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Abstract: This paper presents the design and realization of a compact printed ultra-wideband (UWB)
antenna with notching characteristics for compact devices using a genetic algorithm. The antenna is
capable of mitigating an adjacent sub-band ranging from 3.75 to 4.875 GHz, mainly used by many
applications and standards such as WiMAX, WLAN and sub-6-GHz. The notch band functionality is
achieved by etching out two symmetrical slots from the pentagonal radiating element. The simulation
and measured results demonstrate that the proposed antenna overperformed compared with state-
of-the-art antennas in terms of compactness with an overall size of 20 mm× 15 mm× 0.508 mm.
Moreover, the proposed design shows a large bandwidth in the UWB region with a fractional
bandwidth of 180% with respect to the center frequency of 5.25 GHz. The antenna also presents
omnidirectional radiations all over the operation band and a good return loss performance.

Keywords: compact size; UWB; monopole antenna; notch band; antennas for small devices

1. Introduction

Recently, considerable interest has been devoted to ultra-wideband (UWB) technology
due to its unprecedented impact on communication systems. It has demonstrated its
relevance for several applications including wearable devices, tracking and positioning,
radar and medical applications; more precisely, in cancer detection. It is also used in radio
frequency identification (RFID), security systems, distance measuring systems and many
other systems [1]. The diversity of this type of technology is because of its enormous
available bandwidth starting from 3.1 to 10.6 GHz, i.e., 110% of the fractional bandwidth.
The UWB system presents other exciting features. Several of its key benefits are related
to its low complexity and cost due to the baseband nature of the signal transmission.
UWB technology possesses greater merit over other technologies because of its ability
to attenuate lobes in sparse antenna array systems and its resistance to interference and
intense multipath propagation. All these advantages and many more make the UWB
technique very attractive for short-range communications [2].

The antenna is the most critical component of UWB communication systems. There-
fore, in order not to detract from its overall performance, a properly designed antenna
should be used. The antenna placed in the front-ends of the communication system should
respect the fundamental restrictions imposed by physics and practical consideration limits.
The UWB antenna must be characterized by a high level of conformity, a low manufac-
turing cost and should be easily housed into miniaturized circuits. Moreover, it should
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exhibit a stable response regarding impedance matching, bandwidth, gain and radiation
characteristics in the operating band to be acceptable for mass production [3].

Many studies have been carried out on various antenna types to achieve a wide band-
width along with high-performance parameters. The commonly employed techniques
are the design of various Vivaldi antennas, spiral antennas, log-periodic antennas and
disk-cone antennas [4–7]. However, these types of antennas suffer from a bigger dimension,
which limits their use for compact size devices. Another commonly used technique to
design a high gain and wideband antenna is to manipulate the near-field by loading the
antenna with a meta-surface, as explained in [8–10]. Alternatively, the meta-surface can
be used to the radiation characteristics of the antenna [11]. In both cases, the loading of
the meta-surface significantly increases the size and height of the overall antenna, which
results in a big device size. Therefore, these types of antennas cannot be used for small
physical devices. Recently, several researchers utilized multiple rings arranged concen-
trically around the antenna to design wideband antennas with monopole-like radiation
characteristics [12,13]. These antennas can be used for on-body applications due to the
fully backed ground plane. However, their larger physical dimension limits their use for
applications where size is a constraint.

Printed antennas have been widely studied and proven to be highly relevant for
UWB applications. The overperformance of the latter is due to their small and low profile,
their robustness and their ease of integration in UWB communication systems [14–16].
In [14], a printed multiband monopole antenna for WiMAX/WLAN applications with
relative bandwidths of 64% and 4.08% is discussed. However, the antenna gain at the
operating frequency was low, which affected the transmission distance. In [15], a good
UWB candidate consisting of a circular sickle-shaped polarized antenna with a fractional
bandwidth (FBW) of 126.85% is presented. However, the return loss response should
be optimized further all over the operating band. In [16], a UWB printed antenna with
a fork-shaped stub is proposed. The proposed antenna in this paper indicated a 17.9%
wider bandwidth compared with its parent design. However, the level of complexity of
the resulting antenna was higher, which significantly increases the fabrication errors for
mass production.

Other interesting UWB printed antennas with a significant available bandwidth while
exhibiting notch band characteristics have been discussed [17–20]. In [17], the authors
present a printed antenna loaded with a split-ring with dual-band and wideband notch char-
acteristics. The multimode behavior in this work was achieved by varying the dimensions
of the SRR without having to adjust the radiating patch or the ground plane. However, this
antenna presented a major drawback of having a bulky size of 50 mm× 50 mm× 1.575 mm.
In the same context, a UWB printed antenna with a wide rectangular notched band using
electromagnetic bandgap structures is discussed in [18], characterized by a high effi-
ciency and good antenna performance. However, it has the disadvantages of a larger size
(50 mm× 48 mm× 1 mm), making it inconvenient for miniaturized devices. An interest-
ing printed UWB antenna with a compact size is discussed in [19]. The proposed antenna
consisted of a miniaturized cylindrical UWB antenna with a modified partial ground plane.
The simulation and measured results showed notch band characteristics along with a good
radiation pattern. However, its geometry remained complex due to the integration of
capacitors and slot resonators.

After a thorough investigation of the related papers, we deduced that a significant
amount of research has been carried out to design a suitable antenna for UWB technology.
The designed antenna should cover the UWB range, present a compact size and retain a
good performance in terms of matching, VSWR, gain and all the radiation characteristics.
Moreover, a UWB antenna with notch band characteristics is highly desirable for future
handheld devices. The notch band characteristic allows the antenna to mitigate coexisting
sub-bands in the UWB region to reduce interference without introducing complex circuits
into the antenna design [20]. Therefore, this paper presents a low-profile pentagon compact
printed monopole antenna with a notch band characteristic. The pentagonal shape choice
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was because this radiating element shape exhibits a larger bandwidth than conventional
shapes [21,22]. Moreover, we introduced stubs to achieve a larger bandwidth in the
UWB region with an FBW of 179% regarding the center frequency of 5.25 GHz. Thus,
the proposed design is characterized by a low level of complexity and can easily be
accommodated in future handheld devices. The resulting antenna can mitigate a sub-band
ranging from 3.75 to 4.87 GHz, mainly used by several standards such as WLAN.

The rest of the paper is organized as follows: Section 2 illustrates the design method-
ology of the proposed antenna. Section 3 presents a comparison between the simulated
and measured results and compares the state-of-the-art antennas at the same frequency
and type of application. A conclusion is presented in Section 4 of the paper.

2. Antenna Design and Methodology
2.1. Antenna Design

The proposed antenna discussed in this paper is illustrated in Figure 1 and its asso-
ciated parameters are shown in Table 1. The substrate of 0.508 mm thickness was made
using Rogers RO4350 characterized by a relative permittivity of 3.66 and a loss tangent of
0.004. The radiating patch had a polygon shape and was designed using copper according
to a standard thickness (0.035 mm) with an effective length of λ

4 at the center frequency
of 5.2 GHz. The number of corners of the polygonal patch and its radius were optimized
to obtain the maximum bandwidth. A parametric study showed that the pentagon shape
obtained the best results. It was fed using a 50 Ω coplanar waveguide line (CPW) to
transfer the maximum power to the antenna and because of its advantage of obtaining
wider bandwidths [23]. The antenna was simulated in CST Microwave Studio, which is a
commercial finite element solver for electromagnetic structures. A genetic algorithm was
used for optimization. Subsequently, a prototype was fabricated to compare the simulation
and the measured results in order to validate the performance of the proposed antenna.
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shown in Figure 2. According to the literature, introducing stubs into the radiating part 
increases the current distribution path and the antenna’s electrical length, as shown in 
Figure 3 As a result, the characteristics of the antenna, particularly the bandwidth, are 
improved [24]. This phenomenon can be verified by analyzing Figure 4. As can be seen, 
adding the stub increased the antenna matching as well as the operational bandwidth of 
the antenna. The primary antenna without a stub exhibited a bandwidth ranging from 
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introducing the stub; i.e., 6.69 GHz of extra bandwidth. Introducing the stub allowed the 
current to flow in several paths, which increases the number of resonances of the antenna 
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Figure 1. Configuration of the proposed antenna: (a) Front view and (b) side view.

The shape of the radiating element was inspired initially from a conventional λ/4

monopole antenna where its length LR was calculated using the following equation [24]:

LR =
C0

4 fc
√

εe f f
(1)
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where C0 refers to the velocity of light in the free space, fc represents the central frequency
and εe f f is the effective dielectric constant of the used dielectric in the antenna design. The
equation of calculating an approximate value of εe f f is given by:

εe f f ≈
εR + 1

2
+

εR + 1
2

(
1 + 12

(
WR
H

))−0.5
(2)

where WR and H represent the width of the radiator and the dielectric thickness, respectively.

Table 1. Optimized parameters of the antenna.

Parameter Dimension (mm) Parameter Dimension (mm) Parameter Dimension (mm)

W 15 a4 7 Sx 0.2
L 20 a5 0.9 F 1.5
H 0.508 ax 8.2 Cx 5
a1 6.7 ay 8.2 Cy 6.25
a2 6 aw 0.56 G1 0.5
a3 1 Sy 3.25 G2 1.8

The classic rectangular radiating patch was transformed into a pentagonal shape due
to the large bandwidth that this antenna could achieve. The primary antenna also featured
a horizontal stub below the radiating element for further bandwidth enhancement, as
shown in Figure 2. According to the literature, introducing stubs into the radiating part
increases the current distribution path and the antenna’s electrical length, as shown in
Figure 3 As a result, the characteristics of the antenna, particularly the bandwidth, are
improved [24]. This phenomenon can be verified by analyzing Figure 4. As can be seen,
adding the stub increased the antenna matching as well as the operational bandwidth of
the antenna. The primary antenna without a stub exhibited a bandwidth ranging from
3.75 to 7.56 GHz whereas it presented a bandwidth ranging from 3.75 to 14.25 GHz after
introducing the stub; i.e., 6.69 GHz of extra bandwidth. Introducing the stub allowed
the current to flow in several paths, which increases the number of resonances of the
antenna [25].
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2.2. Design of a Notch Band Antenna

Although UWB antennas are highly desirable for future devices due to their consid-
erable bandwidth, this type of antenna presents a significant challenge. Due to this large
bandwidth, the antenna may be prone to interference from adjacent systems that reside in
the UWB region. Among the most common sub-bands that we sought to mitigate were
wireless local area networks (WLANs) (3.35 GHz (3.3–3.4 GHz), 3.5 GHz (3.4 to 3.6 GHz),
3.7 GHz (3.6 to 3.8 GHz) and 5.7 GHz (5.725 to 5.85 GHz)), WiMAX (3.4 and 5.8 GHz), the
first segment of the sub-6-GHz band (3.4–3.7 GHz) of the 5G communication network and
many other communication systems. Filters are commonly used to attenuate the adjacent
bands and therefore enhance the communication quality. However, this technique presents
the drawback of insertion losses as well as the increase in volume and complexity of the re-
sulting antenna [26]. Thus, the researchers mainly focused on more practical techniques to
avoid potential interference from existing adjacent bands. These band rejection approaches
included etching out the split-ring (SRR) and complementary split-ring resonators (CSRR),
which exhibit a stop-band when excited by a time-varying axial electric field as illustrated
in [27,28]. Other techniques have been considered such as introducing slots on the radiating
element [26,29] and DGS in the ground plane [19,30] or using parasitic elements [31] or by
combining multiple techniques [32]. In this paper, we considered notching the unwanted
bands using slots introduced in the radiating patch. This approach is the most frequently
used to reduce interference between bands for the promising results it achieves while
maintaining a compact geometry with a simple design.

After designing the UWB antenna covering the entire UWB region, we moved on
to etching two symmetrical slots from the radiating element to attenuate the sub-band
ranging from 3.75–4.875 GHz, which is mainly used for WLAN, WiMAX, 5G and many
other communication technologies. The most critical parameters in the slotted notched
band antenna design are the length, position and shape of the slot. Therefore, a thorough
parametric study was carried out to determine the optimal position to place the slot to
achieve higher VSWR values to attenuate the desired bands. For the said purpose, slots of
various shapes were utilized and it was observed during the analysis that the proposed slot
offered a higher VSWR compared with other shapes. The length of the slot was determined
by the following equation [23]:

Lnotch =
c

2 fnotch
√

εe f f
(3)



Mathematics 2021, 9, 2113 6 of 13

where fnotch presents the central frequency of the notch, c is the velocity of light in the free
space and εe f f stands for the effective dielectric constant calculated by the following formula:

εe f f ≈
εr + 1

2
. (4)

As for the shape of the slot, our choice was based on the slot shapes used in [23], then
transformed to meet the specifications of our antenna by the bias of a parametric study.
Figure 5 presents a comparison of the VSWR results of the proposed antenna before and
after adding two symmetrical slots into the radiating element. As can be observed, the
antenna before the introduction of the slots covered the entire UWB region from 3.75 to
14.25 GHz.
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However, after introducing the notches, the antenna rejected the band spectrum
from 3.75 to 4.9 GHz, with a peak VSWR of 42 at 4.5 GHz. The effective inductance
and capacitance of the microstrip line varied by adding the capacitance, inductance and
resistance of the introduced slots. As the area of the slot is directly proportional to its
effective inductance, any increase will generate effective inductances, which results in
changing the cut-off frequency [33].

2.3. Numerical Analysis

Figure 6 depicts the equivalent circuit of the conventional as well as the resultant
antenna. Generally, monopole antennas are represented by the first canonical form, which
is suitable for modeling electric antennas. This model acts as an open circuit to the DC input
signal and is designed by combining the RLC components in a series. Each group of RLC
components results in an independent frequency so that all of the resulting frequencies
overlap to form the UWB antenna [34]. We introduced a stub, which was a court-circuited
line of length S connected in a shunt on the mainline at a distance d from the load, to
enhance antenna matching. Eventually, we modeled the right and left slots by the RLC
components. The following formula gives the corresponding frequency of the slots:

fo =
1

2π

√
1

LeqCeq
(5)

where Ceq and Leq are the sum of the capacitances and inductances generated by the
slots, respectively.
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Theoretically speaking, the slots introduced affect the distribution of the current, which
results in a lengthening of the current path. In fact, the series inductance was given by the
length of the current path whereas the series capacitance was given by accumulated charges
in the etched spaces. In general, this behavior was modeled by the parallel equivalent
lumped components RSi, LSI and CSi, as illustrated in Figure 5. The series combination of
the lumped effect of the slots was then added to the inductive patch and capacitive ground
plane. Both the inductive and capacitive effects of all mentioned components contributed
to the input impedance of the antenna.

2.4. Design Methodology and Optimization

Figure 7 illustrates the flow chart of the proposed antenna design. In the first instance,
a rectangular monopole antenna was designed according to the mathematical equations
provided by the antenna literature [35]. The physical dimensions of the conventional
antenna and the CPW-fed line were then optimized to achieve a satisfactory performance
at the desired radiating frequency. After that, we reshaped the antenna into a pentagonal
shape to enhance the bandwidth as well as the matching of the antenna. The pentagonal
antenna dimensions were adjusted by conducting a parametric study of the various param-
eters. We then introduced a stub just below the radiating element to further enhance the
bandwidth. The optimization of the stub’s length and width (Sx and Sy) was carried out to
obtain the optimal dimensions for a maximum bandwidth. To mitigate the desired adjacent
band from the UWB region, two symmetrical slots were then etched in the radiating patch.
Finally, we performed the optimization of parameters A1, A2, A3 and Aw to achieve the
best performance.

It is worth mentioning that the parametric sweep was done and optimized through a
genetic algorithm (GA) due to its easy use and robustness within the CST Microwave Studio.
By setting the design goals (a wide S11 bandwidth and high notching characteristics at the
desired band) and designating the antenna parameters (input variable), the optimization
was done quickly and efficiently. The block diagram of the GA is plotted in Figure 8. The
details of the GA in antenna optimization can be found in [36].
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3. Results and Discussion
3.1. Measurement Setup

To accurately verify the frequency domain reflection characteristics of the proposed
antenna, we used Vector Network Analyzer (VNA) test equipment. This instrument is
essential to validate the antenna’s performance and obtains the best possible precision.
The fabricated prototype of the proposed antenna is illustrated in Figure 9. A far-field
measurement system in a shielded RF anechoic chamber was used to measure the far-
field characteristics of the resulting antenna. The proposed antenna acted as a receiving
antenna during the measurements. A standard horn antenna (SGH-Series) with a typical
reference gain equal to 24 dBi was used as the transmitting antenna to deliver accurate
and reliable antenna gain measurements. High gain power amplifiers were used in the
antenna measurement to ensure the efficient transmission of the radio signal from the
transmitter toward the receiver. This type of equipment boosts the signal generated by a
voltage-controlled generator (VCO), which can be easily affected by transmission losses
and open air. Therefore, using a power amplifier enables the receiving antenna to overcome
these problems and provide the correct radiation pattern.
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3.2. Return Loss and VSWR

Figure 10a depicts the simulated and measured results of the proposed antenna. As can
be seen, the simulation and measured results were in good agreement. The |S11| < −10 dB
bandwidth of the resulting antenna ranged from 3.18 to 3.75 GHz and from 4.785 to
14.25 GHz; i.e., 180% of FBW in regard to the reference frequency of 5.25 GHz, which proved
that the antenna successfully attenuated the desired sub-band from 3.75 to 4.875 GHz. In
addition, the simulated and measured results showed a return loss coefficient of less than
−20 dB, proving that the antenna was well matched to the source.

Figure 10b illustrates the VSWR plot of both the simulated and measured results of
the resulting antenna. As can be observed, the results were symmetrical and followed the
same pace. Moreover, the figure shows that the antenna rejected a sub-band with a center
frequency of 4.5 GHz and a maximum VSWR value of 38.
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3.3. Radiation Pattern

Figure 11 illustrates the simulation and measured radiation pattern of the resulting
antenna. As can be seen, the antenna exhibited an omnidirectional pattern in the H-plane
(θ = 90◦) and a bi-directional radiation pattern in the E-plane (θ = 0◦). Moreover, we noticed
that there was a good agreement between the simulation and measurement for both planes.
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3.4. Peak Gain and Efficiency

Figure 12 presents the gain and radiation efficiency plots of the final proposed antenna.
The simulated and measured gain graphs were identical with a minimum value of−3.8 dBi
at the center frequency (4.5 GHz) of the stop-band. In contrast, it showed a gradual increase
in the rest of the operational band with a maximal gain value of 5.8 dBi beyond the
frequency of 12 GHz. The reported results in this plot demonstrate that the sub-band
ranging from 3.75 to 4.875 GHz was successfully attenuated, as was the radiation efficiency
plot of the proposed antenna. As can be seen, the radiation efficiency presented a stable
value of 98% all over the operational band except for the frequency range from 3.75 to
4.875 GHz, which was the spectrum portion we sought to mitigate.
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3.5. Comparison with State-of-the-Art Works

Table 2 illustrates a performance comparison between the proposed antenna and
state-of-the-art antennas dedicated to the same applications. The antenna outperformed
the existing antennas with its compact size, wider operating bandwidth, higher gain and
stop-band functionality.

Table 2. Performance comparison with state-of-the-art antennas.

Ref
(Publication Year) Dimension (mm3)

FBW
(%)

Operating
Frequency (GHz)

Peak Gain
(dBi)

Stop-Band
Function

[19] (2019) 30× 31× 1.5 136 3.1–10.6 4.29 Yes
[37] (2015) 50× 24× 1.6 144 3.1–10.66 5.78 Yes
[38] (2020) 32× 52× 0.28 67 4–8 3.9 No
[39] (2018) 80× 67× 3.4 124 3.7–10.3 4.53 No
[40] (2018) 24× 31× 1.5 137 3.1–10.6 3.89 Yes
This Work 15× 20× 0.51 180 3–14.3 5.8 Yes

4. Conclusions

The design and realization of a low-profile pentagonal compact antenna with a notch
band characteristic were discussed in this paper. The shape of the radiating element was
chosen to achieve a large bandwidth. The operating bandwidth was further improved
by using a horizontal stub at the feedline. The proposed design was characterized by a
low level of complexity and could easily be accommodated in future handheld devices. In
addition, the proposed antenna was capable of attenuating an adjacent sub-band in the
UWB region ranging from 3.75 to 4.87 GHz, which is used by the majority of communication
standards and applications.
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