trail of type A numbers (on each of which Rule 5 can be applied) that is strictly
proportional to the inflation propensity of its orbit since for any number x of rank 2 or more,
action 3x+

2 outputs a type A number. The following Figure 24 provides an orthogonal view
of the Golden Automaton starting from 1 (blue) merged with one starting from 161 (green),
which is the first Ag of number 31. As 31 is both lower than 127 in the binary tree and
displays a higher orbit inflation propensity, its overlap ends up much larger than that of
127, as its basin of attraction inflates along with its orbit.



Mathematics 2021, 9, 1898 23 of 33

Figure 22. Orthogonal view of the Golden Automaton starting from 1 (in blue) obtained from the
code in [42]. All its intersections with the automaton starting independently from 1457 (the first
Ag in the forward Collatz trajectory of 127) are shown in green. As expected from our 2D works in
Section 7, the Golden automaton starting from 1 covers all numbers. This figure also provides the first
trigonometric representation of the inflation propensity of Collatz orbits, which Bocart [19] has proven
constitutes a reliable proof for blockchain applications: the number of green lines (overlapping the
inverse orbit of 1457 and that of 1) is directly tied to the inflation propensity of a given orbit; simply
put, the more an orbit inflates, the more green lines are shown on this disc, but their distribution
cannot be faked and thus forms a functional authentication fingerprint. As green lines also represent
particular trajectories, this figure also suggests that other promising proofs, comparable with that of
Bocart, could be obtained from the study of non-ergodic billiards.
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Figure 23. Isometric projection of Figure 22 (code available at [42]). The green lines visible on the
sides represent a binary transformation (e.g., operations S, V, or G) and those visible on the top of the
cone represent ternary operations (e.g., ×3), thus decomposing the correlates (one in base 2 and one
in base 3) of the inflation propensity of the number’s orbit in two dimensions. From this figure, it
could be possible to implement faster proof verification of the Bocart protocol by just scanning the
side lines, though this would admit a certain margin of error.
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Figure 24. Orthogonal view of the Golden Automaton starting from 1 (blue), which overlaps the one
starting from 161 (green). We first observe that the basin of 161 (the first Ag of 31) now occupies a
much larger proportion of the basin of 1 than did the basin of 1457 (the first Ag of 127). Simply put,
the more a number diverges, the longer the trail of type A numbers it leaves and the more its basin of
attraction inflates, ultimately making a collision with the basin starting from 1 inevitable. (Another
important property of Mersenne 31 is that, as defined by OEIS [43], it is “self-contained”, meaning its
orbits contains multiples of itself (i.e., the number 155).) This representation of base 3 correlates with
the inflation propensity of Collatz orbits is in fact directly scannable, similar to a QR code, with the
central truncated caustic forming the standard reference point of the scan and the pseudorandom
distribution of the green lines using a direct verification protocol of the Bocart proof.
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Figure 25. The Golden Automaton starting from 161 with all its collision edges, with the one starting
from 1 shown in green. Although they are related, both the side and top distributions of the green
edges can be used for cryptographic applications. The angle of the display remains important
for scannable applications, as only the central convexoid of the figure may be used as a standard
reference for the scan and must therefore be visible or otherwise indicated even if only the side lines
are scanned.

The convexoid that is the structure of the center of the basin of attraction of any number
appears to be the truncated caustic generated by multiplication by 3 on the binary tree
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projected on the unit circle. In Figure 26, we thus implement the fundamental operations
of the ternary tree, {·3; ·3− 2; ·3 + 2}, thus visualizing the way it develops itself on top of
the binary tree. Operation ·3 is shown in yellow, ·3− 2 is in purple, and ·3 + 2 is in teal.
Number 1 is at exactly π, number 3 is at 2π, number 7 is at π

2 , and number 5 is at 3π
2 .

Figure 26. The ternary tree over the binary tree embedded on the unit circle. The shape of this figure
is essential in generating the pseudorandomness of the inflation propensity of Collatz orbits and,
thus, of the Bocart proof. More generally, it forms the base of the pseudorandomness of conversions
between bases 2 and 3, which led Furstenberg to later state his eponymous ×2× 3 conjecture.

Moreover a truncated caustic generated by the ·3 map on the binary tree is visualized
in Figure 27.

Figure 27. The truncated caustic generated by the ·3 map on the binary tree, this time with gradient-
colored lines from the domain (red) to codomain (yellow), underlining the non-ergodicity of the ×3
map on the binary tree and why other number-theoretical proofs comparable with that of Bocart,
in particular, independent of large prime numbers, may be obtained from the study of non-ergodic
number billiards. The code repository for this figure is also available at [42].
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The shape of the truncated caustic that is the envelope of the family of curves generated
by the ×3 map over the binary tree embedded on the unit circle gives particular insight
into how the chaoticity of conversions between bases 2 and 3 and the chaoticity of the
Collatz map are tightly interrelated. Although it was not our initial objective, we may
comment that a further understanding of the non-ergodicity generated by the ×3 action
on the binary tree, in particular its concentrating Collatz orbits to certain subtrees, may
threaten the long-term solidity of the first Bocart proof, although all the while opening the
way to other protocols inspired from it. The following graphs provide some measurements
of the non-ergodicity generated by the truncated caustic (Figure 28).

Figure 28. Clockwise, from the upper left: number of points on each side of the unit circle (side
7 is “top”, and side 5 is “bottom") after iterations of the multiplication by 3 on number 1. The
top/bottom ratio, on the next figure, converges to approximately 0.7. The next two figures display
the cosine and sine of the multiplication by 3 of each point of the unit circle: on one third of the
domain, this operation multiplies the angle of the starting point by 1.5, and on the other two thirds,
the operation multiplies the angle by 0.75, thus explaining the asymmetry of the truncated caustic, in
turn explaining the non-ergodicity of the ×3 map on the binary tree embedded in the unit circle.

To provide more information about how many numbers the five rules solve, Figure 29
finally analyzes the offspring they generate from any number, which we believe is the most
promising strategy to finalize a Peano-arithmetical proof of the Collatz conjecture. Plotted
are the number of points in the basin of attraction of two Mersenne numbers (31 and 511)
with or without counting the points generated by their divergence to their first Ag against
how high the basin is calculated. Function 2n is always plotted as a reference. The purpose
is to show that the more the Five Rules are iterated, the more the amount of dots within
the basin of attraction increases above 2n. The top-left figure indicates the number of dots
in the basin of 31, and the top-right one indicates those in 161, that is, taking into account
the divergence from 31 to 161. The bottom plots represent the basins of attraction of 511
and 13121, which is the first Ag in the trajectory of 511, again, to take its divergence into
account. The basin of 13121 does not depart from 2n as fast as that of 511 but starts from a
larger number of dots, generated by the 511–13121 divergence.
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Figure 29. The amount N of numbers proven by applying the five rules from points x to 2nx is
plotted here against n. Function 2n is shown in orange as a reference. Clockwise from the upper left,
the starting points are 31, 161, 13121, and 511. [42].

The apparent growth rate of all of the Mersenne numbers from 31 to 8191 is calculated
as the solution for x to ∑n

k=1 xk = N, where N is the number of dots in the basin of the
number that is found between itself and its first Ag (for example, 161 is the first Ag of 31)
and n is the number of multiplications by 2 from the initial number that are needed to
reach the row of this first Ag in the binary tree (for example, n=3 to go from 31 to 161). All
of the growth rates are larger than 2 (orange line) (Figure 30), explaining why the basins of
attraction of each of these numbers cannot fail to collide with that of 1.

Figure 30. The observed growth rates of the basin of attraction of different Mersenne numbers, with
2 in orange for reference.

We already demonstrated in Section 4 that any Ag can be written G(x3n), and it is
precisely the catching of Ag numbers with a large factor n by the Golden Automaton that
increases the quantity of dots in its offspring per given finite series of rows of the binary
tree. Specifically, those Ag numbers, which are by definition as the ones that can be iterated
upon the most by the Golden Automaton are not evenly distributed on the unit circle, and
we postulate that this is the most fundamental reason behind the apparent branching factor
of the Golden Automaton being strictly greater than 2 in any point we calculated. In turn,
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if the branching factor of the Golden automaton tends to always be greater than two, it is
impossible for two separate basins of attraction to cohabitate on the binary tree.

11. Conclusions

Whenever the Collatz conjecture is studied, one cannot fail to quote Paul Erdős’
famous claim that “mathematics may not be ready for such problems"; depending on
one’s epistemological attitude, the quote may either seem discouraging or an incentive
to achieve a novel theoretical breakthrough. This is what we attempted in this article,
primarily by establishing an ad hoc equivalent of modular arithmetic for Collatz sequences
to automatically demonstrate the convergence of infinite quivers of numbers based on five
arithmetic rules we proved by application in the entire dynamical system and which we
further simulated to gain insight into their graph geometry and computational properties.
This endeavor has led us to focus on the origins of the non-ergodicity of the Collatz
dynamical system, which we found in the geometric properties of multiplication by 3 on
the complete binary tree over odd numbers. These symmetry-breaking properties, indeed,
could be further studied in other contexts such as cryptography, harmonic analysis, or the
study of L-functions. In particular, following Bocart, 2018 [19], one can now gain a better
insight into the geometric properties of the pseudorandomness generated by Collatz series
and, even more, by the Collatz basins.

Furthermore, as Bocart had understood well, studying the Collatz map can lead to
promising industrial applications in applied computer sciences, in particular cryptography
and financial technologies (fintech). It is possible that the Golden Automaton we described
in this article is used to successfully weaken the Bocart proof developed from the study of
the inflation propensity of Collatz orbits; however, the endeavor of developing number
theoretical proofs independent of prime numbers must retain all its industrial interest.
As Bocart also understood, it could be possible to extend his work to the 5x+1 map, but
following this work, we believe that a stronger proof that could not be weakened by the
Golden Automaton would be the one based on the inflation propensity of the Juggler
sequence, which is well-known for its Collatz-like chaoticity and defined as follows:

For any {a; k} ∈ N2

ak+1 =


⌊

a1/2
k

⌋
if ak is even

⌊
a3/2

k

⌋
if ak is odd

As the inflation propensity of the Collatz orbits ultimately depends on the nature of
conversions between base 2 and base 3, which Shmerkin [44] has described as being the
fundamental enquiry behind the Furstenberg ×2× 3 conjecture, we predict that advances
in this matter would be the likeliest to weaken the Bocart proof in the future. (Would it be
so, though we already mentioned the Juggler sequence as a promising second version of
the Bocart proof, we believe that the study of non-ergodic number billiards could also be
most fertile in novel cryptographic protocols) To this end, we believe that the truncated
caustic we describe in Figure 26 would be most relevant. In the larger field of using Physical
Uncloneable Functions (or “PUF") to ensure anonymity in electronic cash transactions,
as was studied for example by Fragkos et al. [45] with their promising paradigm of an
“artificially intelligent money”, we believe not only our Golden Automaton but other
Number Theoretic models such as primon gas [46] could provide a useful direction to
develop practical encryption protocols beyond the ubiquitous RSA.
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Appendix A

Appendix A.1. Algorithm of the Golden Automaton II (Implemented in C++ by Baptiste Rostalski)

1 Structure Catalog :
2 let ProvenValues be an array of Integers
3 let ValuesToProcess be a Binary Search Tree
4 let NbProven be an array of Integers
5

6 Procedure Add(C:Catalog,V:number)
7 if V is not in C->ProvenValues then
8 add V to C->ProvenValues
9 add V to C->ValuesToProcess

10 let Pow be the highest inferior power of 2 to V
11 C->NbProven[Pow]:=C->NbProven[Pow]+1
12

13 Procedure main(n : integer)
14 let C be a Catalog
15 l:=0
16 Add(C,3)
17 Add(C,5)
18 while C->ValuesToProcess is not empty do
19 u:= first value of C->ValuesToProcess
20 pop first value of C->ValuesToProcess
21 result:=(u-1)/2
22 k:=u
23 r:=0
24 n:=0
25 while result is odd do
26 result:=(result-1)/2
27 k:=k+1
28 r:=result/2
29 r1:=4*u+1
30 if (k and r are even) or (k and r are odd) then r2:=2*u+1 else

r2:=0↪→

31 if u % 3 = 2 then r3:=(2*u-1)/3 else r3:=0
32 if r3!=0 and (u-1)/4 is odd then r4:=(r3-1)/2 else r4:=0
33 Add(C,r1)
34 Add(C,r2)
35 Add(C,r3)
36 Add(C,r4)
37 if C->NbProven[l]=2^l
38 print NbProven
39 l:=l+1
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