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Abstract: The representation learning of the knowledge graph projects the entities and relationships
in the triples into a low-dimensional continuous vector space. Early representation learning mostly
focused on the information contained in the triplet itself but ignored other useful information. Since
entities have different types of representations in different scenarios, the rich information in the
types of entity levels is helpful for obtaining a more complete knowledge representation. In this
paper, a new knowledge representation frame (TRKRL) combining rule path information and entity
hierarchical type information is proposed to exploit interpretability of logical rules and the advantages
of entity hierarchical types. Specifically, for entity hierarchical type information, we consider that
entities have multiple representations of different types, as well as treat it as the projection matrix
of entities, using the type encoder to model entity hierarchical types. For rule path information, we
mine Horn rules from the knowledge graph to guide the synthesis of relations in paths. Experimental
results show that TRKRL outperforms baselines on the knowledge graph completion task, which
indicates that our model is capable of using entity hierarchical type information, relation paths
information, and logic rules information for representation learning.

Keywords: knowledge graph; representation learning; hierarchical types; logic rules

1. Introduction
1.1. Research Motivation

Knowledge graphs (KGs), such as Freebase [1], DBpedia [2], and NELL [3], are used to
describe the relationship between things in the real world. KGs provide effective structured
information and have been widely used in many fields, such as information retrieval [4,5]
and question answering [6,7]. A typical knowledge graph usually stores facts in the form
of triples (head, relationship, tail), denoted (h, r, t).

Even though many large KGs often contain billions of triples, they are still incomplete.
Specifically, in DBpedia, 60% of individual entities do not indicate their place of birth [8].
Owing to the incompleteness of KGs, it is difficult for people to further apply them to certain
scenarios, for example, in a question answering system in which incomplete questions will
cause errors in the answers obtained. Therefore, the task of supplementing the missing
parts of the KGs has become a top priority.

At present, most KGs completion methods are based on knowledge representa-
tion learning [9], which projects the entities and relationships in the triples into a low-
dimensional continuous space. TransE [10] is one of the most classic KGs completion
models and embeds entities and relationships into the same latent space. To better handle
complex relationships, such as 1-to-N, N-to-1, and N-to-N, TransH [11] and TransR [12]
use relation-specific hyper-planes and relation-specific spaces, respectively, to separate
triples according to their correspondence. However, these models only focus on the triples
themselves, ignoring the rich information located in the entity hierarchy types that can
also be useful for obtaining a more complete entity representation. Entities have different
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types of representations in different scenarios. For example, a man can be the manager of
a company or the father of a child, so entities with multiple types should be represented
differently in different scenarios. In addition, relation paths in KGs can provide additional
relationships for entity pairs. For instance, PTransE [13] successfully uses the relation paths
information to obtain embedding of entities and relationships. However, in the present
work, the embedding of relationships is randomly initialized, while the representation of
paths is obtained by summing or multiplying relations in paths [14]. Since the represen-
tation of the path is obtained purely through numerical calculations in the latent space,
errors will be propagated, thereby affecting the entire knowledge representation learning.
To address this problem, we introduce logic rules with the expectation that the accuracy of
logic rules can be used to improve the accuracy of relational path inference. At the same
time, the interpretability of logical rules can also enhance the interpretability of relational
path inference.

Specifically, we propose a knowledge representation learning framework that com-
bines entity hierarchical type information and rule path information (TRKRL). Moreover,
we introduce these bits of information into the embedding level. We regard the entity
hierarchical type information as the entity’s projection matrix and use a type encoder to
model it for addressing the problem that entities have different types of representations
in different scenarios. For relation paths information and logic rules information, we use
Horn rules mined from KGs to guide the synthesis of relations in the path and improve
the accuracy of relational path reasoning, while the interpretability of logic rules can also
enhance the interpretability of a model’s representation learning. We evaluate the TRKRL
model on a benchmark dataset in Freebase, and experimental results show that compared
with all baselines TRKRL exhibits a significant and consistent improvement. The main
contributions of the present work can be summarized as follows. (1) We introduce logic
rules information and use the accuracy of logical rules to improve the accuracy of relational
path reasoning. At the same time, the interpretability of logical rules can also improve
the interpretability of representation learning. (2) Entity hierarchical type information is
introduced to obtain a more comprehensive representation of entities in order to cope with
different scenarios in which the same entity has different types. (3) We propose a novel
knowledge representation learning model that combines relation paths information, logic
rules information, and entity hierarchical type information, while experiments show that
our model outperforms all baseline approaches.

1.2. Related Work
1.2.1. Translation-Based Models

In recent years, great progress has been made in the representation learning of
KGs [15–18], and many models are based on translation operations. TransE [10] is the most
classic and representative translation-based model. TransE first projects both entities and
relationships into the same continuous low-dimensional vector space as h, r, t ∈ Rs. The
key operation of TransE is then to translate the semantics from head entities to tail entities
by relationships. TransE believes that the tail t should be in the neighborhood of h + r; that
is, h + r ≈ t when triple (h, r, t) holds. Hence, the energy function is E(h, r, t) = ‖h + r− t‖.
TransE is effective and simple for 1-to-1 relationships but has issues for modeling 1-to-N,
N-to-1, and N-to-N relationships.

Some researchers have made efforts to solve the problem of the representation of
complex relationships. TransH [11] interprets relations as translating operations on relation-
specific hyper-planes, and projects h and r to the relation-specific hyper-plane. In this way,
different embedded representations of entities are realized when the entities correspond to
different relationships. TransR [12] first models entities and relationships in independent
entity space and relationship space, and then maps entities from entity space to relationship-
specific space. STransE [19] puts the head and tail entities in different spaces on the basis of
TransR. TransRHS [20] considers the inherent generalization relationships among relations.
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However, these models only focus on the relationship between triples and ignore the rich
information carried in the triples, which will be applied in our model TRKRL.

1.2.2. Multi-Source Information Learning Models

Multi-source information refers to textual information, type information, and log-
ical information that can complete the triple structure. In terms of text information,
Socher et al. [14] proposed representing the entity as the average value of its word embed-
dings in the entity name, so as to share the textual information of similar entities. Based on
the entity name and Wikipedia anchor, Wang et al. [11] and Zhong et al. [21] encode entities
and words into the joint vector space. DKRL [22] explores two encoders to represent
the semantics of entity descriptions, and considers the zero-shot scenario, in which some
entities are novel compared to existing KGs with only descriptions.

Hierarchical entity types information and logic rules information are also significant
for KGs. Krompaß et al. [8] propose that the entity types comprise a hard constraint in
the KG latent variable model. In order to realize the explicit coding of type information,
Xie et al. [23] proposed the TKRL. TKRL considers the hierarchical structure of entity
types and solves the problems of noise and incomplete types in hard constraints. The
interpretability of logic rules enhances the interpretability of representation learning. For
instance, Minervini et al. [24] simply impose equivalence and reversal constraints on rela-
tional embedding; Ruge [25] converts triples into complex formulas formed by atoms with
logical connectives; Niu et al. [26] explicitly use Horn rules to derive path embeddings and
create semantic associations between relationships. However, none of these approaches
can simultaneously apply structured information, hierarchical types information, and
logic rules information in the representation learning of the SG. The model TRKRL pro-
posed in this paper performs well in fusing multi-source information and improves the
interpretability and generalization of representation learning on the KG.

2. Methodology
2.1. Extraction of Hierarchical Type Information

The fact that the same entity has different meanings at different levels of a scenario
is important for the learning of representations in the KG. However, most previous re-
search pays less attention to the rich information located in hierarchical types of entities.
Figure 1 shows a triple instance; Isaac Newton has a variety of types (e.g., book/author,
physical/physicist, and British/celebrity). It is, therefore, reasonable to believe that each
entity should be represented differently in different scenarios, as a reflection of itself from
different perspectives. Take the example of a hierarchy type g with m layers, where g(i) is
the ith sub-type of g. Each sub-type g(i) has only one parent sub-type g(i+1), while the most
precise sub-type is the first layer, and the most general sub-type is the last. Going through
the hierarchy from the bottom-up, we can obtain a representation of the hierarchical type
as g =

{
g(1), g(2), . . . , g(i)

}
. We assign the type-specific projection matrix Wg to each type

g, and the head h and tail t of this relation are then represented in the projection under the
particular types as grh and grt, respectively. The energy function is defined as follows:

E(h, r, t) = ‖Wrhh + r−Wrtt‖, (1)

in which Wrh and Wrt are different projection matrices for h and t, respectively.
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Figure 1. Example of entity hierarchical types in Freebase.

2.1.1. Type Encoder

We use a general form of type encoder to encode hierarchical type information into
the representation learning. In the general form of a KG, most entities have more than one
type, so the projection matrix We for entity e is a weighted sum of all type matrices:

We = a1Wg1 + a2Wg2 + · · ·+ anWgn , (2)

where n is the number of types entity that e has, ai is the weight for gi, gi is the ith type
that e belongs to, and Wgi represents the projection matrix of gi. The weights can be set
according to statistical characteristics, such as type frequency. With this operation, all
projection matrices of entity e are the same in different scenes.

In practice, however, the importance of entity attributes varies in different scenarios.
Therefore, we have improved the type encoder, and the projection matrix Wrh in a specific
triple will be:

Wrh =
∑n

i=1 aiWgi

∑n
i=1 ai

, (3)

where 1 ≥ ai > 0. Similarly, the projection matrix Wrt of the entity at the tail position can
be obtained.

2.1.2. Hierarchical Encoder

As mentioned earlier, we consider the type information of entities to be hierarchical, so
a recursive hierarchical encoder is used. During the projection process, entities (e.g., Isaac
Newton) will be first mapped to the more general sub-type space (e.g., physical) and then
be sequentially mapped to the more precise sub-type space (e.g., physical/physicist). The
mathematical formula is:

Wg =
m

∏
i=1

Wg(i) = Wg(1)Wg(2) . . . Wg(m) , (4)

where Wg is the projection matrix for type g, Wg(i) is the projection matrix of the ith sub-type

g(i), and m is the number of layers for type g.

2.2. Extraction of Logic Rules Information

To enable our model to provide more semantic information, we have further fused
paths and logic rules information. First, we mine the rules with their confidence levels
µ ∈ [0, 1] from the KG. The higher the confidence level of the rule, the higher the probability
that it holds. Second, we restrict the maximum length of rules to 2. Thus, rules are classified
into two categories according to their length, as follows. (1) R1: A rule set of length 1 is
called R1, which associates two relations in the rule body and rule head. (2) R2: A rule
set of length 2 is denoted R2 and it can be used to compose paths. Figure 2 provides
specific examples.
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Figure 2. Example of rule R1 and R2.

We use PTransE to implement the path extraction process, where the reliability of
each path p is denoted as R(p|h, t) between pairs of entities (h, t). Table 1 lists the modes
for R2. Obviously, it is crucial that, in the rule R2, which constitutes the path, sequential
paths are formed by the atoms of each rule body. Therefore, we encode the eight rules
to facilitate the formation of a valid path set P(h, t) for the entity pair (h, t). Taking the
original rule r3(a, b) = r1(b, e)

⋃
r2(a, e), for instance, we first convert the atom r1(b, e) into

r−1
1 (e, b), and then exchange two atoms in the rule body to obtain a chain rule r3(a, b) =

r2(a, e)
⋃

r−1
1 (e, b), which could be further abbreviated as r3 = r2

⋃
r−1

1 .

Table 1. List of conversion modes for rule R2.

Original Rules Encoded Rules

r3(a, b) = r1(a, e)
⋃

r2(e, b) r3 = r1
⋃

r2
r3(a, b) = r1(e, b)

⋃
r2(a, e) r3 = r2

⋃
r1

r3(a, b) = r1(e, b)
⋃

r2(e, a) r3 = r−1
2

⋃
r1

r3(a, b) = r1(e, a)
⋃

r2(e, b) r3 = r−1
1

⋃
r2

r3(a, b) = r1(a, e)
⋃

r2(b, e) r3 = r1
⋃

r−1
2

r3(a, b) = r1(b, e)
⋃

r2(a, e) r3 = r2
⋃

r−1
1

r3(a, b) = r1(e, a)
⋃

r2(b, e) r3 = r−1
1

⋃
r−1

2
r3(a, b) = r1(b, e)

⋃
r2(e, a) r3 = r−1

2
⋃

r−1
1

In order to make full use of the encoded rules, we should traverse the paths and
iteratively perform the composition operation at the semantic level until the rules cannot
combine any relations. In the actual path synthesis process, consider the optimal case in
which all relations in the path can be synthesized iteratively by the rule R2 and eventually
joined together as a single relation between pairs of entities. In addition, when the path
can match multiple rules at the same time, we choose the rule with a high confidence level
to form the path. This leads to the path embedding H(p) of the path p.

When rule R1 holds, relation r1 may have more semantic similarity to its directly
implicated relation r2. We, therefore, encode rules of the form of representation learning,
(a, r2, b) = (b, r1, a) as (a, r2, b) = (a, r−1

1 , b). During training, embedding representing pairs
of relations that appear simultaneously in rule R1 are considered closer than embedding of
two relations that do not match any rule.
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2.3. Integration of Information

For each triple (h, r, t), we define three energy functions that model correlations for
direct triples and hierarchical type methods, path pairs using rule R2, and relationship
pairs using rule R1:

E1(h, r, t) = ‖Wrhh + r−Wrtt‖, (5)

E2(p, r) = R(p|h, t)( ∏
µi∈U(p)

µi)‖H(p)− r‖, (6)

E3(r, re) = ‖r− re‖, (7)

where E1(h, r, t) measures the effectiveness of type information. E2(p, r) denotes the energy
function evaluating the similarity between path p and relation r, and U(p) = µ1, . . . , µn
denotes the set of confidence levels corresponding to all rules in rule R2 employed in the
composition of path p. E3(r, re) is an energy function that represents the similarity between
a relation r and another relation re. If the relations contained in the relation re are re-defined
using rule R1, it should be assigned a smaller fraction.

2.4. Loss Function and Optimization

We formalize the loss function as a margin-based score function targeting negative
sample sampling:

L = ∑
(h,r,t)∈T

∑
(h′ ,r′ ,t′ )∈T′

(L1(h, r, t) + α1 ∑
p∈P(h,t)

L2(p, r) + α2 ∑
re∈R(r)

L3(r, re)), (8)

where T represents a set that contains all the positive triples observed in KG. T
′

is the
negative sampling set of T, Rr is the set of all relations deduced from r on the basis of rule
R1, and re is any one of the relations in Rr. P(h, t) is the set of all paths connecting entity pair
(h, t), of which p is a path. L1, L2, and L3 correspond to marginal-based loss functions for
the triple (h, r, t) of entity hierarchical types, path pairs (p, r), and relationship pairs (r, re):

L1(h, r, t) = max(0, γ1 + E(h, r, t)− E(h
′
, r
′
, t
′
)), (9)

L2(p, r) = max(0, γ2 + E2(p, r)− E2(p
′
, r
′
), (10)

L3(r, re) = max(0, γ3 + βE3(r, re)− E(r, r
′
), (11)

where γ1, γ2, and γ3 > 0 are hyper-parameters; β denotes the confidence level of associa-
tions r and re.

Since there are no explicit negative triples in KGs, the entities or relationships in the
training triples are randomly replaced by any other entity in E. Moreover, the new triples
after replacements will not be considered as negative samples if they are already in T. In
addition, the negative triples sampling rule is expressed as follows:

T
′
= (h

′
, r, t)

⋃
(h, r

′
, t)

⋃
(h, r, t

′
). (12)

For optimization, mini-batch stochastic gradient descent (SGD) is used to minimize
the loss function. The projection matrix set W could be initialized randomly or by identity
matrix. In addition, the embeddings of entities and relations could be either initialized
randomly or be pre-trained by existing translation-based models, such as TransE.

3. Experiments
3.1. Experiment Settings
3.1.1. Datasets

We evaluate our model on two typical KGs, i.e., FB15K and FB15K-237, which are
extracted from the large-scale Freebase [1]. FB15K contains 14,951 entities, 1345 relations,
and 592,213 triples in total, and we split the triples into training, validation, and testing sets.
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We collected a total of 571 entity types in FB15K, with the average number of types for all
entities being approximately eight and having at least one hierarchical type. However, in
order to verify the validity of the logic rule information, the FB15K-237 dataset is also used
in the experiment. Note that FB15K-237 contains no inverse relation; hence, it is difficult
to learn embeddings by these mutually independent relations, so it is different than the
FB15K dataset. The statistics of all datasets are listed in Table 2.

Table 2. Dataset statistics.

Dataset Relationships Entities Training Validation Testing

FB15K 1345 14,951 483,142 50,000 59,071
FB15K-237 237 14,541 272,115 17,535 20,466

We collect all type instances of type/instance fields in FB15K, as well as the relationship-
specific type information distributed in the rdf-schema#domain and rdf-schema#range fields.
Regarding the logic rules information, we choose AMIE+ as the rule mining tool for its
convenience and fast speed to mine rich information. We set the confidence threshold to be
chosen in the range [0, 1] in steps of 0.1 to search for the best performance of the rule on
the dataset.

3.1.2. Settings

TransE and TransR are the comparison objects of the proposed models. Considering
the differences in application scenarios, we make changes in their original settings. We
first use the L1-norm to improve the dissimilarity measure of TransE. Then, in the negative
sampling process, we replace the relationship and the entity, and use “bern” to represent
the head or tail of different probabilities %. Similarly, we perform relationship replacement
during the negative sampling process of TransR and train with the best parameters marked
in the paper %.

We use mini-batch SGD to help train the TRKRL model. In this paper, the best
configuration of parameters is size S = 4800, margin γ = 1.0, descending weight η = 0.1,
and learning rate λ designed by a linear-declined function. The training dimension for all
models is 100. In the course of our experiments, we used several models for comparison.
Among them, TransE and TransR are trained with the best parameters reported in their
respective papers. For other baselines including RESCAL, SE, SME, LFM, and TKRL, we
use the results reported directly.

3.2. KG Completion
3.2.1. Evaluation Protocol

The complementary task of the KG refers to completing any of the missing elements
in the triple. Taking entity prediction as an example, the comparison process of relationship
prediction is similar. Three principle assessment metrics are focused on, i.e., (1) the mean
rank of correct entities (MR), (2) mean reciprocal rank of correct entities (MRR), and (3)
proportion of correct answers ranked in top n (Hits@n). The evaluation settings are named
“Raw” and “Filter”.

The KG completion task requires entity and relationship information, so we divide
this task into entity and relationship prediction sub-tasks. We use FB15K for evaluation
and the same evaluation conditions for all models to ensure the reliability of the results.

3.2.2. Entity Prediction

Table 3 shows the entity prediction results, from which we can observe the following.
(1) Our method (TRKRL) surpasses other baselines in all indicators. This illustrates that
the fusion of logical rule information and hierarchical type information can improve the
representation learning of the KG. (2) The results of TRKRL and TKRL on the MR and
the number of Hits@10 are better than those of all baselines. The results show that the
embedding of the hierarchical type information of entities and relationships can improve
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the representation learning of the KG. (3) In particular, TRKRL is superior to TKRL in every
metric, which shows the advantages of introducing logical rules in providing higher path
synthesis accuracy and learning better path embedding.

Table 3. Entity prediction results on FB15K. Best scores are in bold; second-best scores are underlined.

Metric
Mean Rank Hits@10 (%)

Raw Filtered Raw Filtered

RESCAL 828 683 28.4 44.1
SE 273 162 28.8 39.8

SME 274 154 30.7 40.8
LFM 283 164 26.0 33.1

TransE 236 142 46.9 62.3
TransR 198 75 47.3 67.3
TKRL 184 68 49.2 69.4

TRKRL 182 65 50.5 73.6

3.2.3. Relationship Prediction

Table 4 displays the results on the FB15K dataset for all compared methods. We
adopt two classic models, TransE and TransR, as comparison objects. Consistent with
our conjecture, the results obtained after data filtering have lower mean ranks and higher
hits@10 than the results of without filtering. More specifically, we observe the following.
(1) Our method, TRKRL, outperforms all baselines on all metrics. In particular, it achieves
a superior absolute performance score of 94.1% on the hits@10 index. This indicates that
the logic rules information added in TRKRL is not only conducive to entity prediction, but
also conducive to relationship prediction. (2) The mean rank results of TKRL and TRKRL
before filtering are significantly improved compared to other baselines, which illustrates
the positive impact of hierarchical type information as a constraint.

Table 4. Relationship prediction results on FB15K. Best score in bold.

Metric
Mean Rank Hits@10 (%)

Raw Filtered Raw Filtered

TransE 2.81 2.51 67.5 88.3
TransR 2.63 2.22 71.4 90.7
TKRL 2.12 1.73 71.1 92.8

TRKRL 2.08 1.69 72.6 94.1

3.2.4. Ablation Study

In order to fully prove the universality and reliability of our proposed method, we
also conducted test experiments on the FB15K-237 dataset. Compared with the classic
datasets (i.e., FB15K, WN18, etc.), the FB15K-237 dataset has been constructed only recently.
At present, relatively little work has been done on this dataset showing test results, so we
can use it as a baseline. Table 5 shows the experimental results, in which TRKRL obtains
the best performance with approximately 25.47% improvement compared to best baseline
TransR on Mean Reciprocal Rank. According to the results of Mean Reciprocal Rank and
Hits@10, it is found that TransR is more suitable for the FB15K-237 dataset than most of
the baselines. This may be attributed to the fact that TransR clusters entities with the same
relationship. Although FB15K-237 eliminates the reverse relation, we can use Horn rules to
help establish semantic associations.

To verify that the components of TRKRL are meaningful, we performed entity predic-
tion ablation experiments on FB15K, and removed the paths, hierarchical types, and logic
rules from TRKRL. As shown in Table 6, TRKRL-P, TRKRL-HT, and TRKRL-LR represent
the model TRKRL without paths, hierarchical types, and logic rules, respectively. Obvi-
ously, deleting any one component will cause the performance degradation of the model.
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This illustrates that the multi-information fusion theory proposed by us is completely
beneficial to knowledge representation learning.

Table 5. Entity prediction results on FB15K-237. Best score is in bold; second-best score is underlined.

Metric Mean Rank Mean Reciprocal Rank Hits@10 (%)

SME 483 0.255 30.1
LFM 462 0.271 33.8

TransE 345 0.282 50.3
TransR 298 0.369 59.7
TKRL 204 0.327 54.5

TRKRL 192 0.463 63.4

Table 6. Ablation study by removing paths, hierarchical types, and logic rules.

Metric
Mean Rank Hits@10 (%)

Raw Filtered Raw Filtered

TRKRL 182 65 50.5 73.6
TRKRL-P 208 96 40.9 52.3

TRKRL-HT 194 75 47.1 64.4
TRKRL-LR 189 68.4 49.3 70.5

3.3. Triple Classification
3.3.1. Evaluation Protocol

The purpose of this task is to confirm whether the triple (h, r, t) is correct or not. This
task has been considered as one of the indicators for evaluating the performance of the
learning model. To accomplish this task, we constructed negative examples for the FB15K
dataset according to the method of Socher et al. [14]. The specific method is to determine
different thresholds ζ for different relationships. When the dissimilarity score E(h, r, t) of
the triple is higher than the threshold ζ, it is considered negative; otherwise, it is positive.

3.3.2. Results

Table 7 shows the result of triple classification, from which we can observe that
TRKRL has the best performance, which shows the advantages of TRKRL over baselines
in the triple classification, and further proves the superiority of the fusion of logical rules
information and hierarchical type information.

Table 7. Evaluation results on triple classification. Best score is in bold; second-best score is underlined.

Methods Accuracy (%)

TransE 85.6
TransR 86.5

TKRL 88.5
TRKRL 88.7

4. Conclusions

In this paper, we propose the knowledge graph representation learning framework
TRKRL, which combines rule path information and entity hierarchical type information.
By integrating entity hierarchical type information, Horn rules, and relationship path
information in a triple embedding framework, TRKRL improves the accuracy of represen-
tation learning and obtains better knowledge representation. For entity hierarchical type
information, we use a type encoder to model the hierarchical type information and then
treat it as a projection matrix of entities to cope with different scenarios in which entities
have different type representations. For Horn rules and relational path information, we
use logical rules to guide the synthesis of relations in paths to improve the accuracy of
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relational path reasoning. In addition, logical rules can also enhance the interpretability
of representation learning. Experimental results show that TRKRL outperforms all other
baselines, which illustrates the importance of entity hierarchical type information and
logical rules information in guiding the synthesis of relationships in paths.

In planned future work, we will explore the following directions: (1) exploring new
entity hierarchical type encoders to better model entity hierarchical type information;
(2) exploring potential rules to guide the synthesis of relationships in the path to better
combining rules and paths; and (3) introducing other auxiliary information, such as textual
information and visual information, in order to learn a more complete representation.
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