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Abstract: The boundary value problem for the steady Navier–Stokes system is considered in a 2D
multiply-connected bounded domain with the boundary having a power cusp singularity at the point
O. The case of a boundary value with nonzero flow rates over connected components of the boundary
is studied. It is also supposed that there is a source/sink in O. In this case the solution necessarily
has an infinite Dirichlet integral. The existence of a solution to this problem is proved assuming that
the flow rates are “sufficiently small”. This condition does not require the norm of the boundary data
to be small. The solution is constructed as the sum of a function with the finite Dirichlet integral and
a singular part coinciding with the asymptotic decomposition near the cusp point.
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1. Introduction

In the paper we study the nonhomogeneous stationary boundary value problem for
the Navier-Stokes equations

−ν∆u + (u · ∇)u +∇p = f, x ∈ Ω,

div u = 0, x ∈ Ω,

u = a, x ∈ ∂Ω,

(1)

in a multiply-connected domain Ω ⊂ R2 with a cusp point O = (0, 0) on the boundary. We
assume that ∂Ω = ∪N

j=1Γj ∪ Γ consists of N + 1 disjoint components Γ, Γj, j = 1, ..., N,

Ω = Ω0 ∪ G =
(

D0 \
(
∪N

j=1 Dj
))
∪ G, Dj ⊂ D0, j = 1, . . . , N,

where Γj = ∂Dj, j = 1, . . . , N, Γ = ∂Ω \∪N
j=1Γj and G = {x ∈ R2 : |x1| ≤ ϕ(x2), x2 ∈ (0, H]},

ϕ(x2) = γ0xλ
2 , γ0 = const, λ > 1. Moreover, we suppose that ∂Ω∩ ∂Ω0 is C2 (see Figure 1).

In (1) the velocity vector u and the pressure function p are the unknowns while the bound-
ary value a ∈ W1/2,2(∂Ω) and the external force f ∈ L2(Ω) are given; ν > 0 denotes a
constant coefficient of the kinematic viscosity.

We assume that the support of a is separated from the cusp point O, i.e.,

supp a ⊂
(
Γ ∩ ∂Ω0

)
∪
(
∪N

j=1 Γj
)
.
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Figure 1. Domain Ω = Ω0 ∪ G.

Let
F0 =

∫
Γ∩∂Ω0

a · n dS, Fj =
∫
Γj

a · n dS, j = 1, . . . , N, (2)

be the flow rates of the boundary value a over the outer boundary Γ ∩ ∂Ω0 and the inner
boundaries Γj, j = 1, . . . , N, where n denotes the unit vector of the outward normal to ∂Ω.
By the incompressibility of the fluid it follows that

∫
σ(R)

u · n dS = −
(

F0 +
N
∑

j=1
Fj
)
, 0 < R < H, (3)

where σ(R) = (−ϕ(R), ϕ(R)) is a cross section of G by the straight line x2 = R parallel

to the x1-axis. We assume that the total flux may be nonzero, i.e., F0 +
N
∑

j=1
Fj 6= 0. This

nonzero condition means that there is a source or sink in the cusp point O. Then, due to
the geometry of the domain, the velocity vector field u necessarily has infinite Dirichlet
integral

∫
Ω
|∇u(x)|2dx = ∞ (see, e.g., [1]).

The point source/sink approach is widely used in physics, astronomy and in fluid
and aerodynamics. The behaviour of solutions to the Stokes and Navier–Stokes equa-
tions in singularly perturbed domains became of growing interest during the last fifty
years. There is an extensive literature concerning these issues for various elliptic problems,
e.g., [2–18]. In particular, the steady Navier–Stokes equations are studied in a punctured
domain Ω = Ω0 \ {O} with O ∈ Ω0 assuming that the point O is a sink or source of
the fluid [19–21] (see also [22] for the review of these results). We also mention the pa-
pers [23–25] where the existence of a solution (with an infinite Dirichlet integral) to the
Navier–Stokes problem with a sink or source in the cusp point O was proved for arbitrary
data and the papers [26–28] where the asymptotics of a solution to the nonstationary Stokes
problem is studied in domains with conical points and conical outlets to infinity.

The existence of singular solutions to the time-periodic and initial boundary value
problems for the linear Stokes and the nonlinear Navier–Stokes equations in domains
with a cusp point on the boundary were studied in recent papers [29–32], where the case
with a sink/source in the cusp point O was considered. In [23], the existence of a generic
stationary solution with infinite Dirichlet integral was proved. However, the behaviour
of the solution near the cusp point was not found. The asymptotic decomposition near
the cusp point of the solution u to problem (1) was constructed and the existence of a
unique solution which is represented as a sum of this decomposition and a vector field
belonging to a suitable second order weighted Sobolev space is proved in [1]. In [1], it is
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assumed that a ∈ W3/2,2(∂Ω) and the results are obtained under the condition that the
norm ‖a‖W3/2,2(∂Ω) is sufficiently small.

In this paper we extend the results of [1] in two directions: first, we study the case
of domains with multiply-connected boundaries and, second, we prove the existence of
the solution coinciding near the cusp point with the formal asymptotic decomposition
assuming only that the flow rates F0, F1, . . . , FN of the boundary value a are sufficiently
small. The proof is based on the construction of an extension of the boundary value which
coincides near the cusp point with the asymptotic decomposition and allows to obtain
needed a priori estimates assuming only that flow rates are sufficiently small. Note that in
this case the norm of a is not obliged to be small. It is worth to mention the papers [33–35]
where the nonhomogeneous boundary value problem for the stationary Navier–Stokes
equations was studied in bounded domains with multiply-connected boundaries having
C2-regularity.

2. Notation and Auxiliary Results
2.1. Function Spaces

We will use the letter “c” for a generic constant which numerical value or dependence
on parameters is unessential to our considerations; “c” may have different values in a
single computation. Vector valued functions are denoted by bold letters while function
spaces for scalar and vector valued functions are denoted in the same way.

Let D be a bounded domain in Rn with Lipschitz boundary. C∞(D) denotes the set
of all infinitely differentiable in D functions and C∞

0 (D) is the subset of all functions from
C∞(D) with compact supports in D. For given non-negative integers k and q > 1, Lq(D)
and Wk,q(D) denote the usual Lebesgue and Sobolev spaces; Wk−1/q,q(∂D) is the trace
space on ∂D of functions from Wk,q(D). W̊1,2(D) is the closure of C∞

0 (D) in W1,2-norm.
J∞
0 (D) is the set of all solenoidal (div u = 0) vector fields u from C∞

0 (D) and H(D) is the
closure of J∞

0 (D) in the gradient norm ‖∇ · ‖L2(D).

Lemma 1 ([36,37], Chapter 1, Lemma 1). Let D ⊂ R2 be a bounded domain. If u ∈W1,2(D),
then the following estimate

‖u‖4
L4(D) ≤ c ‖u‖2

W1,2(D)‖u‖
2
L2(D) ≤ c ‖u‖4

W1,2(D)

holds. Moreover, if u ∈ W̊1,2(D) then

‖u‖4
L4(D) ≤ 2 ‖u‖2

L2(D)‖∇u‖2
L2(D) ≤ c ‖∇u‖4

L2(D).

Consider the domain Ω with a cusp point. We introduce a family of subdomains
Ωk ⊂ Ω with Lipschitz boundaries:

Ωk = Ωk−1 ∪ {x ∈ R2 : |x1| ≤ ϕ(x2), x2 ∈ (hk, hk−1)} = Ωk−1 ∪ωk,

where

h0 = H, hk = hk−1 −
ϕ(hk−1)

2L
, k = 1, 2, . . . , (4)

and L is the Lipschitz constant for the function ϕ.
We write u ∈W l,q

loc(Ω \ {O}) if u ∈W l,q(Ωk) for ∀k.

Lemma 2. Let u ∈W1,2
loc (Ω \ {O}), u = 0 on ∂Ω \ {O}. If

∫
G
|ϕ(x2)|2α|∇u(x)|2dx < ∞, then

the integral
∫
G
|ϕ(x2)|2α−2|u(x)|2dx is finite and the following inequality

H2∫
H1

ϕ(x2)∫
−ϕ(x2)

|ϕ(x2)|α−2|u(x)|2dx1dx2 ≤ 4
π2

H2∫
H1

ϕ(x2)∫
−ϕ(x2)

|ϕ(x2)|α|∇u(x)|2dx1dx2 (5)
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holds, where H1, H2 are any numbers from the interval [0, H]

The proof of this lemma can be found in [32] (see Lemma 2.1).

2.2. Formal Asymptotic Decomposition

The formal asymptotic decomposition
(
U[J], P[J]) of the solution (u, p) of problem (1)

near the cusp point O was constructed in [1]. It has the form

U[J]
1 (y1, y2) = y−1

2 U1,0(y1) +
J

∑
k=1

y−1+k(λ−1)
2 U1,k(y1),

U[J]
2 (y1, y2) =

F
κ0

y−λ
2 Φ(y1) +

J
∑

k=1
y−λ+k(λ−1)

2 U2,k(y1),

P[J](y1, y2) =
F

κ0(1− 3λ)
y1−3λ

2 + y−1−λ
2 Q0(y1)

+
J

∑
k=1

y1−3λ+k(λ−1)
2 Ck + y−1−λ+k(λ−1)

2 Qk(y1),

(6)

where y1 = x1
xλ

2
, y2 = x2, Φ(y1) =

1
2ν

(
|y1|2 − γ2

0
)
, the functions U1,k,U2,k,Qk are regular, and

∫
σ(R)

U[J]( x1
xλ

2
, x2) · n(x) dS = −F, F = F0 +

N
∑

j=1
Fj.

It was proved in [1] that U[J]
j (y1, y2), j = 1, 2, P[J](y1, y2) satisfy the estimates

∣∣∣∂lU[J]
1 (y1, y2)

∂yl
1

∣∣∣ ≤ c
|F|

y1+l
2

,
∣∣∣∂lU[J]

2 (y1, y2)

∂yl
1

∣∣∣ ≤ c
|F|

yλ+l
2

, l = 0, 1, . . . ,

|P[J](y1, y2)| ≤ c
|F|

y3λ−1
2

.
(7)

The asymptotic decomposition
(
Û[J](x), P̂[J](x)

)
=
(
U[J]( x1

xλ
2

, x2), P[J]( x1
xλ

2
, x2)

)
is de-

fined in G and, by construction, divxÛ[J] = 0, Û[J]|∂G∩∂Ω = 0. Moreover, it was proved

in [1] that for a sufficiently large J = J(λ) (J >
4λ + 1

2(λ− 1)
) holds the relation

−ν∆Û[J] + (Û[J] · ∇)Û[J] + ∇̂P[J] = Ĥ[J] (8)

with Ĥ[J] ∈ L2(G). Moreover, the discrepancy Ĥ[J] satisfies the estimate

‖Ĥ[J]‖L2(G) ≤ c
(
|F|+ |F|2

)
. (9)

3. Extension of Boundary Value
3.1. Flux Carrier from Inner Boundaries

In this subsection we construct a solenoidal vector function having the flow rates Fj
on inner components of the boundaries Γj, j = 1, . . . , N. We call such a function the flux
carrier. The construction used below is based on ideas proposed by H. Fujita in [38] for the
case of symmetric domains. In [38] such functions are called virtual drains.

First we define some auxiliary functions. Let κ ∈ (0, 1/2) be a parameter. We introduce
non-negative, even functions βκ(t) ∈ C∞

0 (−∞;+∞) such that

βκ(t) ≤
1
t

for 0 < t < +∞ and βκ(t) =
{

0, |t| ≥ 1,
1/t, κ ≤ |t| ≤ 1/2.
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Define yκ =
∞∫
−∞

βκ(t) dt. Then

yκ =
+∞∫
−∞

βκ(t)dt =
1∫
−1

βκ(t)dt ≥ 2
1
2∫

κ

1
t dt→ +∞ as κ → +0.

Define a smooth non-negative functions sκ(t) = sκ(t, δ) = 1
yκδ βκ(

t
δ ) such that

sκ ∈ C∞
0 (−∞;+∞) and supp sκ ⊆ [−δ; δ], where δ is a small positive number. Then

+∞∫
−∞

sκ(t)dt =
δ∫
−δ

sκ(t)dt = 1. (10)

Choose one of the domains Dj, j = 1, . . . , N, and take two points Xj ∈ Dj and
X0

j ∈ Γ ∩ ∂Ω0 such that the line XjX0
j intersects Γj and Γ only at one point and, if XjX0

j
intersects other boundaries, say, Γkm , km = k1, k2, . . . , Kj, 0 ≤ Kj ≤ N − 1, then-at even
number of points (if Kj = 0, then XjX0

j does not intersect any of Γkm ). Let us introduce

in Ω the local coordinates z(j) =
(
z(j)

1 , z(j)
2
)

such that the origin of this coordinate system

coincides with the point Xj and z(j)
2 axis is directed over the vector

−−→
XjX0

j .

The points X0
j and Xj in the local coordinates z(j) have the form X0

j = (0, Z(j)
0 ), Z(j)

0 > 0
and Xj = (0, 0). Let us take a small number µ0 > 0 and define the strip:

Υ(j) = [−δj, δj]× [0, Z(j)
0 + µ0],

where we choose a small number δj so that the segments {z(j) : z(j)
1 = ±δj} ∩ ∂Υ(j) intersect

Γj and Γ only at one point and if intersect other boundaries, then - at even number of points.
In Υ(j) ∩Ω we define a vector field:

bj(z(j)) =
(

0,−Fjsκ(z
(j)
1 )
)

.

Notice that bj(z(j)) defined on Υ(j) ∩Ω can be extended by zero into the whole domain
Ω, because the bottom of Υ(j) is outside the domain Ω. For the sake of simplicity we keep
the same notation for this extension, i.e., in the whole domain Ω we have:

bj(z(j)) =

{ (
0,−Fjsκ(z

(j)
1 )
)

in Υ(j) ∩Ω,

(0, 0) in Ω \ Υ(j).

We shall show that ∫
Γi

bj(z(j)) · n dS =

{
Fi, i = j,
0, i 6= j. (11)

Let us introduce the domain Υ̃(j) ⊂ Υ(j) ∩Ω with the boundary ∂Υ̃(j) which is the
union of: Γj ∩Υ(j), {z(j) : −δj ≤ z(j)

1 ≤ δj, z(j)
2 = µ∗j } and the lines z(j)

1 = ±δj, where µ∗j > 0

is a such small number that Υ̃(j) is a simple connected set (see Figure 2). Since, due to the
construction, bj(z(j)) is solenoidal and bj(z(j))

∣∣
z(j)

1 =±δj
= 0, we get
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0 =
∫

Υ̃(j)

divbj(z(j))dz(j) =
∫

∂Υ̃(j)

bj(z(j)) · n dS

=
∫

Υ(j)∩Γj

bj(z(j)) · n dS +
∫

{z(j) :−δj≤z(j)
1 ≤δj , z(j)

2 =µ∗j }

bj(z(j)) · e2 dS

=
∫
Γj

bj(z(j)) · n dS +
δj∫
−δj

(
0,−Fjsκ(z

(j)
1 )
)
· (0, 1) dz(j)

1 =
∫
Γj

bjk(z(j)) · n dS− Fj

δj∫
−δj

sκ(z
(j)
1 ) dz(j)

1 ,

where the vector field n denotes the unit outward normal to ∂Ω on Γj, while the vector e2

denotes the unit normal to ∂Υ̃(j) on {z(j) : −δj ≤ z(j)
1 ≤ δj, z(j)

2 = µ∗j }. Due to (10), from the

last equality we get (11). Notice that for the case i 6= j, when Υ(j) does not intersect or
touch Γi, the vector field bj vanishes on Γi (by construction). Otherwise, if Υ(j) intersects
Γi at even number of points, then flow rates of bj across Γi are equal to zero: the flow rates
of bj over not intersecting parts of Υ(j) ∩ Γi cancel each other.

Figure 2. The strip Υ(1). Dashed area is Υ̃(1).

In order to rewrite vector field bj(z(j)) in global coordinates let us take the orthogonal
matrix Aj with det Aj = 1 such that z(j) = Aj(x− x0.) Then it is easy to verify that

b(inn)
j (x) = AT

j bj(z(j))
∣∣∣
z(j)=Aj(x−x0)

.

Therefore, the flux carrier from the inner boundaries has the form:

b(inn)(x) =
N

∑
j=1

b(inn)
j (x).

Lemma 3. The vector field b(inn) is smooth and solenoidal. Moreover, suppb(inn) ⊂ Ω0,

∫
Γj

b(inn) · ndS = Fj, j = 1, . . . , N,
∫

Γ∩∂Ω0

b(inn) · ndS = −
N
∑

j=1
Fj (12)
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and the following estimate

|b(inn)(x)|+ |∇b(inn)(x)| ≤ c
N

∑
j=1
|Fj|, ∀x ∈ Ω0 (13)

holds.

3.2. Flux Carrier from the Outer Boundary

The boundary condition u = a is prescribed on
(
Γ ∩ ∂Ω0

)
∪
(
∪N

j=1 Γj
)
. After sub-

tracting the constructed flux carrier b(inn), which “removes” the fluxes Fj from the inner
boundaries Γj, j = 1, . . . , N, we get a modified boundary value a1 = a− b(inn)|∂Ω such
that supp a1 ⊂

(
Γ ∩ ∂Ω0

)
∪
(
∪N

j=1 Γj
)

and the flow rates of a1 over the inner boundaries
Γj, j = 1, . . . , N, are equal to zero: ∫

Γj

a1 · ndS = 0,

and the flow rate of a1 over the outer boundary Γ ∩ ∂Ω0 is equal to F0 +
N
∑

j=1
Fj:

∫
Γ∩∂Ω0

a1 · ndS = F0 +
N
∑

j=1
Fj = F.

Now we remove the nonzero flux from the outer boundary Γ ∩ ∂Ω0. For this we
will need the notion of Stein’s regularised distance. LetM be a closed set in R2. Stein’s
regularised distance ∆M(x) from the point x to the setM is an infinitely differentiable
function in R2 \M and the following inequalities

a1dM(x) ≤ ∆M(x) ≤ a2dM(x), |Dα∆M(x)| ≤ a3d1−|α|
M (x),

hold, where dM(x) = dist(x,M) is the distance from x toM. The positive constants a1, a2
and a3 are independent ofM (see [39], Chapter VI, Sections 1 and 2, 167–171, Theorem 2).

Let γ be a smooth simple curve, which intersects the outer boundary at some point
x(out) ∈ Γ ∩ ∂Ω0, does not intersect or touch any inner boundary Γj, j = 1, . . . , N, and
coincides with the straight line x1 = 0 in G (see Figure 3).

Let us introduce a function

ξ(x) = Ψ
(

ln
ρ(∆γ(x))

∆∂Ω\(Γ∩∂Ω0)
(x)

)
,

where Ψ and ρ are infinitely differentiable monotonic functions such that Ψ(t) = 0 for
t ≤ 0, Ψ(t) = 1 for t ≥ 1, and ρ(τ) = a1

2 d0 for τ ≤ a2
2 , ρ(τ) = τ for τ ≥ a2d0, d0 is the

distance between the curve γ and ∂Ω \ (Γ ∩ ∂Ω0). The functions ∆γ(x) and ∆∂Ω\(Γ∩∂Ω0)

are regularised distances from x to γ and ∂Ω \ (Γ ∩ ∂Ω0), respectively.
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Figure 3. Curve γ.

Lemma 4. The function ξ(x) vanishes at those points x ∈ Ω \ {O}, where ρ(∆γ(x)) ≤
∆∂Ω\(Γ∩∂Ω0)

(x), and ξ(x) = 1 at points x ∈ Ω \ {O} where ∆∂Ω\(Γ∩∂Ω0)
(x) ≤ e−1ρ(∆γ(x)).

Moreover, the following inequalities∣∣∣∣∂ξ(x)
∂xk

∣∣∣∣ ≤ c
∆∂Ω\(Γ∩∂Ω0)

(x)
≤ c1,

∣∣∣∣∂2ξ(x)
∂xk∂xl

∣∣∣∣ ≤ c
∆2

∂Ω\(Γ∩∂Ω0)
(x)
≤ c1, x ∈ Ω4, (14)

hold with the constant c1 dependent only on a1, a2 and d0.

The proof of this lemma can be found in [40] (see Lemma 2).

Let us define a vector field

b(out)(x) = −F
(∂ξ̃(x)

∂x2
,−∂ξ̃(x)

∂x1

)
,

where ξ̃(x) coincides with ξ(x) on the right side of the curve γ and ξ̃(x) = 0 on the left
of γ.

By construction, the vector field b(out)(x) is smooth, solenoidal and b(out)(x)
∣∣
∂Ω\(Γ∩∂Ω0)

= 0.

Lemma 5. There hold the relation ∫
Γ∩∂Ω4

b(out) · n dS = F (15)

and the estimate
|b(out)(x)|+ |∇b(out)(x)| ≤ c|F| ∀x ∈ Ω4. (16)

Proof. Since divb(out) = 0, we have

∫
Γ∩∂Ω4

b(out) · n dS = −
∫

σ(h4)

b(out) · n dS = F
ϕ(h4)∫
−ϕ(h4)

(∂ξ̃(x)
∂x2

,−∂ξ̃(x)
∂x1

)
· (0,−1) dx

= F
ϕ(h4)∫
−ϕ(h4)

∂ξ̃(x)
∂x1

dx1 = F
(

ξ̃(ϕ(h4), h4)− ξ̃(−ϕ(h4), h4)
)
= F.

Estimate (16) follows from Lemma 4 and properties of the regularised distance.
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The modified boundary value a2 = a1−b(out)|∂Ω has a support on
(
Γ ∩ ∂Ω0

)
∪
(
∪N

j=1 Γj
)

and the flow rates of a2 on Γ ∩ ∂Ω0 and Γj, j = 1, . . . , N, are equal to zero:∫
Γ∩∂Ω0

a2 · n dS = 0,
∫
Γj

a2 · n dS = 0, j = 1, . . . , N. (17)

3.3. Extension of a2

The extension of the boundary value function having zero flux over the boundary was
constructed by O.A. Ladyzhenskaya (see [37], Chapter V, Section 4, 127–128). To be more
precise, in [37] was proved the following result

Lemma 6. Let D ⊂ R2 be a bounded domain with Lipschitz boundary ∂D, L ⊆ ∂D, meas(L) > 0.
Assume that the vector field h ∈W1/2,2(∂D) satisfies the conditions

∫
L

h · n dS = 0, supp h ⊆ L.

Then h can be extended inside D in the form

H(x, ε) =
(∂(χ(x, ε)E(x))

∂x2
,−∂(χ(x, ε)E(x))

∂x1

)
, (18)

where E ∈ W2,2(D), ( ∂E(x)
∂x2

,− ∂E(x)
∂x1

)|∂D = h and χ = χ(x, ε) is Hopf’s type cut-off function,
i.e., χ is smooth, χ(x, ε) = 1 on L, supp χ is contained in a small neighborhood of L and

|∇χ(x, ε)| ≤ εc
dist(x,L) . (19)

The constant c in (19) is independent of ε > 0.
The vector field H ∈ W1,2(D) is solenoidal, H

∣∣
∂D = h, supp H is contained in a small

neighbourhood of L and there holds the estimate

‖H‖W1,2(D) ≤ c(ε)‖h‖W1/2,2(∂D). (20)

Moreover, for any ε > 0 the vector field H satisfies the Leray-Hopf inequality∫
D

(
w · ∇

)
H ·wdx ≤ cε

∫
D
|∇w|2dx ∀w ∈ H(D) (21)

with the constant c independent of ε.

Because of the condition (17) we can apply Lemma 6 to a2 and we obtain the follow-
ing result.

Lemma 7. There exists a vector field b0 ∈ W1,2(Ω) such that b0
∣∣
∂Ω = a2, div b0 = 0,

supp b0 ⊂ Ω1,
‖b0‖W1,2(Ω) ≤ c‖a2‖W1/2,2(∂Ω). (22)

Moreover, ∫
Ωk

(
w · ∇

)
b0 ·wdx ≤ cε

∫
Ωk

|∇w|2dx ∀w ∈ H(Ωk). (23)

The constant c in (23) is independent of ε > 0 and k.

3.4. Construction of Extension Coinciding with Asymptotic Decomposition Near Cusp Point

Now we “glue” the above constructed vector field B = b0 + b(inn) + b(out) with the
asymptotic decomposition U[J].
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Let ζ be a smooth cut-off function such that ζ(x2) = 1 for x2 ≥ h3, ζ(x2) = 0 for
x2 ≤ h4, 0 ≤ ζ(x2) ≤ 1. We put

A = b0 + b(inn) + ζb(out) +
(
1− ζ

)
U[J] + V[J], (24)

where V[J] is the solution of the following problem

div V[J] = −∇ζ · b(out) +∇ζ ·U[J], x ∈ ω4,

V[J] = 0, x ∈ ∂ω4.
(25)

Notice that
∫

ω4

(
∇ζ · b(out)−∇ζ ·U[J]

)
dx =

∫
ω4

div
(
b(out) +

(
1− ζ

)
U[J]) dx = 0. Indeed,

∫
ω4

div
(
ζb(out) +

(
1− ζ

)
U[J]) dx =

∫
∂ω4

ζb(out) · n dS +
∫

∂ω4

(
1− ζ

)
U[J] · n dS

=
∫

σ(h3)

b(out) · n dS−
∫

σ(h4)

U[J] · n dS =
(

F0 +
N
∑

j=1
Fj
)
−

ϕ(h4)∫
−ϕ(h4)

U[J]
2 dx1 = 0,

where we used the fact that b(inn) = 0 in ω4. Therefore, there exists a solution
V[J] ∈ W̊1,2(ω4) of problem (25) satisfying the estimate

‖∇V[J]‖L2(ω4)
≤ c‖∇ζ ·

(
b(out) + U[J])‖L2(ω2)

≤ c |F|, (26)

see [41].
Since div

(
b0 + b(inn)) = 0 and supp

(
b0 + b(inn)) ⊂ Ω4, from the construction we

conclude the following result.

Lemma 8. The vector field A ∈W1,2
loc (Ω \ {O}) satisfies the boundary condition A

∣∣
∂Ω = a, A is

solenoidal and A(x) = U[J](x) for x2 ≤ h4.

4. Existence and Uniqueness of Weak Solution

In this section we prove the existence of the weak solution of problem (1).
First assume that

(
u, p

)
is a classical solution of (1). Multiplying (1)1 by the test

function η ∈ C∞
0 (Ω) and integrating by parts, we obtain

ν
∫
Ω
∇u · ∇η dx +

∫
Ω

(
u · ∇

)
u · ηdx−

∫
Ω

p div η dx =
∫
Ω

f · η dx ∀ η ∈ C∞
0 (Ω). (27)

We look for the solution
(
u, p

)
in the form

u = A + v, p = (1− ζ)P[j] + p̃, (28)

where A is the extension of the boundary value a constructed in the previous section, P[j]

is defined by (6)3 and v ∈ H(Ω). Substituting (28) into (27) we obtain

ν
∫
Ω
∇v · ∇η dx +

∫
Ω

(
(v + A) · ∇

)
v · ηdx +

∫
Ω

(
v · ∇

)
A · ηdx = 〈f̂, η〉Ω ∀η ∈ J∞

0 (Ω), (29)

where

〈f̂, η〉Ω =
∫
Ω

f · η dx− ν
∫
Ω
∇A · ∇η dx−

∫
Ω

(
A · ∇

)
A · ηdx−

∫
Ω
∇
(
(1− ζ)P[J]) · η dx. (30)

The vector field v will be found as a limit of the sequence {vk}, where vk are weak
solutions in the domains Ωk, that is, the vector fields vk ∈ H(Ωk), satisfy the integral identities
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ν
∫

Ωk

∇vk · ∇ηdx +
∫

Ωk

(
(vk + A) · ∇

)
vk · ηdx +

∫
Ωk

(
vk · ∇

)
A · ηdx = 〈f̂, η〉Ωk ∀η ∈ H(Ωk). (31)

Theorem 1. Let f ∈ L2(Ω), a ∈ W1/2,2(∂Ω) and supp a ⊂
(
Γ ∩ ∂Ω0

)
∪
(
∪N

j=1 Γj
)
. There

exists a number F0 > 0 such that if
N

∑
j=0
|Fj| ≤ F0, (32)

then problem (31) admits at least one solution vk ∈ H(Ωk). There holds the estimate

‖∇vk‖2
L2(Ω) ≤ c

(
‖f‖2

L2(Ωk)
+ ‖a‖2

W1/2,2(∂Ω)
+ ‖a‖4

W1/2,2(∂Ω)

)
(33)

with the constant c independent of k.

Proof. It is well known (see [37]) that integral identity (31) is equivalent to the operator equation

vk = Bvk (34)

with a completely continuous operator B : H(Ωk) ↪→ H(Ωk), defined by the relation

[Bvk, η]Ωk = −ν−1
∫

Ωk

(
(vk + A) · ∇

)
vk · ηdx− ν−1

∫
Ωk

(
vk · ∇

)
A · ηdx + ν−1〈f̂, η〉Ωk ,

where [w, η]Ωk =
∫

Ωk

∇w · ∇ηdx is the scalar product in H(Ωk).

So, the solvability of Equation (34) will follow from the Leray–Schauder theorem
provided we prove that the norms of all possible solutions of the operator equations

v(λ)
k = λBv(λ)

k , λ ∈ [0; 1], (35)

are bounded by a constant independent of λ.
Operator Equation (35) is equivalent to the identity

ν
∫

Ωk

∇v(λ)
k · ∇ηdx + λ

∫
Ωk

(
(v(λ)

k + A) · ∇
)
v(λ)

k · ηdx + λ
∫

Ωk

(
v(λ)

k · ∇
)
A · ηdx

= λ〈f̂, η〉Ωk ∀η ∈ H(Ωk).
(36)

Taking in (36) η = v(λ)
k we obtain

ν
∫

Ωk

|∇v(λ)
k |

2dx = −λ
∫

Ωk

(
v(λ)

k · ∇
)
A · v(λ)

k dx + λ〈f̂, v(λ)
k 〉Ωk . (37)

To estimate the term λ〈f̂, v(λ)
k 〉Ωk in the right hand side of (37), we use the repre-

sentation (24) for the vector field A. We denote A1 = b0 + b(inn) + ζ b(out) + V[J] and
A2 = (1− ζ)U[J], so that A = A1 + A2. Since supp A1 ⊂ Ω4, using estimates (13), (16),
(22) and (26), the embedding W1,2(Ω4) ↪→ L4(Ω4) and the definition of a2 = a−

(
b(inn) +

b(out))∣∣
∂Ω, we obtain the following inequality
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λν
∣∣∣ ∫

Ω4

∇A1 · ∇v(λ)
k dx

∣∣∣+ λ
∣∣∣ ∫

Ω4

(
A1 · ∇

)
v(λ)

k ·A1dx
∣∣∣

≤ c
(
‖∇A1‖2

L2(Ωk)
+ ‖A1‖4

L4(Ωk)

)
+ ε‖∇v(λ)

k ‖
2
L2(Ωk)

≤ c
[( N

∑
j=0
|Fj|
)2

+
( N

∑
j=0
|Fj|
)4

+ ‖a‖2
W1/2,2(∂Ω)

+ ‖a‖4
W1/2,2(∂Ω)

]
+ ε‖∇v(λ)

k ‖
2
L2(Ωk)

≤ c
[
‖a‖2

W1/2,2(∂Ω)
+ ‖a‖4

W1/2,2(∂Ω)

]
+ ε‖∇v(λ)

k ‖
2
L2(Ωk)

.

(38)

Since supp(b0 +b(inn)) ⊂ Ω3, we have
(
(b0 +b(inn)) ·∇

)
A2 +

(
A2 ·∇

)
(b0 +b(inn)) =

0. Thus, by (7), (16) and (26),

λ
∣∣∣ ∫

Ω4

(
A1 · ∇

)
v(λ)

k ·A2dx
∣∣∣+ λ

∣∣∣ ∫
Ω4

(
A2 · ∇

)
v(λ)

k ·A1dx
∣∣∣

≤
∣∣∣ ∫

ω4

(
(V[J] + b(out)) · ∇

)
v(λ)

k ·U[J]dx
∣∣∣+ ∣∣∣ ∫

ω4

(
U[J] · ∇

)
v(λ)

k · (V[J] + b(out))dx
∣∣∣

≤ c
(
‖V[J]‖4

L4(ω4)
+ ‖b(out)‖4

L4(ω4)
+ ‖U[J]‖4

L4(ω4)

)
+ ε‖∇v(λ)

k ‖
2
L2(Ωk)

≤ c
(
‖V[J]‖4

W1,2(ω4)
+ |F|4

)
+ ε‖∇v(λ)

k ‖
2
L2(Ωk)

≤ c
( N

∑
j=0
|Fj|
)4

+ ε‖∇v(λ)
k ‖

2
L2(Ωk)

≤ c‖a‖4
W1/2,2(∂Ω)

+ ε‖∇v(λ)
k ‖

2
L2(Ωk)

.

(39)

Further, the straightforward calculations give the equality

λν
∫

Ωk\Ω3

∇A2 · ∇v(λ)
k dx + λ

∫
Ωk\Ω3

(
A2 · ∇

)
A2 · v

(λ)
k dx + λ

∫
Ωk\Ω3

∇
(
(1− ζ)P[J]) · v(λ)

k dx

= λν
∫

Ωk\Ω3

∇
(
(1− ζ)U[J]) · ∇v(λ)

k dx + λ
∫

Ωk\Ω3

(
(1− ζ)U[J] · ∇

)(
(1− ζ)U[J]) · v(λ)

k dx

+λ
∫

Ωk\Ω3

∇
(
(1− ζ)P[J]) · v(λ)

k dx

= λ
∫

Ωk\Ω4

(
− ν∆U[J] + (U[J] · ∇

)
U[J] +∇P[J]

)
· v(λ)

k dx

+λν
∫

ω3

(
− (1− ζ)∆U[J] + 2∇ζ · ∇U[J] + ζ ′′U[J]

)
· v(λ)

k dx

+λ
∫

ω3

(
− P[J]∇ζ + (1− ζ)∇P[J]

)
· v(λ)

k dx

+λ
∫

ω3

(
(1− ζ)2(U[J] · ∇

)
U[J] · v(λ)

k − (1− ζ)
(
U[J] · ∇

)
ζ
(
U[J] · v(λ)

k
))

dx = λ
4
∑

k=1
Jk.

Because the asymptotic decomposition (U[J], P[J]) satisfies Equation (8), by (9), we obtain

λJ1 = λ
∫

Ωk\Ω4

(
− ν∆U[J] + (U[J] · ∇

)
U[J] +∇P[J]

)
· v(λ)

k dx = λ
∫

Ωk\Ω4

H[J] · v(λ)
k dx

≤ c
∫

Ωk\Ω4

|H[J]|2dx + ε‖∇v(λ)
k ‖

2
L2(Ωk)

≤ c
(
|F|2 + |F|4

)
+ ε‖∇v(λ)

k ‖
2
L2(Ωk)

≤ c
(
‖a‖2

W1/2,2(∂Ω)
+ ‖a‖4

W1/2,2(∂Ω)

)
+ ε‖∇v(λ)

k ‖
2
L2(Ωk)

.
(40)

The integrals Jk , k = 2, 3, 4, can be estimated using (7), and we get

λ
(
|J2|+ |J3|+ |J4

)
≤ c
(
‖a‖2

W1/2,2(∂Ω)
+ ‖a‖4

W1/2,2(∂Ω)

)
+ ε‖∇v(λ)

k ‖
2
L2(Ωk)

. (41)
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From (39)–(41) it follows that∣∣λ〈f̂, v(λ)
k 〉Ωk

∣∣ ≤ c
(
‖f‖2

L2(Ωk)
+ ‖a‖2

W1/2,2(∂Ω)
+ ‖a‖4

W1/2,2(∂Ω)

)
+ cε‖∇v(λ)

k ‖
2
L2(Ωk)

.

Substituting this estimate into (37) and choosing ε sufficiently small we obtain

ν
2
∫

Ωk

|∇v(λ)
k |

2dx ≤−λ
∫

Ωk

(
v(λ)

k ·∇
)
A·v(λ)

k dx+c
(
‖f‖2

L2(Ωk)
+‖a‖2

W1/2,2(∂Ω)
+‖a‖4

W1/2,2(∂Ω)

)
. (42)

The constant c in (42) is independent of k.
Consider now the integral λ

∫
Ωk

(
v(λ)

k · ∇
)
A · v(λ)

k dx = −λ
∫

Ωk

(
v(λ)

k · ∇
)
v(λ)

k · Adx.

In virtue of Lemmas 3 and 5, we have

λ
∣∣∣ ∫

Ωk

(
v(λ)

k · ∇
)

v(λ)
k ·

(
b(inn) + ζb(out))dx

∣∣∣
≤ ‖v(λ)

k ‖L4(Ωk)
‖∇v(λ)

k ‖L2(Ωk)

(
‖b(inn)‖L4(Ω4)

+ ‖b(out)‖L4(Ω4)

)
≤ c

N
∑

i=0
|Fi|‖∇v(λ)

k ‖
2
L2(Ωk)

.

(43)

By (26),

λ
∣∣∣ ∫

Ωk

(
v(λ)

k · ∇
)

V[J] · v(λ)
k dx

∣∣∣ ≤ ‖v(λ)
k ‖

2
L4(Ωk)

‖∇V[J]‖L2(ω4) ≤ c
N
∑

i=0
|Fi|‖∇v(λ)

k ‖
2
L2(Ωk)

. (44)

For the integral λ
∫

Ωk

(
v(λ)

k · ∇
)
v(λ)

k ·U([J](1− ζ)dx inequalities (7) and (5) yield

λ
∣∣∣ ∫

Ωk\Ω3

(
v(λ)

k · ∇
)
v(λ)

k ·U([J](1− ζ)dx
∣∣∣ ≤ ( ∫

Ωk\Ω3

|v(λ)
k |

2|U([J]|2dx
)1/2
‖∇v(λ)

k ‖L2(Ωk)

≤ c|F|
( h3∫

hk

ϕ(x2)∫
−ϕ(x2)

|v(λ)
k |

2

ϕ2(x2)
dx1dx2

)1/2
‖∇v(λ)

k ‖L2(Ωk) ≤ c
N
∑

i=0
|Fi|‖∇v(λ)

k ‖
2
L2(Ωk)

.
(45)

Finally, using Leray–Hopf’s inequality (23), we estimate the integral
∫

Ωk

(
v(λ)

k · ∇
)
b0 ·

v(λ)
k dx: ∫

Ωk

(
v(λ)

k · ∇
)
b0 · v

(λ)
k dx ≤ c0ε

∫
Ωk

|∇v(λ)
k |

2dx. (46)

Estimates (43)–(46) yield the inequality

λ
∫

Ωk

(
v(λ)

k · ∇
)
A · v(λ)

k dx ≤
(

c0ε + c∗
N
∑

i=0
|Fi|
) ∫

Ωk

|∇v(λ)
k |

2dx ∀λ ∈ [0, 1], (47)

where the constants c0 and c∗ are independent of k and λ. Thus, estimate (42) takes the form

ν
2
∫

Ωk

|∇v(λ)
k |

2dx ≤
(

c0ε + c∗F0

) ∫
Ωk

|∇v(λ)
k |

2dx + c
(
‖f‖2

L2(Ω)
+ ‖a‖2

W1/2,2(∂Ω)
+ ‖a‖4

W1/2,2(∂Ω)

)
.

Choosing ε sufficiently small, say ε = ν
8c0

and assuming that F0 = ν
8c∗ from the last

inequality we derive

ν
2

∫
Ωk

|∇v(λ)
k |

2dx ≤ c
(
‖f‖2

L2(Ω)
+ ‖a‖2

W1/2,2(∂Ω)
+ ‖a‖4

W1/2,2(∂Ω)

)
.
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So, the norms ‖∇v(λ)
k ‖

2
L2(Ωk)

of all possible solutions v(λ)
k of operator Equation (35)

are bounded by a constant independent of λ ∈ [0, 1] and, according to the Leray–Schauder
theorem, operator Equation (34) has at least one solution vk ∈ H(Ωk). Moreover, for vk
holds estimate (33).

Theorem 2. Suppose that the conditions of Theorem 1 are fulfilled. Then problem (29) admits a
solution v ∈ H(Ω) satisfying the following estimate

‖∇v‖2
L2(Ω) ≤ c

(
‖f‖2

L2(Ω) + ‖a‖
2
W1/2,2(∂Ω)

+ ‖a‖4
W1/2,2(∂Ω)

)
. (48)

Proof. Let us take the sequence of solutions vk constructed in Theorem 1. Extending vk by
zero into Ω \Ωk we get vector fields ṽk ∈ H(Ω). Notice that ṽk satisfy integral identity (31)
in which we can integrate over the domain Ω instead of Ωk. Taking an arbitrary function
η ∈ J∞

0 (Ω) we can find a number k such that supp η ⊂ Ωk. Since the sequence {ṽk} is
bounded in H(Ω), there exists a subsequence {ṽkm} which converges weakly in the space
H(Ω) and converges strongly in L4(Ωk) for any k, as the embedding H(Ωk) ↪→ L4(Ωk)
is compact. Such subsequence can be constructed using Cantor’s diagonal argument.
Then we can pass to the limit as km → ∞ in integral identity (31) taking any test function
η ∈ J∞

0 (Ω). For the limit function v ∈ H(Ω) we obtain the integral identity (29). Obviously,
the limit function v obeys estimate (48).

Remark 1. Since the space J∞
0 (Ω) is dense in H(Ω), integral identity (29) remains valid for

every test function η ∈ H(Ω).

Let us prove now the uniqueness of the solution to problem (1) having representa-
tion (28).

Theorem 3. Let a ∈W1/2,2(∂Ω), f ∈ L2(Ω) and let the boundary value a satisfies the conditions
of Theorem 1, in particular, the fluxes Fi, i = 0, 1, . . . , N, satisfy condition (32). Let u1 and u2 be
two solutions of problem (1) admitting representation (28): ui = A+ vi, i = 1, 2, with vi ∈ H(Ω).
There exists a number a0 > 0 such that if

‖∇v2‖L2(Ω) ≤ a0, (49)

then the solutions u1 and u2 coincide.

Proof. Suppose problem (1) has two solutions u1 and u2 admitting representation (28),
i.e., u1 = A + v1, u2 = A + v2, where v1, v2 ∈ H(Ω) and satisfy integral identity (29).
Denote v = u1 − u2 = v1 − v2 ∈ H(Ω). Subtracting integral identity (29) for v2 from the
one for v1 we obtain

ν
∫
Ω
∇v · ∇η dx +

∫
Ω

(
v1 · ∇

)
v · ηdx +

∫
Ω

(
v · ∇

)
v2 · ηdx +

∫
Ω

(
A · ∇

)
v · ηdx

+
∫
Ω

(
v · ∇

)
A · ηdx = 0 ∀η ∈ H(Ω).

(50)

Taking in (50) η = v yields

ν
∫
Ω
|∇v|2 dx = −

∫
Ω

(
v · ∇

)
v2 · vdx−

∫
Ω

(
v · ∇

)
A · vdx. (51)

The integral
∫
Ω

(
v · ∇

)
A · vdx admits the estimate

∣∣∣ ∫
Ω

(
v · ∇

)
A · vdx

∣∣∣ ≤ (c0ε + c∗
N
∑

i=0
|Fi|
) ∫

Ω
|∇v|2dx ≤

(
c0ε + c∗F0

) ∫
Ω
|∇v|2dx
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see (47), (32), and∣∣∣ ∫
Ω

(
v · ∇

)
v2 · vdx

∣∣∣ ≤ ‖v‖2
L4(Ω)

‖∇v2‖L2(Ω) ≤ c1a0
∫
Ω
|∇v|2dx.

Then from (51) it follows

ν
∫
Ω
|∇v|2 dx ≤

(
c0ε + c∗F0 + c1a0

) ∫
Ω
|∇v|2dx.

Remind that F0 is equal to ν
8c∗ (see the proof of Theorem 1). Taking ε = ν

8c0
and

assuming that a0 = ν
4c1

we get
ν
2

∫
Ω
|∇v|2 dx ≤ 0.

Thus, v1 = v2.

Remark 2. If v2 satisfies estimate (48), that is

‖∇v2‖2
L2(Ω) ≤ c

(
‖f‖2

L2(Ω) + ‖a‖
2
W1/2,2(∂Ω)

+ ‖a‖4
W1/2,2(∂Ω)

)
,

then (49) follows from the condition

c
(
‖f‖2

L2(Ω) + ‖a‖
2
W1/2,2(∂Ω)

+ ‖a‖4
W1/2,2(∂Ω)

)
≤ a2

0.
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