
mathematics

Article

NICE: Noise Injection and Clamping Estimation for Neural
Network Quantization

Chaim Baskin 1,*,†, Evgenii Zheltonozhkii 1,†, Tal Rozen 2,†, Natan Liss 2, Yoav Chai 3, Eli Schwartz 3, Raja Giryes 3,
Alexander M. Bronstein 1 and Avi Mendelson 1

����������
�������

Citation: Baskin, C.; Zheltonozhkii,

E.; Rozen, T.; Liss, N.; Chai, Y.;

Schwartz, E.; Giryes, R.; Bronstein,

A.M.; Mendelson, A. NICE: Noise

Injection and Clamping Estimation

for Neural Network Quantization.

Mathematics 2021, 9, 2144. https://

doi.org/10.3390/math9172144

Academic Editor: Alessandro

Niccolai

Received: 12 August 2021

Accepted: 31 August 2021

Published: 2 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, Technion, Haifa 3200003, Israel; evgeniizh@campus.technion.ac.il (E.Z.);
bron@cs.technion.ac.il (A.M.B.); avi.mendelson@cs.technion.ac.il (A.M.)

2 Department of Electrical Engineering, Technion, Haifa 3200003, Israel; tal.rozen@campus.technion.ac.il (T.R.);
lissnatan@campus.technion.ac.il (N.L.)

3 School of Electrical Engineering, Tel-Aviv University, Tel-Aviv 6997801, Israel; yoavchai1@mail.tau.ac.il (Y.C.) ;
eliyahus@mail.tau.ac.il (E.S.); raja@tauex.tau.ac.il (R.G.)

* Correspondence: chaimbaskin@cs.technion.ac.il
† These authors contributed equally to this work.

Abstract: Convolutional Neural Networks (CNNs) are very popular in many fields including com-
puter vision, speech recognition, natural language processing, etc. Though deep learning leads to
groundbreaking performance in those domains, the networks used are very computationally de-
manding and are far from being able to perform in real-time applications even on a GPU, which is not
power efficient and therefore does not suit low power systems such as mobile devices. To overcome
this challenge, some solutions have been proposed for quantizing the weights and activations of
these networks, which accelerate the runtime significantly. Yet, this acceleration comes at the cost of
a larger error unless spatial adjustments are carried out. The method proposed in this work trains
quantized neural networks by noise injection and a learned clamping, which improve accuracy.
This leads to state-of-the-art results on various regression and classification tasks, e.g., ImageNet
classification with architectures such as ResNet-18/34/50 with as low as 3 bit weights and activations.
We implement the proposed solution on an FPGA to demonstrate its applicability for low-power
real-time applications. The quantization code will become publicly available upon acceptance.

Keywords: neural networks; low power; quantization; CNN architecture

1. Introduction

Deep neural networks are important tools in the machine learning arsenal. They
have shown spectacular success in a variety of tasks in a broad range of fields such as
computer vision, computational and medical imaging, signal, image, speech, and language
processing [1–3].

However, while deep learning models’ performance is impressive, the computational
and storage requirements of both training and inference are harsh. For example, ResNet-
50 [4], a popular choice for image detection, has 98 MB parameters and requires 4 GFLOPs
of computations for a single inference. Common devices do not have such resources, which
makes deep learning infeasible especially when it comes to low-power devices such as
smartphones and the Internet of Things (IoT).

In an attempt to solve these problems, many researchers have recently proposed
less demanding models, often at the expense of more complicated training procedures.
Since the training is usually performed on servers with significantly larger resources, this
is usually an acceptable trade-off. Some methods include pruning weights and feature
maps, which reduce the model’s memory print and compute resources [5,6], low-rank
decompression that removes the redundancy of parameters and feature maps [7,8], and
efficient architecture design that requires less communication and has more feasible de-
ployment [9,10].

Mathematics 2021, 9, 2144. https://doi.org/10.3390/math9172144 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math9172144
https://doi.org/10.3390/math9172144
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9172144
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9172144?type=check_update&version=1


Mathematics 2021, 9, 2144 2 of 12

One prominent approach is to quantize the networks. This approach reduces the
size of memory needed to keep a large number of parameters while also reducing the
computation resources. The default choice for the data type of the neural networks’ weights
and feature maps (activations) is 32 bit (single-precision) floating point. Gupta et al. [11]
have shown that quantizing the pre-trained weights to a 16 bit fixed point has almost no
effect on the accuracy of the networks. Moreover, minor modifications allow performing
an integer-only 8 bit inference with reasonable performance degradation [12], which is
utilized in DL frameworks, such as TensorFlow. One of the current challenges in network
quantization is reducing the precision even further, up to 1–5 bits per value. In this case,
straightforward techniques may result in unacceptable quality degradation.

Contribution. This paper introduces a novel simple approach denoted NICE (noise
injection and clamping estimation) for neural network quantization that relies on the follow-
ing two easy-to-implement components: (i) noise injection during training that emulates
the quantization noise introduced at inference time and (ii) statistics-based initialization of
parameter and activation clamping for faster model convergence. In addition, activation
clamp is learned during train time. We also propose an integer-only scheme for an FPGA
on a regression task [13].

Our proposed strategy for network training leads to an improvement over the state-of-
the-art quantization techniques in the performance vs. complexity trade-off. Our approach
can be applied directly to existing architectures without the need to modify them at
training (as opposed, for example, to the teacher–student approaches [14] that require to
train a bigger network, or the XNOR networks [15] that typically increase the number of
parameters by a significant factor in order to meet accuracy goals).

Moreover, our new technique allows quantizing all the parameters in the network to
fixed point (integer) values. This includes the batch-norm component that is usually not
quantized in other works. Thus, our proposed solution allows the integration of neural
networks in dedicated hardware devices such as FPGA and ASIC easier. As a proof of
concept, we present also a case study of such an implementation on hardware.

2. Related Work

Expressiveness-based methods. The quantization of neural networks to extremely
low-precision representations (up to 2 or 3 possible values) has been actively studied
in recent years [15–18]. To overcome the accuracy reduction, some works proposed to
use a wider network [14,19,20], which compensates the expressiveness reduction of the
quantized networks. For example, 32 bit feature maps were regarded as 32 binary ones.
Another way to improve expressiveness, adopted by Zhu et al. [19] and Zhou et al. [21] is
to add a linear scaling layer after each of the quantized layers.

Keeping a full-precision copy of quantized weights. Lately, the most common ap-
proach to training a quantized neural network [15,16,22–24] is to keep two sets of weights—
forward pass is performed with quantized weights, and updates are performed on full
precision ones, i.e., approximating gradients with the straight-through estimator (STE) [25].
For quantizing the parameters, either a stochastic or deterministic function can be used.

Distillation. One of the leading approaches used today for quantization relies on
the idea of distillation [26]. In distillation a teacher–student setup is used, where the
teacher is either the same or a larger full precision neural network, and the student is the
quantized one. The student network is trained to imitate the output of the teacher net-
work. This strategy is successfully used to boost the performance of existing quantization
methods [14,27,28].

Model parametrization. Zhang et al. [18] proposed to represent the parameters with
learned basis vectors that allow acquiring an optimized non-uniform representation. In this
case, MAC operations can be computed with bitwise operations. Choi et al. [29] proposed
to learn the clamping value of the activations to find the balance between clamping and
quantization errors. In this work, we also learn this value but with the difference that
we are learning the clamps value directly using STE backpropagation method without
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any regulations on the loss. Jung et al. [28] created a more complex parameterization of
both weights and activations and approximated them with symmetric piecewise linear
function, learning both the domains and the parameters directly from the loss function of
the network.

Optimization techniques. Zhou et al. [21] and Dong et al. [30] used the idea of not
quantizing all the weights simultaneously but rather gradually increasing the number of
quantized weights to improve the convergence. McKinstry et al. [31] demonstrated that
4 bit fully integer neural networks can achieve full-precision performance by applying
simple techniques to combat variance of gradients: larger batches and proper learning
rate annealing with longer training time. However, 8 bit and 32 bit integer representa-
tions were used for the multiplicative (i.e., batch normalization) and additive constants
(biases), respectively.

Generalization bounds. Interestingly, the quantization of neural networks has been
used recently as a theoretical tool to understand better the generalization of neural networks.
It has been shown that while the generalization error does not scale with the number of
parameters in over-parameterized networks, it does so when these networks are being
quantized [32].

Hardware implementation complexity. While the quantization of CNN parameters
leads to a reduction of power and area, it can also generate unexpected changes in the
balance between communication and computation. Karbachevsky et al. [33] studied the
impact of CNN quantization on hardware implementation of computational resources.
It combines the research conducted in Baskin et al. [34] to propose a computation and
communication analysis for quantized CNN.

3. Method

In this work, we propose a training scheme for quantized neural networks designed for
fast inference on hardware with integer-only arithmetic. To achieve maximum performance,
we applied a combination of several well-known and novel techniques. Firstly, in order
to emulate the effect of quantization, we injected additive random noise into the network
weights. Uniform noise distribution is known to approximate well the quantization error
for fine quantizers; however, our experiments show that it is also suitable for relatively
coarse quantization. As seen in Figure 1 the distribution of noise is almost uniform for 4
and 5 bits and only starts to deviate from the uniform model in 3 bits, which corresponds
to only 8 bins.

Figure 1. Weight quantization error histogram for a range of bitwidths.

Furthermore, some amount of random weight perturbation seems to have a regular-
ization effect beneficial for the overall convergence of the training algorithm. Secondly, we
used a gradual training scheme to minimize the perturbation of network parameters per-
formed simultaneously. In order to give the quantized layers as many gradient updates as
possible, we used the STE approach to pass the gradients to the quantized layers. After the
gradual phase, the whole network was quantized and trained for a number of fine-tuning
epochs. Thirdly, we propose to clamp both the activations and weights in order to reduce
the quantization bin size (and, thus, the quantization error) at the expense of some sacrifice
of the dynamic range. The clamping values were initialized using the statistics of each
layer. In order to truly optimize the trade-off between the reduction of the quantization
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error vs. that of the dynamic range, we learned optimal clamping values by defining a loss
on the quantization error.

Lastly, following the common approach proposed by Zhou et al. [23], we did not
quantize the first and last layers of the networks, which have significantly higher impacts
on network performance.

Algorithm 1 summarizes the proposed training method for network quantization. The
remainder of the section details these main ingredients of our method.

Algorithm 1 Training a neural network with NICE. N denotes the number of layers; S is
the number of epochs in which each layer’s weights are noised; T is the total number of
training epochs; c is the current noised layer; i denotes the ith layer; W is the weights of
the layer; f denotes the layer’s function, i.e, convolution or fully connected; and α and β
are hyper-parameters.

1: procedure NICE (Network) . Training using NICE method
2: for i = 0 to N do
3: meanwi ← Running mean(Wi) . Weights of each layer
4: stdwi ← Running std(Wi) . Weights of each layer
5: meanai ← Running mean(Acti) . Activations of each layer on training set
6: stdai ← Running std(Acti) . Activations of each layer on training set
7: cwi ← meanwi + α × stdwi . Weight clamp
8: cai ← meanai + β × stdai . Activations clamp
9: end for

10: e←0
11: c←0
12: while e 6= T do
13: for i = 0 to N do
14: for s = 0 to S do
15: Wi=c ← Noise(Wi=c) . Adding uniform noise to weights
16: Wi ← Clamp(Wi,−cwi , cwi )
17: Wi<c ← Quantize(Wi<c)
18: Acti ← f (Wi, Acti−1)
19: Clampedi ←Clamp(Acti, 0, cai )
20: Acti ←Quantize(Clampedi)
21: Learn(cai ) . Backpropagation
22: end for
23: c←c + 1
24: end for
25: e←e + 1
26: end while
27: end procedure

3.1. Uniform Noise Injection

We propose to inject uniform additive noise to weights and biases during model
training to emulate the effect of quantization incurred at inference. Prior works have
investigated the behavior of quantization error [35,36] and concluded that in sufficiently
fine-grain quantizers, it can be approximated as a uniform random variable. We observed
the same phenomena and empirically verified it for weight quantization as coarse as 5 bits.

The advantage of the proposed method is that the updates performed during the
backward pass immediately influence the forward pass, in contrast to strategies that
directly quantize the weights, where small updates often leave them in the same bin, thus,
effectively unchanged.

In order to achieve a dropout-like effect in the noise injection, we use a Bernoulli dis-
tributed mask M, quantizing part of the weights and adding noise to the others. From em-
pirical evidence, we chose M ∼ Ber(0.05) as it gave the best results for the range of
bitwidths in our experiments. Instead of using the quantized value ŵ = Q∆(w) of a weight
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w in the forward pass, ŵ = (1−M)Q∆(w) + M(w− e) is used with e ∼ Uni(−∆/2, ∆/2),
where ∆ denotes the size of the quantization bin.

3.2. Gradual Quantization

In order to improve the scalability of the method for deeper networks, it is desirable
to avoid the significant change of the network behavior due to quantization. Thus, we start
by gradually adding a subset of weights to the set of quantized parameters, allowing the
rest of the network to adapt to the changes.

The gradual quantization is performed in the following way: the network is split into
N equally-sized blocks of layers {B1, . . . , BN}. At the i-th stage, we inject the noise into
the weights of the layers from block Bi. The previous blocks {B1, . . . , Bi−1} are quantized,
while the following blocks {Bi+1, . . . , BN} remain at full precision. We apply the gradual
process only once, i.e., when the N-th stage finishes, in the remaining training epochs we
quantize and train all the layers using the STE approach.

This gradual process of increasing the number of quantized layers is similar to the one
proposed by Xu et al. [37]. This gradual process reduces, via the number of parameters,
the amount of simultaneously injected noise and improves convergence. Since we start
from the earlier blocks, the later ones have an opportunity to adapt to the quantization
error affecting their inputs, and thus, the network does not change drastically during any
phase of quantization. After finishing the training with the noise injection into the block
of layers BN , we continue the training of the fully quantized network for several epochs
until convergence. In the case of a pre-trained network destined for quantization, we
have found that the optimal block size is a single layer with the corresponding activation,
while using more than one epoch of training with the noise injection per block does not
improve performance.

3.3. Clamping and Quantization

In order to quantize the network weights, we clamp their values in the range [−cw, cw]:

wc = Clamp(w,−cw, cw) = max (−cw, min (x, cw)). (1)

The parameter cw is defined per layer and is initialized with cw = mean(w) + β×
std(w), where w values are the weights of the layer, and β is a hyper-parameter. Given cw,
we uniformly quantize the clamped weight into Bw bits according to

ŵ =

[
wc

2Bw−1 − 1
cw

]
cw

2Bw−1 − 1
,

where [·] denotes the rounding operation.
The quantization of the network activations is performed in a similar manner. The con-

ventional ReLU activation function in CNNs is replaced by the clamped ReLU,

ac = Clamp(a, 0, ca), (2)

where a denotes the output of the linear part of the layer, ac is the nonnegative value of
the clamped activation prior to quantization, and ca is the clamping range. The constant
ca is set as a local parameter of each layer and is learned with the other parameters of the
network via backpropagation. We used the initialization ca = mean(a) + α× std(a) with
the statistics computed on the training dataset and α set as a hyper-parameter.

A quantized version of the truncated activation is obtained by quantizing ac uniformly
to Ba bits,

â =

[
ac

2Ba − 1
ca

]
· ca

2Ba − 1
. (3)
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Since the Round function is non-differentiable, we used the STE approach to propagate
the gradients through it to the next layer. For the update of ca, we calculated the derivative
of â with respect to ca as

∂â
∂ac

=

{
1, ac ∈ [0, ca]

0, otherwise.
(4)

Figure 2 depicts the evolution of the activation clamp values throughout the epochs.
In this experiment, α was set to 5. It can be seen that activation clamp values converge
to values smaller than the initialization. This shows that the layer prefers to shrink the
dynamic range of the activations, which can be interpreted as a form of regularization
similar in its purpose to weight decay on weights.

Figure 2. Activation clamp values during ResNet-18 training on CIFAR10 dataset.

The quantization of the layer biases is more complex, since their scale depends on
the scales of both the activations and the weights. For each layer, we initialize the bias
clamping value as

cb =

 ca

2Ba − 1︸ ︷︷ ︸
Activation scale

· cw

2Bw−1 − 1︸ ︷︷ ︸
Weight scale

 ·
 2Bb−1 − 1︸ ︷︷ ︸

Maximal bias value

, (5)

where Bb denotes the bias bitwidth. The biases are clamped and quantized in the same
manner as the weights.

4. Results

To demonstrate the effectiveness of our method, we implemented it in PyTorch and
evaluated it using image classification datasets (ImageNet and CIFAR-10) and a regression
scenario (the MSR joint denoising and demosaicing dataset [38]). In all the experiments,
we used a pre-trained FP32 model, which was then quantized using NICE .

4.1. CIFAR-10

We tested NICE with ResNet-18 on CIFAR-10 for various quantization levels of the
weights and activations. Table 1 reports the results. Notice that for the case of 3 bit weights
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activations, we obtain the same accuracy and for the 2 bit case, only a small degradation.
Moreover, observe that when we quantize only the weights or activations, we get a nice
regularization effect that improves the achieved accuracy.

Table 1. NICE accuracy (% top-1) on CIFAR-10 for range of bitwidths.

Activation Bits
1 2 3 32

Weight
bits

2 89.5 92.53 92.69 92.71
3 91.32 92.74 93.01 93.26

32 91.87 93.04 93.15 93.02

4.2. ImageNet

For quantizing the ResNet-18/34/50 networks for ImageNet, we fine-tuned a given
pre-trained network using NICE . We trained a network for a total of 120 epochs, following
the gradual process described in Section 3.2 with the number of stages N set to the number
of trainable layers. We used an SGD optimizer with a learning rate of 10−4, momentum of
0.9, and weight decay of 4× 10−5.

Table 2 compares NICE with other leading approaches to low-precision quantiza-
tion [18,28,29,31]. Various quantization levels of the weights and activations are presented.
As a baseline, we used a pre-trained full-precision model.

Table 2. ImageNet comparison. We report top-1, top-5 accuracy on ImageNet compared with state-of-
the-art prior methods. For each DNN architecture, rows are sorted in number of bits. Baseline results
were taken from PyTorch model zoo. Compared methods: JOINT [28], PACT [29], LQ-Nets [18],
FAQ [31].

Network Method Precision (w,a) Accuracy (% Top-1) Accuracy (% Top-5)

ResNet-18 baseline 32,32 69.76 89.08
ResNet-18 FAQ 8,8 70.02 89.32
ResNet-18 NICE (Ours) 5,5 70.35 89.8
ResNet-18 PACT 5,5 69.8 89.3
ResNet-18 NICE (Ours) 4,4 69.79 89.21
ResNet-18 JOINT 4,4 69.3 -
ResNet-18 PACT 4,4 69.2 89.0
ResNet-18 FAQ 4,4 69.81 89.10
ResNet-18 LQ-Nets 4,4 69.3 88.8
ResNet-18 JOINT 3,3 68.2 -
ResNet-18 NICE (Ours) 3,3 67.68 88.2
ResNet-18 LQ-Nets 3,3 68.2 87.9
ResNet-18 PACT 3,3 68.1 88.2

ResNet-34 baseline 32,32 73.30 91.42
ResNet-34 FAQ 8,8 73.71 91.63
ResNet-34 NICE (Ours) 5,5 73.72 91.60
ResNet-34 NICE (Ours) 4,4 73.45 91.41
ResNet-34 FAQ 4,4 73.31 91.32
ResNet-34 LQ-Nets 3,3 71.9 88.15
ResNet-34 NICE (Ours) 3,3 71.74 90.8

ResNet-50 baseline 32,32 76.15 92.87
ResNet-50 FAQ 8,8 76.52 93.09
ResNet-50 PACT 5,5 76.7 93.3
ResNet-50 NICE (Ours) 5,5 76.73 93.31
ResNet-50 NICE (Ours) 4,4 76.5 93.3
ResNet-50 LQ-Nets 4,4 75.1 92.4
ResNet-50 PACT 4,4 76.5 93.2
ResNet-50 FAQ 4,4 76.27 92.89
ResNet-50 NICE (Ours) 3,3 75.08 92.35
ResNet-50 PACT 3,3 75.3 92.6
ResNet-50 LQ-Nets 3,3 74.2 91.6

Our approach achieves state-of-the-art results for 4 and 5 bits quantization and compa-
rable results for 3 bits quantization, on the different network architectures. Moreover, notice
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that our results for the 5,5 setup, on all the tested architectures, have slightly outperformed
the FAQ 8,8 results.

4.3. Regression—Joint Denoising and Demosaicing

In addition to the classification tasks, we apply NICE on a regression task—namely,
joint image denoising and demosaicing. The network we used is the one proposed in [13].
We slightly modified it by adding to it Dropout with p = 0.05, removing the tanh activa-
tions, and adding skip connections between the input and the output images. These skip
connections improve the quantization results as, in this case, the network only needs to
learn the necessary modifications to the input image. Figure 3 shows the whole network,
where the modifications are marked in red. The three channels of the input image are
quantized to 16 bits, while the output of each convolution, when followed by an activation,
are quantized to 8 bits (marked in Figure 3). The first and last layers are also quantized.

We applied NICE on a full-precision pre-trained network for 500 epochs with Adam
optimizer with learning rate of 3× 10−5. The data were augmented with random horizontal
and vertical flipping. Since we are not aware of any other work of quantization for this
task, we implemented WRPN [17] as a baseline for comparison. Table 3 reports the test
set PSNR for the MSR dataset [38]. It can be clearly seen that NICE achieves significantly
better results than WRPN, especially for low-weight bitwidths.

Table 3. PSNR [dB] results on joint denoising and demosaicing for different bitwidths.

Bits Bits Bits Bits BitsMethod (w = 32, a = 32) (w = 4, a = 8) (w = 4, a = 6) (w = 4, a = 5) (w = 3, a = 6)

NICE (Ours) 39.696 39.456 39.332 39.167 38.973
WRPN (our experiments) 39.696 38.086 37.496 36.258 36.002

Figure 3. Model used in denoising/demosaicing experiment.
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4.4. Ablation Study

In order to show the importance of each part of our NICE method, we used ResNet-
18 on ImageNet. Table 4 reports the accuracy for various combinations of the NICE
components. Notice that for high bitwidths, i.e., 5,5, the noise addition and gradual training
contribute to the accuracy more than the clamp learning. This happens since (i) the noise
distribution is indeed uniform in this case, as we show in Figure 1 and (ii) the relatively
high number of activation quantization levels almost negates the effect of clamping. For
low bitwidths, i.e., 3,3, we observe the opposite. The uniform noise assumption is no longer
accurate. Moreover, due to the small number of bits, clamping the range of values becomes
more significant.

Table 4. Ablation study of NICE scheme. Accuracy (% top-1) for ResNet-18 on ImageNet for
different setups

Noise with Activation Accuracy on Accuracy on
Gradual Training Clamping Learning 5,5 [w,a] 3,3 [w,a]

- - 69.72 66.51
- X 69.9 67.2
X - 70.25 66.7
X X 70.3 67.68

5. Hardware Implementation
5.1. Optimizing Quantization Flow for Hardware Inference

Our quantization scheme can fit an FPGA implementation well for several reasons.
Firstly, uniform quantization of both the weights and activation induces uniform steps
between each quantized bin. This means that we can avoid the use of a resource costly
codebook (look-up table) with the size Ba × Bw × Ba, for each layer. This also saves
calculation time.

Secondly, our method enables having an integer-only arithmetic. In order to achieve
that, we start, following (5), by representing each activation and network parameter in
the form of X = N × S, where N is the integer code and S is a pre-calculated scale. We
then reformulate the scaling factors S into the form Ŝ = q × 2p, where q ∈ N, p ∈ Z.
Practically, we found that it is sufficient to constrain these values to q ∈ [1, 256] and
p ∈ [−32, 0] without an accuracy drop .This representation allows the replacement of
hardware costly floating-point operations by a combination of cheap shift operations and
integer arithmetics.

5.2. Hardware Flow

In the hardware implementation, for both the regression and the classification tasks,
we adopt the PipeCNN [39] implementation released by the authors. (https://github.
com/doonny/PipeCNN access on 12 August 2021) In this implementation, the FPGA is
programmed with an image containing data moving, convolution, and a pooling kernel.
Layers are calculated sequentially. Figure 4 illustrates the flow of feature maps in the
residual block from a previous layer to the next one. Sai, Swi are the activations and
weights scale factors of layer i, respectively. All these factors are calculated offline and are
loaded to the memory along with the rest of the parameters. Note that we use the FPGA
for inference only.

We compiled the OpenCL kernel to Intel’s Arria 10 FPGA and ran it with the regression
architecture in Figure 3. Weights were quantized to 4 bits, activations to 8 bits, and biases,
and the input image to 16 bits. The resource utilization amounts to 222 K LUTs, 650 DSP
Blocks, and 35.3 Mb of on-chip RAM. With a maximum clock frequency of 240 MHz,
the processing of a single image takes 250 ms. In terms of power, the FPGA requires 30 W,
while an NVIDIA Titan X GPU requires 160 W. From standard hardware design practices,

https://github.com/doonny/PipeCNN
https://github.com/doonny/PipeCNN


Mathematics 2021, 9, 2144 10 of 12

we can project that a dedicated ASIC manufactured using a similar process would be much
more efficient by at least one order of magnitude.

Figure 4. Residual block in hardware.

6. Conclusions

We introduced NICE —a training scheme for quantized neural networks. The scheme
is based on using uniform quantized parameters, additive uniform noise injection, and
learning the quantization clamping range. The scheme is amenable to efficient training
by backpropagation in full precision arithmetic. One advantage of NICE is the ease of
its implementation on existing networks. In particular, it does not require changes in
the architecture of the network, such as increasing the number of filters as required by
some previous works. Moreover, NICE can be used for various types of tasks such as
classification and regression.

We report state-of-the-art results on ImageNet for a range of bitwidths and network
architectures. Our solution outperforms current works on both the 4,4 and 5,5 setups, for all
tested architectures, including non-uniform solutions such as [18]. It shows comparable
results in the 3,3 setup.

We showed that quantization error for 4 and 5 bits distributes uniformly, which
explains the larger success of our method in these bitwidths compared to the case of
3 bits. This implies that the results for less than 4 bits may be further improved by adding
non-uniform noise to the parameters. However, the 4 bit quantization is of special interest
since, being a power of 2, it is considered more hardware friendly, and INT4 matrix
multiplications are supported by Tensor Cores in recently announced inference-oriented
Nvidia’s Tesla GPUs.
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