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Abstract: Being both a poison and a cure for many lifestyle and non-communicable diseases, food is
inscribing itself into the prime focus of precise medicine. The monitoring of few groups of nutrients
is crucial for some patients, and methods for easing their calculations are emerging. Our proposed
machine learning pipeline deals with nutrient prediction based on learned vector representations
on short text–recipe names. In this study, we explored how the prediction results change when,
instead of using the vector representations of the recipe description, we use the embeddings of the
list of ingredients. The nutrient content of one food depends on its ingredients; therefore, the text
of the ingredients contains more relevant information. We define a domain-specific heuristic for
merging the embeddings of the ingredients, which combines the quantities of each ingredient in
order to use them as features in machine learning models for nutrient prediction. The results from the
experiments indicate that the prediction results improve when using the domain-specific heuristic.
The prediction models for protein prediction were highly effective, with accuracies up to 97.98%.
Implementing a domain-specific heuristic for combining multi-word embeddings yields better results
than using conventional merging heuristics, with up to 60% more accuracy in some cases.

Keywords: domain-specific embeddings; domain knowledge; machine learning; data mining;
macronutrient prediction; representation learning; word embeddings; paragraph embeddings

1. Introduction

Nutrition, although indispensable throughout human history, has seen the “light of
the day” only in the past few decades with the development of modern science.

In the early and middle years of the last century, modern nutrition science was focused
on the discovery and synthesis of essential micronutrients and their effect on deficiency
diseases. With the rapid spike in the food supply, the demand for nutritional and other
food-related components has constantly increased. Nowadays, like in fashion, there are
trends in nutrition, i.e., the so/called “diet culture”. There is constantly a new “type” of diet:
gluten-free, vegan, keto, carb-free, paleo, carnivore diet, and the list goes on. Even though
all these diets are geared towards people suffering from a certain disease, or intolerance,
they are accepted by many that do not have these.

The global epidemic of obesity, diabetes, and inactivity is very real, and the single
strand of connection between them is poor dietary habits. Cardiovascular disease, high
blood pressure, diabetes, some cancers, and other chronic diseases [1], as well as bone-
health diseases, are related to bad dietary habits [2]. Dietary assessment is crucial for
patients suffering from different diseases, of course, the central focus being on diet and
nutrition-related ones, and it is also very important for professional athletes, and as a
consequence of the accessibility of mobile applications and gadgets communicating with
a smartphone (the so-called “online food diaries”), it is slowly becoming an everyday
habit for many individuals, for either health or fitness reasons, as well as for both. Devel-
oped western countries are fighting obesity, which is increasing by the minute, and this
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contributes to raised public health concerns about certain macronutrient subcategories,
specifically about saturated fats, and added or free sugar. Micronutrients, such as sodium,
which should be slowly monitored and tracked in individual suffering from diseases like
osteoporosis, stomach cancer, and kidney disease, and fiber, critical for patients suffering
from irritable bowel syndrome (IBS), are a matter of concern for nutritional epidemiologists.

In the Food and Nutrition domain, the focus in recent years has been heavily put on
data collection, and now, facing this data flood, there is a need for methods dealing with it.
Calculating nutrient content is a very demanding and important task, and even though two
foods can have roughly the same ingredients, their nutrient content can vary significantly,
which makes the tracking and calculating of nutrients very complicated and challenging.
We recently proposed an approach, called P-NUT (Predicting NUTrient content from short
text descriptions) [3], for macronutrient value prediction of a food item from learned vector
representations of text describing the food item (its name).

The nutrient content calculation is usually a process of estimating and calculating the
nutrient quantities from measurements and exact ingredients [4–6], and before P-NUT, it
had not been viewed as a prediction task. The instructions for calculating nutrient content
from measurements and ingredients are demanding; there a few steps to the procedure for
nutrient content calculation of a multi-ingredient food: selecting the appropriate recipe,
collecting data for the nutrient content of the ingredients, ingredient nutrient level correc-
tions for the weight of edible portions, adjustment of the content of each ingredient for
effects of preparation, summation of ingredient composition, adjustment of final weight
or volume, and determination of the yield and final volumes. These steps are used when
all the ingredients and measurements are available, and when there is no data available
for the ingredients, then the data for the uncooked ingredients, in combination with the
appropriate yield factors to adjust the weight changes and retention factors for nutrient
losses or gains during cooking, are used [7].

While in P-NUT, we used the vector representation of the short text descriptions of the
food products as input features to the ML algorithms, in this study, we are working with
recipe data, and we propose using the embeddings of the lists of ingredients for each recipe
as the input features. Each list of ingredients is a list of simple or complex foods, which are
multi-word strings and not sentences; for example, the recipe name is “No-bake oatmeal
cookies”, and the list of ingredients is as follows: “sugars, granulated; cocoa, dry powder,
unsweetened; milk, fluid, 1% fat, without added vitamin a and vitamin d; butter, without
salt; vanilla extract; peanut butter, smooth style, without salt; oats”. This means their
embeddings are uncontextualized, and to merge the vector representations of the separate
ingredients, we propose a new domain-specific heuristic that combines the quantities of
the ingredients as well. Using this heuristic, the results from this study show how domain
knowledge can lead to better results when considering a prediction task in the Food and
Nutrition domain.

The rest of the paper is structured as follows: the section Methods begins with the
related work and an explanation of the P-NUT ML pipeline, then in Domain-Specific
Embeddings, the merging heuristic and the process of obtaining the domain-specific
embeddings are described. In Data, a structure and description of the data used in the ex-
periments is provided, and in Experimental Setup, an explanation of how the experiments
are conducted in detail is presented. The experimental results and the methodology evalu-
ation are presented in Evaluation Outcomes, as well as the benefits of such an approach
and its novelty. In the end, in Discussion, the possible obstacles for the implementation
are pointed out and what can be done with future work to overcome them, and at last, in
Conclusions, the importance of the methodology is summarized.

2. Materials and Methods
2.1. Related Work

As far as we are aware, P-NUT [3] is the first ML pipeline for macronutrient prediction
of foods/recipes using only short text descriptions. Prior work, involving ML, in this
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direction has been based on image recognition, i.e., utilizing deep learning either for
identifying and classifying foods from food images [8], calorie calculation from food
images [9], or different types of dietary assessment through food images [10].

These studies relied strongly on textual data retrieved from the Web and were mainly
with the goal of predicting total calories. For tracking macronutrient intake, there are many
mobile and web applications [11,12]; these systems offer user assistance in achieving dietary
goals (losing or gaining weight, allergy management, or simply starting and maintaining a
healthy diet). However, in order to provide these services, these systems require manual
input of the food details with the portion sizes. This a very time-consuming process and
often results in this being very tedious and time-consuming, resulting in users quitting
the usage of these applications. Besides that, ordinary users rely on self-reports for calorie
intake, which are most often misleading.

Other work including ML in this direction are in the agriculture sector, related to
predicting nutrient content in soil. In [13], the authors predicted nutrients in soil using
six commonly used techniques: random forest, decision tree, naïve bayes, support vector
machine, least-square support vector machine, and artificial neural network, and they
showed that the most common and complicated method does not always achieve the best
prediction accuracy. Furthermore, in [14], the authors discussd distinct machine learning
classifiers and their associated work in soil nutrients.

2.2. P-NUT

The pipeline in P-NUT consists of three parts:

1. Representation learning: Introduced by Mikolov et al. in 2013 [15] and Pennington
et al. in 2014 [16], word embeddings have become indispensable for natural language
processing (NLP) tasks in the past couple of years, and they have enabled various
ML models that rely on vector representation as an input to benefit from these high-
quality representations of text input. This kind of representation preserves more
semantic and syntactic information of words, which leads to their status as being
state-of-the-art in NLP.

2. Unsupervised machine learning: Nutrient content exhibits notable variations between
different types of foods. In a big dataset, including raw/simple and composite/recipe
foods from various food groups, the content of macronutrients can have values
from 0–100 g per 100 g. Needless to say, and as proven in [3,17], better models for
macronutrient content prediction are built when grouping–clustering the instances
according to domain-specific criteria [17].

3. Supervised machine learning part: The final part of the P-NUT methodology is super-
vised ML, where separate predictive models are trained for the nutrients that we want
to predict. The nutrient values are continuous data; therefore, the models are trained
with single-target regression algorithms, in which, as input, we have the learned
embeddings of the short text descriptions, clustered based on the chosen/available
domain-specific criteria. Selecting the right ML algorithm for the purpose is challeng-
ing; the default accepted approach is selecting a few ML algorithms, setting the ranges
for the hyper-parameters, hyper-parameter tuning, utilizing cross-fold validation to
evaluate the estimators’ performances (with the same data in each iteration), and at
the end, benchmarking the algorithms and selecting the best one(s). The most com-
monly used baselines for regression algorithms are the central tendency measures,
i.e., mean and median of the train part of the dataset for all the predictions.

Given the historical success of text embeddings in NLP, in P-NUT, we used the most
well-known word/paragraph embedding algorithms (Word2Vec [18], GloVe [16], and
Doc2Vec [19]). All of these are uncontextualized or context-independent embedding algo-
rithms, i.e., there is just one vector (numeric) representation for each word (i.e., Word2vec
and GloVe) or each chunk of words/paragraph (i.e., Doc2vec). Otherwise, to put this in
other words, different senses of the word, if there are any, are combined into one single
vector. Uncontextualized word embeddings, due to their ability to be used in resource
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and memory capacity-limited settings, are used in many NLP tasks today. In recent years,
especially in the Biomedical domain, context-dependent embedding algorithms [20–22]
have emerged as superior to the aforementioned uncontextualized ones. These algorithms
generate multiple vector representations for the same word, based on the context in which
the word is used. In the two evaluations of P-NUT [3,17], we dealt with short text de-
scriptions of recipes (multi-word strings, that do not represent a complete sentence), since
looking at them from a semantic point of view, they do not have the complete necessary
structure to form a sentence, i.e., a subject, a verb, and an object. In this study, we are
dealing, again, with multi-word strings or, in many cases, even one-word strings; such
chunks of text cannot be treated as sentences when generating vector representations;
therefore, using context-dependent embedding algorithms is not of use here, so we opted
for uncontextualized embeddings.

2.3. Domain-Specific Embeddings

In Figure 1, a flowchart of the methodology is presented. The obtaining of the domain-
specific embeddings for the list of recipe ingredients is a two-step process:
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Single-ingredient embeddings: obtaining multi-word embeddings. If we have:

recipek ∈ {recipe1, . . . , recipel}, (1)

as the recipe, we are generating a domain-specific embedding, where k ∈ {1, l}, and l is
the number of recipes in the dataset, then:

ingredientsk = {I1, . . . , Im}, (2)

as the list of ingredients for recipek. Furthermore, we have Ii as the ith ingredient of the list
of ingredients:

Ii = {word1, worda, . . . , wordn}, (3)

Then, the single ingredient embedding is obtained in two ways:
Utilizing the sum and average as heuristics for merging the vector representations of

each word in the ingredient obtained with word embedding algorithms.

E[worda] = [xa1, xa2, . . . , xad], (4)

where E[word] is the vector representation (embedding) of a separate word, a ∈ {1, . . . , n},
and d is the dimension of the word vectors. Then, the vector representation of the ingredient
will be obtained with:

E[Ii] =

[
x11 + . . . + xn1

n
,

x12 + . . . + xn2

n
, . . . ,

x1d + . . . + xnd
n

]
, (5)

averaging the vector representation of all the words from which it consists of, or:

E[Ii] = [x11 + . . . + xn1, x12 + . . . + xn2, . . . , x1d + . . . + xnd], (6)
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by summing the vector representations of the words it consists of.
This involves utilizing the vector representations for the full multi-word strings

considered as paragraphs, obtained with a paragraph embedding algorithm. If the same
applies as Equations (1)–(3), then:

E[Ii] = [x1, x2, . . . , xd], (7)

E[Ii] is the multi-word string vector representation for the ingredient Ii, where d is the
predefined dimension of the vectors.

Embeddings on the recipe level: Here, we define a domain-specific heuristic for merg-
ing uncontextualized multi-word embeddings. If the same applies as Equations (1) and (2),
and:

weightsk = [w1, w2, . . . , wm], (8)

then, this is the list of the weights expressed in grams for each ingredient for recipek,
calculated on the whole recipe. On the grounds that the nutrient values of a food are, by
rule, given per 100 g and the fact that we are making the predictions for the nutrients using
100 g, the weights for each ingredient in 100 g of the recipe are calculated:

weights100gk =
[
w100g1

, w100g2
, . . . , w100gm

]
, (9)

Then, to obtain the domain-specific embedding for the whole recipe, we implement
the following heuristic for combining the single ingredient embeddings:

Erecipek = w100g1 × E[I1] + . . . + w100gm × E[Im] (10)

2.4. Data

In the experiments for evaluation of the P-NUT methodology in [3], we used food
consumption data containing nutritional information about food items. For exploring the
bias of the domain knowledge over the prediction task, in [17], we evaluated the extended
P-NUT methodology on the Recipe1M dataset, which is publicly available [23], and it is
a large-scale structured corpus, which contains over a million cooking recipes, as well as
13 million food images. For the evaluation in this study, we used the Recipe1M dataset, as
well, and out of those million recipes for this study, we utilized the ones that contained
nutrient content, i.e., a total of 51,235 recipes. For each of the 51,235 recipes, the following
information was available:

• recipe title: a short textual description of the recipe;
• recipe instruction: description of instructions for preparing the recipe;
• nutrient content: quantity of fat, protein, salt, saturates, and sugars per 100 g for the

whole recipe, expressed in grams;
• ingredients: list of the ingredients needed;
• nutrient content of ingredients: for each ingredient, quantity in grams of fat, protein,

saturates, sodium, and sugar per 100 g of the ingredient;
• quantity of each ingredient;
• units of measurement per each ingredient, by the household measurement system:

cup, tablespoon, teaspoon, etc.;
• weight in grams per ingredient for the whole recipe.

In the following table (Table 1), we give an example data instance from the dataset.
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Table 1. Example instance from the Recipe1M dataset.

Recipe Title No-Bake Oatmeal Cookies

Ingredients “sugars, granulated”, “cocoa, dry powder, unsweetened”, “milk, fluid, 1% fat, without added vitamin a and
vitamin d”, “butter, without salt”, “vanilla extract”, “peanut butter, smooth style, without salt”, “oats”

Nutrients per
100 g

Energy Fat Protein Salt Saturates Sugars

378.64 35.40 3.81 0.06 21.01 8.59

3. Results
3.1. Data Preparation

In this study, from the Recipe1M dataset, the data of interest are the list of ingredients,
the weights of each ingredient, and the quantities per 100 g of the recipe for the five nutrients
of concern. Before generating the single ingredient embeddings, for each ingredient, the
text undergoes some basic NLP pre-processing: tokenization, normalization, noise removal,
and lemmatization.

3.2. Experimental Setup

The experimental setup after the data pre-processing was as follows:

1. Generate embeddings on single ingredient level (multi-word non-contextualized
embeddings) using the Word2Vec, GLoVe, and Doc2Vec algorithms [15,16,19,24]. For
the Word2Vec and GloVe embeddings, we took into consideration different values for
the dimension of the vectors and the sliding window size. For the vector dimensions,
we chose [50, 100, 200]. For the Word2Vec embeddings, the two types of feature
extraction available, CBOW and SG, were considered. For the chosen dimensions,
we assigned different values, namely [2, 3, 5, 10], to the parameter called the ‘sliding’
window, which indicates the distance within a sentence between the current word
and the word being predicted. With Word2Vec, combining the above-mentioned
parameter values and the two heuristics, a total of 48 models were trained, while with
GloVe, a total of 24 models were trained. When training the paragraph embeddings
with Doc2Vec, we considered the same dimension sizes [50, 100, 200] and sliding
window sizes [2, 3, 5, 10], as well as the two types of architectures, PV-DM and
PV-DBOW, and we used the non-concatenative mode, meaning training separate
models for the sum option and average option. Therefore, there were 48 Doc2Vec
models trained in total.

2. Generate embeddings on recipe level: use the above-defined domain heuristic
(Equation (10)) to merge the embedding on single ingredient level.

3. Apply single-target regression algorithms: building models for predicting the five
given macronutrients: fat, protein, salt, saturates, and sugars. This part consisted of
several steps:

I. Selecting the regression algorithms: Linear regression, Ridge regression,
Lasso regression, and ElasticNet regression (using the Scikit-learn library in
Python [25]).

II. Selecting ranges for the parameters for each algorithm and performing hyper-
parameter tuning: A priori assignment of the ranges and values for all the
parameters for all the regression algorithms. With GridSearchCV (from the
Scikit-learn library in Python [25]), the best parameters for the model training
were selected from all the combinations.

III. Estimating the prediction error with k-fold cross-validation: We trained
models with the previously selected best parameters and then evaluated
them with cross-validation. To compare the regressors, the matched sample
approach was chosen, using the same data in each iteration.

4. Calculate domain-specific measure of accuracy: We defined the accuracy according
to the appropriate tolerance levels for each nutrient, which were defined by inter-
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national legalizations and regulations. In 2012, the European Commission Health
and Consumers Directorate-General published a guidance document [26] in order to
provide recommendations for calculating the acceptable differences between quan-
tities of nutrients on the nutrient content labels of the food products and the ones
established in Regulation EU 1169/2011 [27]. It is impossible for foods to contain the
exact quantity of each nutrient on the printed labels; therefore, these tolerances for
the food product labels are very important. These differences occur due to the natural
variations of foods, and the variations occurring during production and the storage
process. The accuracy is calculated according to the tolerance levels in Table 2.

Table 2. Results from the evaluation on Recipe1M.

Measure Target

Algorithm

With Domain Heuristic Without Domain Heuristic

Word2Vec GloVe Doc2Vec Word2Vec GloVe Doc2Vec

Maximal accuracy
(in %)

Fat 76.66 75.62 91.65 21.45 22.16 20.29
Proteins 90.57 88.79 97.98 55.47 54.54 52.67
Sugars 73.38 76.35 88.14 25.73 25.81 22.97

Saturates 72.78 73.66 95.95 24.00 24.71 20.58
Salt 43.34 41.79 52.35 36.28 33.10 19.43

Minimal accuracy
(in %)

Fat 18.65 18.65 28.00 8.34 8.34 8.35
Proteins 56.60 56.60 56.57 27.20 27.20 27.22
Sugars 17.03 17.03 28.54 7.90 7.90 7.90

Saturates 30.52 30.52 45.27 8.34 8.34 8.35
Salt 19.24 19.24 45.27 9.44 9.44 9.44

Mean accuracy
(in %)

Fat 37.96 48.03 68.99 12.54 13.22 14.70
Proteins 68.02 78.99 86.12 37.19 36.85 39.54
Sugars 38.58 47.13 56.05 13.61 14.03 15.07

Saturates 60.10 67.37 78.32 12.84 13.18 14.11
Salt 26.25 27.49 31.01 16.07 15.65 18.37

If the actual value of the ith instance from the test set on a certain iteration of the
k-fold cross-validation is ai, and the predicted value pi of the same ith instance of the test
set, then:

di = |ai − pi|, (11)

and the absolute difference between the two set values is di. Then, allowed is a binary
variable that is assigned a positive value if the predicted value is in the tolerance levels.

allowed = 1 i f :

Salt :
{

ai < 1.25, di < 0.375
ai ≥ 1.25, di ≤ 0.2 × ai

Saturates :
{

ai < 4, di < 0.8
ai ≥ 4, di ≤ 0.2 × ai

Fat :


ai < 10, di < 1

10 ≤ ai ≤ 40, di ≤ 0.2 × ai
ai ≥ 40, di ≤ 8

Protein, Sugar :


ai < 10, di < 2

10 ≤ ai ≤ 40, di ≤ 0.2 × ai
ai ≥ 40, di ≤ 8

(12)

The accuracy is calculated as the ratio of predicted values that are in the defined
tolerance level, i.e., have allowed set to 1 :

Accuracy =
∑n

i=1 allowed
n

(13)
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where n is the total number instances (recipes) in the test set. For the baseline mean and
baseline median, the accuracy is calculated as the percentage of baseline values that falls in
the tolerance level range (has allowed set to 1 ), calculated according to Equations (6)–(8),
where the actual value of the ith instance from the test set is ai, and instead of pi, we have:

b =

{
∑m

i=1 xi
m , the baseline is the mean

X[(m+1)/2]+X[(m+1)/2]
2 , the baseline is the median

(14)

where m is the total number of instances in the train set, and X is the sorted train set (in
ascending order).

3.3. Evaluation Outcomes

In order to evaluate the performance of our domain-specific merging heuristic, we
repeat the same experiments twice:

1. Merge the single-ingredient embeddings with the domain-specific heuristic, perform
the predictive modeling, obtain the results, and calculate the defined accuracy.

2. Merge the single-ingredient embedding with conventional merging heuristics (sum
and average) according to the merging heuristic used when obtaining the single-
ingredient embeddings. In other words:

a. The embedding on the recipe level is obtained by calculating an average of
the embeddings on a single-ingredient level when they are obtained using
Equation (4).

b. The embedding on recipe level is obtained by summing the single-ingredient
embeddings when they are obtained using Equation (5).

After obtaining the embedding on the recipe level, the same steps are applied: per-
forming the single-target regressions, obtaining the predictions, and calculating the defined
accuracy, of course, using the same experimental set-up described earlier.

The results from the evaluation showed that using the domain-specific heuristic
yields higher accuracy percentages than the conventional merging techniques. In the
following table (Table 2), the results from the evaluation are presented. For presentation
purposes, for each embedding algorithm, we included only the maximal and minimal
accuracies achieved for each nutrient (without the details of vector dimension, sliding
window, and regression algorithm), and we also calculated the mean accuracy, calculated
for each nutrient from all the accuracy percentages for the certain embedding algorithm
(all possible vector dimensions, sliding windows, and regression algorithms). From the
results, it is evident that the ML models that use the embeddings merged with the domain
heuristic as input features outperform the models which use the embeddings merged with
conventional merging heuristics as features. The differences between the two approaches
in the accuracies were rather big. We can note that the prediction accuracies for salt content
were rather lower than the other nutrients, but this is due to the fact that the salt content in
100 g from the food/recipe were rather low compared to the other nutrients (most often
less than 1 g). It is also apparent that the prediction results for protein values were the
best out of all the nutrient and that the Doc2Vec embedding algorithm outperforms the
Word2Vec and GloVe algorithms.

For further interpretation of the results, we used the principal component analysis
(PCA) [28] as a reduction technique to visualize some of the obtained embeddings. With
closer inspection of the results, we observed that the maximal accuracies in most cases
were obtained with the Doc2Vec algorithm when using the following parameters:

Vector dimension: 100,
Sliding window: 2,
Architecture: PV-DBOW,
Merging technique: sum.
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All of the visualizations presented used the embeddings obtained from the Doc2Vec
algorithm and these parameters.

First, we visualized the embeddings obtained with the domain-specific heuristic for
20 different recipes, with the same list of ingredients but same or different quantities. The
visualization is presented in Figure 2. From the visualization, we can see how they grouped
in the embedding space; there was a big chunk of recipes in the middle and then five of
them very far from each other. To understand why this was happening, we searched for
the nutrient values of these recipes, which are given in Table 3. We can see that the reduced
embeddings for the recipe with title “The Best No Bake Cookies” and the recipe with title
“No Bake Oatmeal Cookies” are overlapping, and from the table, we can see that they
have almost identical nutrient values. Next, we can see that the reduced embedding for
the recipe with title “Laura’s House Famous Mud Pie” is far apart from the remaining 19,
and from the table, we can see that it is because its sugar content is significantly higher
than the rest. Then, the reduced embeddings for the recipes with titles “No Bake Cookies”
and “No-Bake Cookies” were placed far apart, although they have almost identical titles
(except the hyphen); however, from the table, we can see that this was logical because of
their different nutrient values in fat and sugars.
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Table 3. Nutrient values for recipes with the same ingredient list, but same or different quantities.

Recipe Title Ingredients
Nutrients Per 100 g

Energy Fat Protein Salt Saturates Sugars

The Best No Bake Cookies “cocoa, dry powder, unsweetened”,
“milk, fluid, 1% fat, without added
vitamin a and vitamin d”, “oats”,

“peanut butter, smooth style, without
salt”, “sugars, granulated”, “butter,

without salt”, “vanilla extract”

378.64 35.40 3.81 0.06 21.01 8.59
No Bake Oatmeal Cookies 378.44 35.37 3.83 0.06 21.00 8.58

Laura’s House Famous Mud Pies 385.10 15.58 4.45 0.02 8.05 50.80
No Bake Cookies 323.39 15.26 14.74 0.03 6.41 19.38
No-Bake Cookies 317.04 22.93 13.34 0.06 5.53 11.53

Chocolate No–Bake Cookies 397.65 15.39 9.43 0.02 6.28 33.02

The same visualization was made for the embeddings on a recipe-level, obtained with
the conventional merging heuristics (Figure 3). From the figure, we can see a very different
placement of the embeddings in the space. For comparison purposes, only the names of the
previously analyzed recipe embeddings were included. We can see that the embeddings
for the recipes with titles “The Best No Bake Cookies” and “No Bake Oatmeal Cookies”
are very far apart, even though they have almost identical nutrient values, while the
embeddings for the “No Bake Oatmeal Cookies” recipe and “Chocolate No-Bake Cookies”
are overlapping, even though we can clearly see from the table (Table 3) that they have
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very different nutrient values, i.e., the difference in each nutrient is very considerable (fat
difference is two times, protein difference is three times, saturates difference is almost three
times, and sugar difference is more than four times).
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The next thing we can notice is how the recipes “Laura’s House Famous Mud Pie”
and “The Best No Bake Cookies” were placed very close together when, judging from
the table, they have very different nutrient values (the first recipe has two times less fat
than the second, more than six times the amount of sugar, and almost three times less
saturates). This just goes to show how important the heuristic is when merging word
embeddings. Even though all these recipes have the same identical ingredient list, they
differ significantly in nutrient content.

This depicts the differences in the feature space; to capture this difference in the
performance space, we presented the results from the predictions for the same recipes in
Table 4. From these results, we can see that the difference between the actual values of
the nutrients and the predicted values of the nutrients when using the domain heuristic is
smaller than the difference between the actual values of the nutrients and the predicted
values of the nutrients without using the domain heuristic.

From the list of 20 recipes, in these visualizations, we can see that there are a lot of
recipes with very similar names, if not with the same name. Given this observation, we
dug deeper, and we gathered a list of recipes in the Recipe1M dataset that had the same
identical name, “No Bake Cookies”; there were some recipes that included punctuation
sign(s), but we omitted those. There were seven recipes in total with the name “No
Bake Cookies”. We did the same two visualizations for the embeddings on a recipe-level,
obtained with the domain-specific heuristic (Figure 4) and with the conventional merging
heuristics (Figure 5). For each recipe, we included the five nutrient values of concern next
to the reduced embedding point. We can see that when using the domain heuristic, the
embeddings placed close together were for recipes that have very similar nutrient values
for the five nutrients (i.e., which further helps the prediction task), while when using
the conventional merging heuristic, the embeddings placed close together (i.e., making
the prediction task difficult), or in this case overlapping (the black and grey), have very
different nutrient content (the recipe represented with the grey marker has almost double
the amount of sugar).
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This not only proves that the domain-specific merging heuristics is a better approach
when predicting nutrient values, but also how limited the information included in these
short recipe descriptions is; having the same name, or even the same ingredient list, does,
by any means, state that two recipes have the same or even comparable nutrient content.

Table 4. Differences in performance space (A–Actual value, DH–Predicted value when using the domain heuristic, No
DH–Predicted values without using the domain heuristic).

Recipe Title
The Best
No Bake
Cookies

No Bake
Oatmeal
Cookies

Laura’s
House

Famous
Mud Pies

No Bake
Cookies

No-Bake
Cookies

Chocolate
No–Bake
Cookies

Nutrients
per 100 g

Fat
A 35.4 35.37 15.58 15.26 22.93 15.39

DH 32.28 32.92 14.38 15.32 25.54 14.47
No DH 23.11 12.44 29.33 16.78 16.78 8.79

Protein
A 3.81 3.83 4.45 14.74 13.34 9.43

DH 3.59 4.38 4.40 12.29 9.12 7.26
No DH 8.96 19.67 2.34 12.11 7.34 15.67

Salt
A 0.06 0.06 0.02 0.03 0.06 0.02

DH 0.03 0.03 0.15 0.06 0.30 0.39
No DH 1.78 0.30 0.20 0.28 0.20 0.38

Saturates
A 21.01 21.00 8.05 6.41 5.53 6.28

DH 18.21 18.23 7.21 6.11 6.79 5.74
No DH 10.53 10.43 12.56 2.56 11.67 15.89

Sugars
A 8.59 8.58 50.80 19.38 11.53 33.02

DH 10.88 10.88 50.62 22.36 11.30 34.46
No DH 27.45 18.99 24.75 2.33 21.74 27.85
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4. Discussion and Future Work

The results from this study, following our two previous related studies [3,17], indicate
the impact of integrating domain-driven knowledge into an ML pipeline using a nowadays
common NLP tool, word embeddings. When put into effect, our task-specific embedding
merging heuristic yields high accuracy results for a domain sensitive assignment, such as
nutrient prediction.

We must note that the Recipe1M dataset is very thorough, and it can be regarded as an
“outlier” dataset, since many datasets of such kind, i.e., recipe datasets, do not contain such
exhaustive information, particularly talking about the “weight per ingredient in grams”
data, which, in our case, is crucial. The most typical data for this information, which can
be found on crosswise recipe datasets, would be just a list of ingredients, and it usually
includes data about the quantity of each ingredient, the unit in which set ingredient is
measured, and the ingredient itself, which is commonly combined, or if we put it into data
terms, it is a coherent string. An important fact that should be noted here is that we are
talking about recipe data, which is data that is usually retrieved from the Web; thus, these
units are most certainly expressed in standard food/cooking household measurements.
Therefore, in order to utilize this data and draw the information that is required, a few NLP
techniques must be put into work:

• Named entity recognition (NER): to segmentize the strings into quantity and unit,
which means we need rules of what represents a quantity, a resource with all the
possible units, i.e., the common food household measurements, and lastly, a resource
to identify the ingredients/food items [29,30].

• Normalizing the quantities: after the NER, the units (household measurements) need
to be converted in grams, in order to have the same unit all across the dataset. This
can be done using conversion tables [31], the problem that arises here is that these
conversion tables are separate for liquid and dry ingredients, so the ingredients
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need to be separated into liquid and dry beforehand. This can be viewed as a
classification problem.

• Map the extracted unit to the proper unit in the conversion table, which can be
viewed as simple string matching, but since there are multiple ways of writing a single
household measure unit, it can be viewed as a slightly more complex task than string
matching, for example, mapping strings based on lexical similarity [32].

5. Conclusions

In this work, we used Word2vec, GloVe, and Doc2Vec as algorithms for generating
multi-word uncontextualized embeddings of ingredients, and we combined them, using
a heuristic drawn from domain knowledge. In the evaluation for comparison purposes,
we repeated the same steps with the same experimental setup but using conventional
embedding merging heuristics (sum and average). The results from this study revealed the
significant difference that this domain insight provided in the prediction results.

Even though the same single-ingredient embeddings were used, the results were dras-
tically different when using the domain heuristics vs. the conventional merging heuristics,
with up to +40% in accuracy, with the Doc2Vec embedding algorithm outperforming the
Word2Vec and GloVe algorithms.

When dealing with data of any specific field, the fusion of domain and data driven
knowledge is crucial for making performant vector representations.

Having a better prior understanding of the problem in hand and the domain is a key
factor when dealing with a prediction task, and domain knowledge is the single, most
important step in predictive modeling.

Author Contributions: Conceptualization, G.I., T.E. and B.K.S.; methodology, G.I. and T.E.; software,
G.I.; validation, G.I. and T.E.; resources, B.K.S.; data curation, B.K.S.; writing—original draft prepa-
ration, G.I.; writing—review and editing, T.E. and B.K.S.; visualization, G.I.; supervision, T.E. and
B.K.S.; project administration, B.K.S.; funding acquisition, B.K.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was supported by the Slovenian Research Agency (research core grant
number P2-0098) and the European Union’s Horizon 2020 research and innovation programme
(FNS-Cloud, Food Nutrition Security) (grant agreement 863059). The information and the views set
out in this publication are those of the authors and do not necessarily reflect the official opinion of the
European Union. Neither the European Union institutions and bodies, nor any person acting on their
behalf, may be held responsible for the use that may be made of the information contained herein.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: http://pic2recipe.csail.mit.edu/ (accessed on 7 July 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ijaz, M.F.; Attique, M.; Son, Y. Data-Driven Cervical Cancer Prediction Model with Outlier Detection and Over-Sampling Methods.

Sensors 2020, 20, 2809. [CrossRef] [PubMed]
2. World Health Organization. Diet, Nutrition, and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation;

World Health Organization: Geneva, Switzerland, 2003; Volume 916.
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