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Abstract: A new domination parameter in a fuzzy digraph is proposed to espouse a contribution
in the domain of domination in a fuzzy graph and a directed graph. Let G∗D = (V, A) be a di-
rected simple graph, where V is a finite nonempty set and A = {(x, y) : x, y ∈ V, x 6= y}. A fuzzy
digraph GD = (σD, µD) is a pair of two functions σD : V → [0, 1] and µD : A→ [0, 1] , such that
µD((x, y)) ≤ σD(x) ∧ σD(y), where x, y ∈ V. An edge µD((x, y)) of a fuzzy digraph is called an
effective edge if µD((x, y)) = σD(x) ∧ σD(y). Let x, y ∈ V. The vertex σD(x) dominates σD(y) in
GD if µD((x, y)) is an effective edge. Let S ⊆ V, u ∈ V\S, and v ∈ S. A subset σD(S) ⊆ σD is a
dominating set of GD if, for every σD(u) ∈ σD\σD(S), there exists σD(v) ∈ σD(S), such that σD(v)
dominates σD(u). The minimum dominating set of a fuzzy digraph GD is called the domination
number of a fuzzy digraph and is denoted by γ(GD). In this paper, the concept of domination in a
fuzzy digraph is introduced, the domination number of a fuzzy digraph is characterized, and the
domination number of a fuzzy dipath and a fuzzy dicycle is modeled.

Keywords: dominating set; digraph; fuzzy graph; fuzzy digraph

1. Introduction

Within the domains of graph theory, a directed graph is an ordered triple
(V(D), A(D), ψD) consisting of a nonempty set V(D) of vertices; a set A(D), disjointed
from V(D), of arcs; and an incidence function ψD that associates with each arc of D an or-
dered pair of vertices of D [1]. If a is an arc and u and v are vertices such that ψD(a) = (u, v),
then a is said to join u to v; u is the tail of a and v is its head. For convenience, a directed
graph is abbreviated to digraph. For a comprehensive discussion of graph theory, we refer
to [2]. On the other hand, the concept of a fuzzy set was introduced in a seminal paper
presented in 1965 by Zadeh [3]. Rosenfeld [4] explored the fuzzy relations on fuzzy sets
and introduced fuzzy graphs in 1975. Some fundamental operations of fuzzy graphs were
introduced by Mordeson and Chang-Shyh [5], and the latest collection of some important
developments on the theory and applications of fuzzy graphs was compiled by Mordeson
and Nair [6]. Since then, various extensions of fuzzy graphs were offered in the litera-
ture, including M-strong fuzzy graphs [7], intuitionistic fuzzy graphs [8], regular fuzzy
graphs [9], bipolar fuzzy graphs [10], interval-valued fuzzy graphs [11], and Dombi fuzzy
graphs [12], among others. Note that this list is not intended to be comprehensive. We
review some basic notions of fuzzy graphs by letting S be a set. A fuzzy subset of S is
a mapping σ : S→ [0, 1] which assigns to each element x ∈ S a degree of membership,
0 ≤ σ(x) ≤ 1. Similarly, a fuzzy relation on S is a fuzzy subset of S× S, that is, a map-
ping µ : S× S → [0, 1] , which assigns to each ordered pair of elements (x, y) a degree of
membership, 0 ≤ µ(x, y) ≤ 1. In a special case where σ and µ can only take on the values 0
and 1, they become the characteristic functions of an ordinary subset of S and an ordinary
relation on S, respectively.
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With interesting results and an array of applications, domination in a graph has
been a vast area of research in graph theory. It was introduced by Claude Berge in 1958
and Oystein Ore in 1962 [13], with the earliest results and applications put forward by
Cockayne and Hedetniemi [14]. The most comprehensive reference on the topic can
be found in Haynes et al. [15], with more advanced and latest concepts in Haynes [16]
and Haynes et al. [17]. Extended forms of domination in graphs have been vast in the
domain literature. Some very recent forms include broadcast domination [18], pitch-
fork domination [19], Roman domination [20], double Roman domination [21], triple
Roman domination [22], captive domination [23], outer-convex domination [24], and
paired domination [25], among others. The trajectory of these topics has been exponential
in the last decade. Consider G = (V(G), E(G)) as a graph. A subset S of a vertex set
V(G) is a dominating set of a graph G if, for every vertex v ∈ V(G)\S, there exists a vertex
x ∈ S such that xv is an edge of G. The domination number γ(G) of G is the smallest
cardinality of a dominating set S of G. As an extension, the concept of domination in fuzzy
graphs was introduced by Somasundaram [26]. Let V be a finite nonempty set, and E
be a collection of all two-element subsets of V. A fuzzy graph G = (σ, µ) is a set with
two functions σ : V → [0, 1] and µ : E→ [0, 1] such that µ({x, y}) ≤ σ(x) ∧ σ(y) for all
x, y ∈ V. If G = (σ, µ) is a fuzzy graph on V with x, y ∈ V, then x dominates y in G if
µ(x, y) = σ(x) ∧ σ(y). A subset S of V is called a dominating set in G if, for every v /∈ S,
there exists u ∈ S such that u dominates v. The minimum fuzzy cardinality of a dominating
set in G is called the domination number of G and is denoted by γ(G).

The notion of fuzzy digraphs can be traced back to the work of Mordeson and
Nair [27], with recent advances reported by Kumar and Lavanya [28]. A fuzzy di-
graph GD = (σD, µD) is a pair of function σD : V → [0, 1] and µD : V ×V → [0, 1] , where
µD(u, v) ≤ σD(u) ∧ σD(v) for u, v ∈ V, σD is a fuzzy set of V, (V ×V, µD) is a fuzzy re-
lation on V, and µD is a set of fuzzy directed edges called fuzzy arcs. An indegree of
a vertex u in a fuzzy digraph is the sum of the µD values of the edges that are incident
towards the vertex σD(u). The outdegree of any vertex u in the fuzzy digraph is the sum
of membership function values of all those arcs that are incident out of the vertex u. The
indegree is denoted by d−(u) and the outdegree by d+(u), where u is any vertex in V. A
subset S ⊆ V is a fuzzy out dominating set of GD if, for every vertex v ∈ V − S, there exists
u in S such that µD(u, v) = σD(u) ∧ σD(v). A fuzzy digraph is complete if, for every pair
of directed adjacent vertices, µD(u, v) = σD(u) ∧ σD(v).

The domination in fuzzy digraphs is a new concept in the domain literature, with
limited insights. With such a new concept, we propose a new domination parameter in
a fuzzy digraph. Motivated by the concepts of fuzzy digraphs [27,28] and the notions of
domination of graphs [13], this work intends to advance the literature of domination in
a fuzzy graph and a directed graph. All graphs considered in this paper are finite and
directed without a loop. We use G∗D = (V, A) as a latent directed graph of a fuzzy digraph
GD = (σD, µD), where V is a vertex set and A is an arc set of a directed graph G∗D, while
σD is a vertex set and µD is an arc set of a fuzzy digraph GD. A set of vertices S ⊆ V
is a dominating set of G∗D if each vertex v ∈ V\S is dominated by at least a vertex in S.
The domination number γ(G∗D) of G∗D is the smallest cardinality of a dominating set S of
G∗D. In this paper, the concept of domination in a fuzzy digraph is introduced/defined,
the domination number of a fuzzy digraph is characterized, and the domination number
of a fuzzy dipath and a fuzzy dicycle is modeled. The contribution of this work lies in
providing general results (i.e., theorems, corollaries) of the minimum dominating set of a
fuzzy directed graph in order to facilitate new advances on these concepts.

2. Preliminaries

This section provides a new definition of a fuzzy directed graph, introduces some
working terminologies, and gives some useful observations in the form of remarks
and examples.
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Definition 1. Let G∗D = (V, A) be a directed simple graph, where V is a finite nonempty set
and A = {(x, y) : x, y ∈ V, x 6= y}. A fuzzy digraph GD = (σD, µD) is a pair of two functions
σD : V → [0, 1] and µD : A→ [0, 1] such that µD((x, y)) ≤ σD(x) ∧ σD(y) for all x, y ∈ V.

Remark 1. TheG∗D = (V, A) is called a latent (hidden) directed graph of GD = (σD, µD). The
term digraph is used to represent a directed graph.

Remark 2. Let G∗D be a latent digraph of GD.

1. V is a set of vertices or nodes of a latent digraph, that is,

V = {x : x is a vertex or node o f G∗D}

2. A is a set of directed edges or arcs of a latent digraph, that is,

A = {(x, y) : x, y ∈ V, x 6= y}

3. σD is a set of vertices or nodes of a fuzzy digraph, that is,

σD = {σD(x) : x ∈ V}

4. µD is a set of edges or arcs of a fuzzy digraph, that is,

µD = {µD((x, y)) : x, y ∈ V}

5. µD((x, y)) means the edge or arc is directed from σD(x) to σD(y).
6. µD((x, y)) = 0 if (x, y) ∈ A.

Example 1. Consider a directed graph G∗D = (V, A) such that V = {a, b, c, d} and
A = {(a, b), (b, c), (c, d), (d, a), (a, c)}. See Figure 1.

Figure 1. The G∗D is a directed graph.

Example 2. Let GD = (σD, µD) and µD(u, v) ≤ σD(u) ∧ σD(v) for all u, v ∈ V such that
σD = {σD(a), σD(b), σD(c), σD(d)} and
µD = {µD((a, b)), µD((b, c)), µD((c, d)), µD((d, a)), µD((a, c))}. See Figure 2.

Figure 2. The GD is a fuzzy digraph.
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Example 3. Let GD be a directed graph as shown in Figure 3. Then, GD is not a fuzzy digraph
because 0.7 � 0.8∧ 0.6. Moreover, 0.9 � 0.8∧ 0.9.

Figure 3. GD is not a fuzzy digraph.

Example 4. Let G∗D = (V, A) be a latent digraph of GD′ as shown in Figure 4. Because
µD((x, y)) ≤ σD(x) ∧ σD(y) for all x, y ∈ V, it follows that GD′ is a fuzzy digraph.

Figure 4. G′D is a fuzzy digraph.

Definition 2. Let G∗D = (V, A) be a latent digraph of GD. The order p and size q of a fuzzy
digraph GD = (σD, µD) are defined to b

p = ∑
x∈V

σD(x) and q = ∑
(x,y)∈A

µD((x, y)) f or all x, y ∈ V

Example 5. In Figure 4, the orderp of G′D is

p = ∑
x∈V

σD(x)

= σD(a) + σD(b) + σD(c) + σD(d)
= 0.8 + 0.6 + 0.9 + 0.7
= 3.0

and the size q of G′D is

q = ∑(x,y)∈A µD((x, y))
= µD(a, b) + µD(b, c) + µD(c, d) + µD(d, a) + µD(a, c)
= 0.3 + 0.5 + 0.6 + 0.3 + 0.8 = 2.5
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Definition 3. An arc µD((x, y)) of a fuzzy digraph is called an effective arc if

µD((x, y)) = σD(x) ∧ σD(y)

Example 6. In Figure 4, µD((a, c)) = 0.8 is the only effective arc of G′D.

3. Domination in Fuzzy Digraphs

In this section, we define a dominating set in a fuzzy digraph GD. Further, we
characterize the minimal dominating set of a fuzzy digraph and give some useful results.

Definition 4. Let x, y ∈ V. The vertex σD(x) dominates σD(y) in GD if µD((x, y)) is an
effective arc.

Example 7. In Figure 4, as µD((a, c)) = 0.8 is an effective arc of G′D, σD(a) = 0.8 dominates
σD(c) = 0.9.

Definition 5. Let S ⊆ V, u ∈ V\S, and v ∈ S. A subset σD(S) ⊆ σD is a dominating set of GD
if, for every σD(u) ∈ σD\σD(S), there exists σD(v) ∈ σD(S) such that σD(v) dominates σD(u).

Remark 3. Let GD = (σD, µD) be a fuzzy digraph of G∗D = (V, A) and S ⊆ V.

1. Then
σD(S) = {σD(x) : x ∈ S}

2. If σD(S) is a dominating set of GD, then S is a dominating set of G∗D. The converse is not
necessarily true.

3. The fuzzy cardinality of a minimum dominating set is called the domination number of GD
and is denoted by γ(GD), that is,

γ(GD) = min ∑
x∈S

σD(x)

where S is a dominating set of G∗D.

Remark 4. Let G∗D = (V, A) be a latent directed graph of a fuzzy digraph GD = (σD, µD). If
µD(x, y) < σD(x) ∧ σD(y) for all x, y ∈ V , then the only dominating set of GD is σD.

Example 8. Let G∗D = (V = {a, b, c, d}, A) be a latent directed graph of a fuzzy digraph GD as
shown in Figure 5. Because µD(x, y) < σD(x) ∧ σD(y) for all x, y ∈ V, the only dominating set
of GD is σD = {0.8, 0.9, 0.7, 0.6}. Hence, γ(GD) = 3.0.

Figure 5. The dominating set of G∗D is σD = {σD(a), σD(b), σD(c), σD(d)}.
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Example 9. Let G∗D and G∗D′ be latent digraphs of fuzzy digraphs GD = (σD, µD) and
GD′ = (σD′ , µD′), respectively (see Figure 6). If

σD =
{

a
0.8 , b

0.9 , c
0.6 , d

0.7 , e
0.5

}
= σD′

µD = {ba/0.8, bc/0.6, bd/0.7, be/0.5, cd/0.6, de/0.5, ea/0.5},

and
µD′ = {ab/0.8, bc/0.6, bd/0.7, be/0.5, cd/0.6, de/0.5, ea/0.5}

then µD((x, y)) = σD(x)∧ σD(y) for all x, y ∈ V. Hence, the set {0.9} is the minimal dominating
set of GD and the sets {0.8, 0.9}, {0.5, 0.9}, and {0.5, 0.6, 0.8} are minimal dominating sets of
GD′ . Further, the domination number of GD is γ(GD) = 0.9 and the domination number of GD′
is γ(GD′) = 1.4 (see Figure 7).

Figure 6. G∗D and G∗D′ are the latent digraphs of GD and GD′ , respectively.

Figure 7. The minimum dominating set of GD is {0.9}, that is, γ(GD) = 0.9 and the minimum
dominating set of GD′ is {0.5, 0.9}, that is, γ(GD′ ) = 1.4.

From the definitions and observations, the following remark is immediate.

Remark 5. Let G∗D = (V, A) be a latent directed graph of a fuzzy digraph GD = (σD, µD). If
S ⊆ V, then ∑

x∈S
σD(x) ≤ |S|.
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Proof. Because 0 ≤ σD(x) ≤ 1 for all x ∈ S, it follows that

∑
x∈S

σD(x) ≤ ∑
x∈S

1 =
|S|

∑
n=1

1 = 1|S| = |S|.

�

The following result gives a characterization of the minimal dominating set of a fuzzy
directed graph.

Theorem 1. Let G∗D = (V, A) be a latent directed graph of a fuzzy digraph GD = (σD, µD) and
S ⊆ V. A dominating set σD(S) of GD is minimal if and only if, for each σD(x) ∈ σD(S), either
NGD (σD(x)) ∩ σD(S) = ∅ or NGD (σD(y)) ∩ σD(S) = {σD(x)} for some σD(y) ∈ σD\σD(S).

Proof. Let σD(x) ∈ σD(S). If σD(S) is a minimal dominating set of GD, then σD(S)\σD(x)
is not a dominating set of GD. Thus, there exists σD(y) /∈ (σD(S)\σD(x)) such that σD(y)
is not dominated by any element of σD(S)\σD(x).
Case 1. Suppose σD(y) = σD(x). Then, σD(x) is not dominated by any element of
σD(S)\σD(x), that is, NGD (σD(x)) ∩ σD(S) = ∅.
Case 2. Suppose σD(y) 6= σD(x). Then, σD(y) /∈ σD(S). Because σD(S) is a minimum
dominating set of GD, it follows that σD(y) is dominated by σD(x) ∈ σD(S). Thus,
NGD (σD(y)) ∩ σD(S) = {σD(x)} for some σD(y) ∈ σD\σD(S).
For the converse, the proof is immediate. �

4. Some Special Fuzzy Digraphs

In this section, we introduce the definition of some special fuzzy digraphs GD. Further,
we give the general formula of computing the domination number of GD.

Definition 6. A fuzzy dipath (directed path) PσD is a sequence of effective arcs having the property
that the ending vertex of each arc is the same as the starting vertex of the next arc in the sequence.

Remark 6. LetPσD = (σD, µD) be a fuzzy dipath of a latent directed path Pn = (V, A) where
n ≥ 2 is an integer. Then,

1. σD = {σD(xi) : xi ∈ V f or all i ∈ {1, 2, . . . , n}};
2. µD = {µD(xi, xi+1) : (xi, xi+1) ∈ A f or all i ∈ {1, 2, . . . , (n− 1)}};
3. µD(xi, xi+1) = (σD(xi), σD(xi+1)) f or all i ∈ {1, 2, . . . , (n− 1)}.
4. The vertices σD(x1) and σD(xn) are the first and last vertex, respectively, of a nontrivial

fuzzy dipath.

The following result illustrates the domination number of a fuzzy dipath.

Theorem 2. Let PσD be a fuzzy dipath. Then, one of the following is satisfied.

1. γ(PσD ) = ∑n/2
k=1 σD(x2k−1);

2. γ(PσD ) = minX, where

X =

(n+1)/2−i

∑
k=1

σD(x2k−1) +
(n+1)/2

∑
k=(n+3)/2−i

σD(x2k−2) : i ∈ {0, 1, 2, . . . , (n− 1)/2}


Proof. By Remark 6, σD = {σD(xi) : xi ∈ V, ∀i ∈ {1, 2, . . . , n}} and

µD = {µD(xi, xi+1) : (xi, xi+1) ∈ A, ∀i ∈ {1, 2, . . . , (n− 1)}}.
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Because µD(xi, xi+1) is an effective arc for all i ∈ {1, 2, . . . , (n− 1)}, it follows that σD(xi)
dominate σD(xi+1) for all i ∈ {1, 2, . . . , (n− 1)}.
Case 1. If n is an even integer, then n = 2k for some positive integer k. Now, the set
{σD(x1), σD(x3), . . . , σD(xn−1)} is clearly the minimum dominating set of PσD . Note that

σD(x1), σD(x3), . . . , σD(xn−1) =
n/2

∑
k=1

σD(x2k−1).

Thus, γ(PσD) = ∑n/2
k=1 σD(x2k−1). This proves the statement (i).

Case 2. If n is an odd integer, then n = 2k− 1 for some positive integer k. Now, the sets

{σD(x1), σD(x3), . . . , σD(xn)},
{σD(x1), σD(x3), . . . , σD(xn−2), σD(xn−1)},

{σD(x1), σD(x3), . . . , σD(xn−4), σD(xn−3), σD(xn−1)},
. . . , {σD(x1), σD(x2), . . . , σD(xn−5), σD(xn−3), σD(xn−1)}

are minimal dominating sets of PσD . Note that

σD(x1) + σD(x3) + . . . + σD(xn) =
(n+1)/2

∑
k=1

σD(x2k−1).

Generally,

σD(x1) + σD(x3) + . . . + σD
(
xj
)
+ σD

(
xj+1

)
+ . . . + σD(xn−3) + σD(xn−1)

=
(j+1)/2

∑
k=1

σD(x2k−1) +
(n+1)/2

∑
k=(j+3)/2

σD(x2k−2).

Let (j + 1)/2 + i = (n + 1)/2 for i ∈ {0, 1, 2, . . . , (n− 1)/2}. Then

(n+1)/2−i

∑
k=1

σD(x2k−1) +
(n+1)/2

∑
k=(n+3)/2−i

σD(x2k−2).

Thus, the minimum of

X =

(n+1)/2−i

∑
k=1

σD(x2k−1) +
(n+1)/2

∑
k=(n+3)/2−i

σD(x2k−2) : i ∈ {0, 1, 2, . . . , (n− 1)/2}


is the domination number of a fuzzy dipath PσD . Hence, γ(PσD ) = minX. �

Example 10. Let PσD = (σD, µD) be a fuzzy dipath of a latent directed path P6 = (V, A). (see
Figure 8).

Figure 8. The minimum dominating set of PσD is {σD(x1), σD(x3), σD(x5)} and the domination
number is γ(PσD ) = ∑3

k=1 σD(x2k−1).

Example 11. Let PσD = (σD, µD) be a fuzzy dipath of a latent directed path P5 = (V, A). Let
X = {σD(x1), σD(x3), σD(x5)}, Y = {σD(x1), σD(x3), σD(x4)}, and Z = {σD(x1), σD(x2), σD(x4)}
(see Figure 9).
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Figure 9. The minimal dominating set of PσD is {X, Y, Z} and the domination number is

γ(PσD ) = min

{
∑

σD(x)∈X
σD(x), ∑

σD(y)∈Y
σD(y), ∑σD(z)∈Z σD(z)

}
.

Corollary 1. Let PσD = (σD, µD) be a fuzzy dipath of a latent nontrivial directed path Pn = (V, A).
If σD(x) = σD(y), ∀x, y ∈ V, then

⌈ n
2
⌉
σD(x).

Proof. If n is even, by Theorem 2, γ(PσD ) = ∑n/2
k=1 σD(x2k−1). Because σD(x) = σD(y),

∀x, y ∈ V, it follows that σD(x1) = σD(x3) = . . . = σD(xn−1) = σD(x). Thus,

γ(PσD ) =
n/2

∑
k=1

σD(x) =
(n

2

)
σD(x).

Similarly, if n is odd, by Theorem 2,

γ(PσD ) =
(n+1)/2−i

∑
k=1

σD(x2k−1) +
(n+1)/2

∑
k=(n+3)/2−i

σD(x2k−2) f or i ∈ {0, 1, 2, . . . , (n− 1)/2

=
(n+1)/2−i

∑
k=1

σD(x) +
(n+1)/2

∑
k=(n+3)/2−i

σD(x)

= ((n + 1)/2− i)σD(x) + [(n + 1)/2− ((n + 3)/2− i + 1)]σD(x)
=
(

n+1
2

)
σD(x).

Hence, γ(PσD ) is either
( n

2
)
σD(x) if n is even, or

(
n+1

2

)
σD(x) if n is odd. Therefore,

γ(PσD ) =
⌈ n

2
⌉
σD(x). �

Definition 7. A fuzzy dicycle (directed cycle) CσD is a dipath where it starts and ends with the
same vertex.

Remark 7. Let CσD = (σD, µD) be a fuzzy dicycle of a latent directed cycle Cn = (V, A), where
n ≥ 3. Then,

1. σD = {σD(xi) : xi ∈ V, ∀i ∈ {1, 2, . . . , n}};
2. µD = {µD(xi, xi+1), µD(xn, x1) : (xi, xi+1), (xn, x1) ∈ A, ∀i ∈ {1, 2, . . . , (n− 1)}};
3. µD(xi, xi+1) = (σD(xi), σD(xi+1)), ∀i ∈ {1, 2, . . . , (n− 1)}.

The following result provides the domination number of a fuzzy dicycle.

Theorem 3. Let CσD = (σD, µD) be a fuzzy dicycle of a latent directed cycle Cn = (V, A) where
n ≥ 3. Then, one of the following is satisfied:

1. γ(CσD ) = min
{

∑n/2
k=1 σD(x2k−1), ∑n/2

k=1 σD(x2k)
}

;

2. γ(CσD ) = min(X ∪Y), where

X =

(n+1)/2−i

∑
k=1

σD(x2k−1) +
(n+1)/2

∑
k=(n+3)/2−i

σD(x2k−2) : i ∈ {0, 1, 2, . . . , (n− 1)/2}

,

Y =

(n+1)/2−i

∑
k=1

σD(x2k) +
(n+1)/2

∑
k=(n+3)/2−i

σD(x2k−1) : i ∈ {0, 1, 2, . . . , (n− 1)/2}

.



Mathematics 2021, 9, 2143 10 of 14

Proof. Let I = {1, 2, . . . , n}. Because CσD is a dipath that starts and ends with the same
node, the arcs µD(xi, xi+1) for all i ∈ I and µD(xn, x1) are effective. This means that σD(xi)
dominate σD(xi+1) for all i ∈ {1, 2, . . . , n− 1} and σD(xn) dominate σD(x1).
Case 1. If n is an even integer, then n = 2k for some positive integer k. Now, the sets
{σD(x1), σD(x3), . . . , σD(xn−1)} and {σD(x2), σD(x4), . . . , σD(xn)} are minimal dominating
sets of CσD . Note that

σD(x1) + σD(x3) + . . . + σD(xn−1) =
n/2

∑
k=1

σD(x2k−1)

and

σD(x2) + σD(x4) + . . . + σD(xn) =
n/2

∑
k=1

σD(x2k)

Thus, γ(CσD ) = min
{

∑n/2
k=1 σD(x2k−1), ∑n/2

k=1 σD(x2k)
}

. This proves the statement (i).
Case 2. If n is an odd integer, then n = 2k− 1 for some positive integer k. Now, the sets

{σD(x1), σD(x3), . . . , σD(xn)},
{σD(x1), σD(x3), . . . , σD(xn−2), σD(xn−1)},

{σD(x1), σD(x3), . . . , σD(xn−4), σD(xn−3), σD(xn−1)},
. . . , {σD(x1), σD(x2), . . . , σD(xn−5), σD(xn−3), σD(xn−1)}

are some minimal dominating sets of CσD . Note that

σD(x1) + σD(x3) + . . . + σD(xn) =
(n+1)/2

∑
k=1

σD(x2k−1).

Generally,

σD(x1) + σD(x3) + . . . + σD
(

xj
)
+ σD

(
xj+1

)
+ . . . + σD(xn−3) + σD(xn−1)

=
(j+1)/2

∑
k=1

σD(x2k−1) +
(n+1)/2

∑
k=(j+3)/2

σD(x2k−2).

Let (j + 1)/2 + i = (n + 1)/2. Then,

(n+1)/2−i

∑
k=1

σD(x2k−1) +
(n+1)/2

∑
k=(n+3)/2−i

σD(x2k−2), ∀i ∈ {0, 1, 2, . . . , (n− 1)/2}.

Further, the sets

{σD(x2), σD(x4), . . . , σD(n− 1), σD(xn)},
{σD(x2), σD(x4), . . . , σD(xn−3), σD(xn−2), σD(xn)},

{σD(x2), σD(x4), . . . , σD(xn−5), σD(xn−4), σD(xn−2), σD(xn)},
. . . , {σD(x2), σD(x3), . . . , σD(xn−4), σD(xn−2), σD(xn)}

are other minimal dominating sets of CσD . Generally,

σD(x2) + σD(x4) + . . . + σD
(
xj
)
+ σD

(
xj+1

)
+ . . . + σD(xn−2) + σD(xn)

=
j/2
∑

k=1
σD(x2k) +

(n+1)/2
∑

k=(j+2)/2
σD(x2k−1)
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Let j/2 + i = (n + 1)/2. Then,

(n+1)/2−i

∑
k=1

σD(x2k) +
(n+1)/2

∑
k=(n+3)/2−i

σD(x2k−1), ∀i ∈ {0, 1, 2, . . . , (n− 1)/2}

Let I′ = {0, 1, 2, . . . , (n− 1)/2} such that

X =

(n+1)/2−i

∑
k=1

σD(x2k−1) +
(n+1)/2

∑
k=(n+3)/2−i

σD(x2k−2) : ∀i ∈ I′


and

Y =

(n+1)/2−i

∑
k=1

σD(x2k) +
(n+1)/2

∑
k=(n+3)/2−i

σD(x2k−1), ∀i ∈ I′

.

Hence, the domination number of CσD is γ(CσD ) = min(X ∪Y). This proves statement
ii) �

Example 12. Let CσD = (σD, µD) be a fuzzy dicycle of a latent directed cycle C5 = (V, A). Let
X = {σD(x1), σD(x3), σD(x5)} and Y = {σD(x2), σD(x4), σD(x6)} (see Figure 10).

Figure 10. The minimal dominating set of CσD is {X, Y} and the domination number is

γ(CσD ) = min
{

∑3
k=1 σD(x2k−1), ∑3

k=1 σD(x2k)
}

.

Example 13. Let CσD = (σD, µD) be a fuzzy dicycle of a latent directed cycle C5 = (V, A). Let

X1 = {σD(x1), σD(x3), σD(x5)}
X2 = {σD(x1), σD(x2), σD(x4)}, X3 = {σD(x2), σD(x3), σD(x5)},
X4 = {σD(x1), σD(x3), σD(x4)}, X5 = {σD(x2), σD(x4), σD(x5)}

(see Figure 11).

Figure 11. The minimal dominating set of CσD is {Xi : i = 1, 2, . . . , 5} and the domination number is

γ(PσD ) = min

{
∑

σD(x)∈Xi

σD(x) : i = 1, 2, . . . , 5

}
.
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Corollary 2. Let CσD = (σD, µD) be a fuzzy dicycle of a latent directed cycle Cn = (V, A) where
n ≥ 3. If σD(x) = σD(y), ∀x, y ∈ V, then

⌈ n
2
⌉
σD(x).

Proof. If n is even, by Theorem 3,

γ(CσD ) = min

{
n/2

∑
k=1

σD(x2k−1),
n/2

∑
k=1

σD(x2k)

}
.

Because σD(x) = σD(y), ∀x, y ∈ V, it is immediate that

γ(CσD ) =
n/2

∑
k=1

σD(x) =
(n

2

)
σD(x)

(using similar reasoning of Corollary 1.
Similarly, if n is odd, by Theorem 3,

∑
n+1

2 −i
k=1 σD(x2k−1) + ∑

(n+1)/2
k=(n+3)/2−i σD(x2k−2), ∀i ∈ {0, 1, 2, . . . , (n− 1)/2}

=

n+1
2 −i
∑

k=1
σD(x) +

(n+1)/2
∑

k=(n+3)/2−i
σD(x)

Because

σD(x) = σD(y), ∀x, y ∈ V,
= ((n + 1)/2− i)σD(x) + [(n + 1)/2− ((n + 3)/2− i + 1)]σD(x)
=
(

n+1
2

)
σD(x).

and

∑
(n+1)/2−i
k=1 σD(x2k) + ∑

(n+1)/2
k=(n+3)/2−i σD(x2k−1), ∀i ∈ {0, 1, 2, . . . , (n− 1)/2}

=
(n+1)/2−i

∑
k=1

σD(x) +
(n+1)/2

∑
k=(n+3)/2−i

σD(x), since σD(x) = σD(y), ∀x, y ∈ V,

=
(

n+1
2

)
σD(x).

Hence, γ(CσD ) is either
( n

2
)
σD(x) if n is even, or

(
n+1

2

)
σD(x) if n is odd.

Thus, γ(CσD ) =
⌈ n

2
⌉
σD(x). �

5. Conclusions

In this work, we introduced the concept of domination in a fuzzy digraph, provided
the characteristics of the minimum dominating set of fuzzy digraphs, and modeled the
domination number of a fuzzy dipath and a fuzzy dicycle. The domination number in a
fuzzy dipath and a fuzzy dicycle was presented and proved. The immediate consequences
of the mentioned concepts were all proved. Some related problems are still open for
future work.

(a) Characterize the dominating sets of each of the following special fuzzy digraphs—the
wheel Wn, the complete bipartite Km,n, the star Sn, and the fan Fn.

(b) Find the domination number of each of the following special fuzzy digraphs: Wn,
Km,n, Sn, and Fn.

Aside from these problems, future works could explore the application of domination
in fuzzy digraphs in problem structuring methods commonly used in the literature, such
as fuzzy decision-making trial and evaluation laboratory (DEMATEL) [29], fuzzy cognitive
mapping (FCM) [30], and fuzzy interpretive structural modelling (ISM) [31], among others.
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