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Abstract: The aim of this paper is to apply the Said Ball curve (SBC) to find the approximate solution
of fractional differential-algebraic equations (FDAEs). This method can be applied to solve various
types of fractional order differential equations. Convergence theorem of the method is proved. Some
examples are presented to show the efficiency and accuracy of the method. Based on the obtained
results, the SBC is more accurate than the Bezier curve method.
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1. Introduction

Algebraic and differential equations have important roles in many mathematical and
engineering problems [1]. Particularly, in recent years, we can find many problems and
mathematical models based on fractional calculus (FCs) in the form of fractional order
derivatives [1–6].

Fractional modeling has become applicable in different sciences during the past three
decades or more. In addition, many physical and engineering topics such as dynamics
of earthquakes, electromagnetic theory, fluid flow, and viscoelastic materials are related
to differential-algebraic equations (DAEs). As we know, in general, form finding the
exact solution of FDAEs is impossible. Thus, finding numerical methods for solving these
problems is among the challenging topics in applied mathematics.

Applying the classical derivatives, we can discuss the changes in a neighborhood of a
point but, in the fractional derivative, we can discuss the changes in an interval. Because of
this property, we can model many physical, mathematical and also natural phenomena
using the fractional derivative.

By a system of DAEs, many physical problems are governed. The homotopy analysis
method (HAM) is among the semi-analytical methods which have been presented by
Liao [7]. Zurigat et al. has applied the HAM to solve the class of FDAEs [8]. For more
applications of the HAM see [9–12]. Ford and Connolly [13] and Diethelm et al. [14]
have studied many techniques and stated their respective strengths and weaknesses. For
numerical and analytical schemes to solve FDEs, the readers can study [15–22].

A cubic polynomial curve described mathematically during the eminent aircraft
design system for the conic lofting surface program CONSURF ([23]). It is extended to
three further distinct generalizations called Said Ball curves (SBCs), DP Ball curves, and
Wang Ball curves for higher degree polynomials.

Some advantages of the Ball functions (BFs) are identified. Cubic BFs can be reduced
to the quadratic Bezier curves (BCs) when the interior control point of the BFs combine with
the Ball basis function. The BF is more efficient in term of computation when generalized
representations of Ball curves is used [24]. Meanwhile, the BF is more competent in terms
of computation compared to the BC and the shape preservative construction properties are
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similar between the Bernstein Bezier basis and the Said Ball basis [24]. For other advantages
of the BFs, see [25].

This point is imperative when it comes to data transfer among Computer Aided
Design (CAD) systems.

In this paper, the BFs are applied to solve the following FDAEs

Dαi xi(r) = fi(r, x1, x2, . . . , xn, x′1, x′2, . . . , x′n), i = 1, 2, . . . , n− 1, 0 < αi ≤ 1, (1)

g(r, x1, x2, . . . , xn) = 0,

xi(0) = xi,0, i = 1, 2, . . . , n

where xi,0 are given known numbers, also fi(..) (i = 1, 2, . . . , n − 1) and g(..) are given
continues functions.

Some papers have solved this problem [26–28]. For example, the numerical solution
of FDAEs was considered by Haar wavelet functions [27]. They derived the Haar wavelet
operational matrix of the fractional order integration [27]. In [26], the Bezier curves method
(BCM) was implemented to give approximate solutions for FDAEs.

Our strategy is utilizing the Said Ball function (SBF) for solving the FDAEs in form (1)
by the least square method. The least squares objective function in LSM was developed to
find the approximate solutions of FDEs based on the control points of BCM [26].

The remainder of the paper is organized as follows: Basic preliminaries are stated
in Section 2. Section 3 introduces the SBCs (Said Ball curves) and their properties. The
technique based on the control points of SBF is stated in Section 4. The convergence
of SBF is introduced in Section 5. Section 6 states the applicability and accuracy of this
method. Finally, in Section 7 conclusions are drawn.

2. Some Preliminaries

In this section, some main definitions of the fractional order derivative are presented.

Definition 1. The FD of x(r) in the Caputo sense of a function x ∈ Cµ, µ ≥ −1 is defined as

Dαx(r) =
1

Γ(n− α)

∫ r

0
(r− z)n−α−1x(n)(z) dz, α > 0, ∃n ∈ Z, n− 1 < α ≤ n.

Definition 2. For x ∈ Cµ, µ ≥ −1, the Riemann–Liouville fractional integral operator of order
α ≥ 0 can be defined as follows

Iαx(r) =
1

Γ(α)

∫ r

0
(r− z)α−1x(z)dz, α > 0, t > 0,

I0x(r) = x(r).

3. The Said Ball Curves

The Said Ball curves (SBCs) with arbitrary degree of m is x(r) =
m

∑
j=0

ajBm
j (r) where aj

(j = 0, 1, . . . , m) are m + 1 control points. If m is odd, then

Bm
j (r) =

(
m−1

2 +j
j )rj(1− r)

m−1
2 +1, 0 ≤ j ≤ m−1

2 ,

(
m−1

2 +m−j
m−j )r

m−1
2 +1(1− r)m−j, m+1

2 ≤ j ≤ m,
(2)

if m is even, then

Bm
j (r) =


(

m
2 +j

j )rj(1− r)
m
2 +1, 0 ≤ j ≤ m

2 ,

(m
m
2
)r

m
2 (1− r)

m
2 , j = m

2 ,

(
m
2 +m−j

m−j )r
m
2 +1(1− r)m−j, m

2 + 1 ≤ j ≤ m.

(3)
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Some properties of Said Ball function (SBF) are:

• SBF is non-negative

Bm
j (r) ≥ 0, 0 ≤ r ≤ 1,

• Partition of SBF is unity

m

∑
j=0

Bm
j (r) = 1, 0 ≤ r ≤ 1.

The stated properties of the SBF indicated the convex combination of its control points.
Therefore, the SBC is in the convex hull of its control polygon with control points (see [24]).

4. The Technique Based on the Control Points of the SBF

Without lose of generality, we consider the following form:

Dαi x(r) = f (r, x, x′), (4)

g(r, x) = 0,

x(0) = x0,

We substitute x(r) =
m

∑
j=0

ajBm
j (r) in Equation (5), and we define the following objective

functions for control points of SBF:

Jobjective =
m

∑
j=0

a2
j .

Now, we solve the following constrained optimization problems:

min Jobjective =
m

∑
j=0

a2
j ,

such that Dα

(
m

∑
j=0

ajBm
j (r)

)
= f

(
r,

m

∑
j=0

ajBm
j (r),

(
m

∑
j=0

ajBm
j (r)

)′)
,

g

(
r,

m

∑
j=0

ajBm
j (r)

)
= 0,

m

∑
j=0

ajBm
j (0) = x0,

where Dα

(
m

∑
j=0

ajBm
j (r)

)
is defined in Definition 1.

5. Convergence of the SBF

Suppose that H = L2[0, 1] be the Hilbert space and {Bm
0 , Bm

1 , . . . , Bm
m} the polynomials

of degree m on [0, 1] [29]. We define Y = Span{Bm
0 , Bm

1 , . . . , Bm
m}. Assume that x is an

arbitrary element in H. We know that Y is a finite dimensional subspace of the space H,
thus the best unique approximation xm ∈ Y can be found as

∃xm ∈ Y s.t. ∀y ∈ Y, ‖x− xm‖2 ≤ ‖x− y‖2
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where ‖x‖2 = 〈x, x〉 and 〈, 〉 denotes the inner product. Since xm ∈ Y , xm is a linear
combination of the spanning basis of Y, which means that there are m + 1 coefficients
A = [a0, a1, . . . , am] ∈ R such that

x(r) ≈ xm(r) =
m

∑
j=0

ajBm
j (r) = ATφm(r),

where ‖x− xm‖2 → min, then A can be obtained by A = W−1〈x(r), φm(r)〉, where W =

〈φm(r), φm(r)〉 =
∫ 1

0 φm(r)φT
m(r)dr.

The Proof of the Convergence

We consider the following problem

Dαx(r) = A1(r)Dx(r) + B1(r)Dx1(r) + C1(r)x(r) + G1(r)x1(r),

x1(r) = H1(r), r ∈ [0, 1], x(0) = x0 = a, x1(0) = x1,0 = b,

then

L(x(r), x1(r),Dαx(r),Dx(r),Dx1(r))

= Dαx(r)−
(

A1(r)Dx(r) + B1(r)Dx1(r) + C1(r)x(r) + G1(r)x1(r)

)
= F1(r),

x1(r) = H1(r), r ∈ [0, 1], x(0) = x0 = a, x1(0) = x1,0 = b,

(5)

where x(r), x1(r) ∈ R and a, b are given real numbers, and A1(r), B1(r), C1(r), G1(r), H1(r)
and F1(r) are known polynomials on r ∈ [0, 1].

Theorem 1. If x̄, x̄1 ∈ C1 are the unique continuous solutions of the problem (5), then the obtained
approximate solutions are converge to the exact solution (x̄, x̄1).

Proof. For ε > 0, by the Weierstrass Theorem [30], we can find the polynomials W1,V1(r)
and W2,V2(r) of degrees V1 and V2 such that

‖
diW1,V1(r)

dti − di x̄(r)
dti ‖∞ ≤

ε

16
,

‖
diW2,V2(r)

dti − di x̄1(r)
dti ‖∞ ≤

ε

16
, i = 0, 1.

We note that: ‖.‖∞ is the L∞-norm, hence

‖a−W1,V1(0)‖∞ ≤
ε

16
,

‖b−W2,V2(0)‖∞ ≤
ε

16
. (6)

We know that W1,V1(r) and W2,V2(r) do not satisfy in the boundary conditions. Thus,
making perturbation on W1,V1(r) and W2,V2(r), the following polynomials are obtained

S1,V1(r) = W1,V1(r) + β,

and
S2,V2(r) = W2,V2(r) + γ,
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where S1,V1(0) = a and S2,V2(0) = b. Therefore W1,V1(0) + β = a and using Equation (6)
we get

‖a−W1,V1(0)‖∞ = ‖β‖∞ ≤
ε

16
.

We obtain b = S2,V2(0) = W2,V2(0) + γ, hence

‖b−W2,V2(0)‖∞ = ‖γ‖∞ ≤
ε

16
,

so

‖S1,V1(r)− x̄(r)‖∞ = ‖W1,V1(r)− x̄(r)‖∞

≤ ‖W1,V1(r)− x̄(r)‖∞ + ‖γ‖∞

≤ ε

8
<

ε

5
,

‖DS1,V1(r)−Dx̄(r)‖∞ = ‖
dS1,V1(r)

dr
− dx̄(r)

dr
‖∞

= ‖
dW1,V1(r)

dr
− dx̄(r)

dr
‖∞

<
3ε

16
<

ε

5
,

‖DαS1,V1(r)−Dα x̄(r)‖∞ ≤ | 1
Γ(m− α)

|
∫ t

0
‖(r− z)m−α−1‖∞

× ‖W(m)
1,V1

(z)− x̄(m)(z)‖∞dz

≤ | 1
Γ(m− α)

| max
0≤z≤1

|(r− z)m−α−1|

× εΓ(m− z)
16 max0≤z≤1(|(r− z)m−α−1|+ 1)

≤ ε

16
<

ε

5
,

‖S2,V2(r)− x̄2(r)‖∞ = ‖W2,V2(r)− x̄2(r)‖∞

≤ ‖W2,V2(r)− x̄2(r)‖∞ + ‖γ‖∞

≤ ε

8
<

ε

5
,

‖DS2,V2(r)−Dx̄2(r)‖∞ = ‖
S2,V2(r)

dr
− dx̄2(r)

dr
‖∞

≤ ‖
dW2,V2(r)

dr
− dx̄2(r)

dr
‖∞ + ‖γ‖∞

≤ ε

8
<

ε

5
.

Assume that

LSV(r) = L
(
S1, V1(r), S2, V2(r),DαS1, V1(r),DS1,V1(r),DS2,V2(r)

)
= DS1,V1(r)− A1(r)DS1,V1(r)− B1(r)DS2,V2(r)− C1(r)S1,V1(r)− G1(r)S2,V2(r) = F1(r),

thus V ≥ max{V1, V2} and we have
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‖LSV(r)− F1(r)‖∞ = ‖L(S1,V1(r), S2,V2(r),D
αS1,V1(r),DS1,V1(r),DS2,V2(r))− F1(r)‖∞

≤ ‖DαS1,V1(r)−Dα x̄(r)‖∞

+ ‖A1(r)‖∞‖DS1,V1(r)−Dx̄(r)‖∞

+ ‖B1(r)‖∞‖DS2,V2(r)−Dx̄1(r)‖∞

+ ‖C1(r)‖∞‖S1,V1(r)− x̄(r)‖∞

+ ‖G1(r)‖∞‖S2,V2(r)− x̄1(r)‖∞

≤ C1(5
ε

5
) = C1ε,

where C1 = 1 + ‖A1(r)‖∞ + ‖B1(r)‖∞ + ‖C1(r)‖∞ + ‖G1(r)‖∞ is a constant. We know
R(SV) := LSV(r)− F1(r) is a polynomial, we have

R(SV) =
m1

∑
i=0

di,m1 Bm1
i (r),

hence, there exists an integer M(≥ V) where for m1 > M, we can write

1
m + 1

m1

∑
i=0

d2
i,m1

< ε +
∫ 1

0
(R(SV))

2dr

≤ ε + C2
1ε2.

Suppose x(r) and x1(r) are approximated solution of (5), for m2 (m2 ≥ m1 ≥ M)

R(x(r), x1(r),Dαx(r),Dx(r),Dx1(r))

= L(x(r), x1(r),Dαx(r),Dx(r),Dx1(r))− F1(r)

=
m2

∑
i=0

ci,m2 Bm2
i (r),

then

‖(x(r), x1(r))− (x̄(r), x̄1(r))‖2 =
∫ 1

0
|Dαx(r)−Dα x̄(r)|2dr

+
∫ 1

0

1

∑
j=0
|d

jx(r)
drj −

dj x̄(r)
drj |

2dr

+
1

∑
j=0
|d

jx1(r)
drj − dj x̄1(r)

drj |
2dr,

because

‖(x(r), x1(r))− (x̄(r), x̄1(r))‖2 ≤ C
(
|x(0)− x̄(0)|+ |x1(0)− x̄1(0)|

+‖R((x(r), x1(r),Dαx(r),Dx(r),Dx1(r))− (x̄(r), x̄1(r),Dα x̄(r),Dx̄(r),Dx̄1(r)))‖2
2

)
= C

∫ 1

0

m2

∑
i=0

(ci,m2 Bm2
i (r))2dr

≤ C
m2 + 1

k

∑
i=0

c2
i,m2

,
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hence

‖(x(r), x1(r))− (x̄(r), x̄1(r))‖2 ≤ C
m2 + 1

m2

∑
i=0

c2
i,m2

≤ C
m2 + 1

m2

∑
i=0

d2
i,m2

≤ C
m1 + 1

m1

∑
i=0

d2
i,m1

≤ C(ε + C2
1ε2) = ε2.

Now, the proof is complete.

6. Numerical Examples

In this section, we consider some numerical examples to show the efficiency of the
method. Furthermore, the numerical results are compared with the Bezier curve method.
The results are obtained applying the Maple 14.

Example 1. Consider the following problem [26,27]:

Dαx(r) + x(r)− y(r) = − sin(r),

x(r) + y(r) = e−r + sin(r),

x(0) = 1, y(0) = 0,

xexact = e−r, yexact = sin(r), for α = 1.

This example is solved using the stated method for α = 0.75. Table 1 shows the numerical
results of the example. We note that the absolute error is obtained from the difference of exact (α = 1)
and approximate solutions (α = 0.75). The computational time to find the results for the SBC is
0.434 and for the Bezier curve method is 0.438.

Table 1. Numerical results of Example 1 for various t.

r Error x(r) Error y(r) Error x(r) in [26] Error y(r) [26]

0.1 0.01391401136 0.004183397050 0.01307884066 0.005442098498
0.2 4× 10−11 0.0 0.01800912414 0.007186495790
0.3 0.002462239190 0.009682662 0.01624814654 0.006220727630
0.4 0.0 0.01084786350 0.009558274900 0.003512496100
0.5 0.0 0.0 0.0× 10−10 1× 10−10

0.6 0.002383492300 0.01322212550 0.01008137720 0.003417438100
0.7 0.01698092 0.01505722 0.01807508510 0.005888358900
0.8 0.04253620650 0.00082677884 0.02112983790 0.006617673400
0.9 0.05332808630 0.05332808630 0.01618393680 0.004874606600

Example 2. One may consider the following problem [26]:

Dαx(r)− rDy(r) + x(r)− (1 + r)y(r) = 0,

y(r)− sin(r) = 0,

x(0) = 1, y(0) = 0,

xexact = e−t + t sin(r), yexact = sin(r), for α = 1.

This example is solved by using the stated method with α = 0.75. The absolute error is
presented in Table 2. We note that the absolute error is obtained from the difference of the exact
solution for α = 1 and the approximate solution for α = 0.75. The graphs of the Said Ball, exact
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and Bezier curve for x(r) and y(r) are shown in Figures 1 and 2 for α = 0.75. The computational
time of the SBC, and the Bezier curve are, respectively, 0.433 and 0.437.

Figure 1. The graphs of Siad Ball, exact, Bezier curve for x(r) of Example 2.

Figure 2. The graphs of Siad Ball, exact, Bezier curve for y(r) of Example 2.

Table 2. The absolute errors of x(r) and y(r).

r Error x(r) Error y(r)

0.1 0.01345302853 0.004183397050
0.2 0.0 0.0
0.3 0.003105586446 0.00968266200
0.4 0.0 0.010847886350
0.5 3.6787× 10−10 0.0
0.6 0.003947039374 0.01322212550
0.7 0.005528561954 0.01505722
0.8 0.0 0.0008267884
0.9 0.007268923556 0.0150980412

Example 3. Consider the following problem [31]:

Dαx(r) = 1 + 2x(r)− (x(r))2,

x(0) = 0,

xexact = 1 +
√

2 tanh

(
√

2t +
1
2

ln(
√

2− 1√
2 + 1

)

)
, forα = 1.

We solve the problem using the mentioned method for α = 0.75. The numerical results
are presented in Table 3. The results are obtained from the difference of the exact (α = 1) and
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approximate solutions (α = 0.75). The computational time of the SBC, and the Bezier curve are,
respectively, 0.431 and 0.435.

xapprox(r) = 8.82312663415527× 10−9r(1− r)4

− 5.34368571679517× 10−8r2(1− r)4

+ 4.66950466964230× 10−7r4(1− r)3

− 2.68981346427866× 10−7r4(1− r)2

+ 3.56483520872054× 10−8r4(1− r)

+ 4.11389403714848× 10−17r4.

Table 3. The absolute errors of x(r) for Example 3.

r Error x(r)

0.1 1.7× 10−9

0.2 1.5× 10−9

0.3 1.7× 10−9

0.4 1.7× 10−9

0.5 1.7× 10−9

0.6 1.7× 10−9

0.7 1.7× 10−9

0.8 1.7× 10−9

0.9 8× 10−10

7. Conclusions

In this study, an efficient algorithm based on the SBF was discussed to solve the
mentioned FDAEs. The main idea of the method is to adopt the SBF as a new approximation
instrument. Finding the control parameters, the approximate solution of the problem was
obtained. The validity of the stated method which is based on the SBF was verified by
proving the convergence theorem. The efficiency of the method was stated by means of
some numerical examples. The comparative study shows the efficiency and accuracy of
the SBC than the Bezier curve method. Furthermore, we have an acceptable computational
cost for the SBC. Solving linear and nonlinear integral equations of the first and second
kinds using the mentioned method is among our future plans.
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