
mathematics

Article

Time-Delay Synchronization and Anti-Synchronization of
Variable-Order Fractional Discrete-Time Chen–Rossler Chaotic
Systems Using Variable-Order Fractional Discrete-Time
PID Control

Joel Perez Padron 1,* , Jose Paz Perez 1 , José Javier Pérez Díaz 2 and Atilano Martinez Huerta 1

����������
�������

Citation: Padron, J.P.; Perez, J.P.;

Pérez Díaz, J.J.; Martinez Huerta, A.

Time-Delay Synchronization and

Anti-Synchronization of

Variable-Order Fractional

Discrete-Time Chen–Rossler Chaotic

Systems Using Variable-Order

Fractional Discrete-Time PID Control.

Mathematics 2021, 9, 2149. https://

doi.org/10.3390/math9172149

Academic Editor: Cristina I. Muresan

Received: 9 June 2021

Accepted: 23 August 2021

Published: 3 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 The Dynamical Systems Group, Department of Physical and Mathematical Sciences,
Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, NL, Mexico;
josepazp@gmail.com (J.P.P.); atilano.martinezhrt@uanl.edu.mx (A.M.H.)

2 Department of Mechanical and Electrical Engineering, Universidad Autónoma de Nuevo León,
San Nicolás de los Garza 66451, NL, Mexico; javiersub20@gmail.com

* Correspondence: joel.perezpd@uanl.edu.mx

Abstract: In this research paper, we solve the problem of synchronization and anti-synchronization
of chaotic systems described by discrete and time-delayed variable fractional-order differential
equations. To guarantee the synchronization and anti-synchronization, we use the well-known PID
(Proportional-Integral-Derivative) control theory and the Lyapunov–Krasovskii stability theory for
discrete systems of a variable fractional order. We illustrate the results obtained through simulation
with examples, in which it can be seen that our results are satisfactory, thus achieving synchronization
and anti-synchronization of chaotic systems of a variable fractional order with discrete time delay.

Keywords: variable-order fractional-discrete time systems; synchronization and anti-synchronization;
Lyapunov–Krasovskii stability; fractional-order Caputo derivative; time-delay fractional-discrete
systems; fractional-order discrete time PID control

1. Introduction

We present in this research paper the solution to the problem of synchronization [1]
and anti-synchronization [2] of discrete chaotic systems described by systems of differential
equations of a variable fractional order [3] with time delay [4]. This analysis is carried
out for nonlinear systems with the Caputo derivative for systems of a variable fractional
order [3].

System dynamics is a branch of mathematics that studies the performance of physical
phenomena in time, which are mathematically modeled by means of differential equations
or finite differences, depending on whether the system is in continuous or discrete time,
respectively.

In 1963, Lorentz, studying climate behavior, proposed a mathematical model that bears
his name, the Lorentz chaotic attractor, which is sensitive to initial conditions and variations
in its parameters. The climate system has drastic behavioral changes, so predicting the
climate with this mathematical model was impossible. Currently, there are various chaotic
systems, such as Chua, Chen, Rossler, Duffing, Lu, and Bhalekar−Gejji attractors, that have
been extensively studied.

For example, in the pioneering works of Pecora and Carroll, they synchronized two
identical chaotic attractors with different initial conditions for the first time. At present,
chaotic systems have attracted many researchers, and the results obtained have a wide
range of applications, for example, in encryption, synchronization, anti-synchronization,
and secure information transfer through electronic means. Lately, the study of chaotic
systems described by first-order differential equations has become generalized to systems
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of differential equations of a variable fractional order, discrete with time delay, which is
our case study, and the systems are not the same. One is Chen’s chaotic system, which we
refer to as the master system, a term widely used in synchronization, and the other is the
Rossler system, which we refer to as the slave system.

In this paper, we refer to the master–slave system, and even though the results obtained
are for these two systems, the methodology can be used for other nonlinear discrete time
systems of a variable fractional order with time delay in the Caputo sense.

In this investigation, the Rossler system is forced to follow, or synchronize with, and
anti-synchronize with the chaotic Chen system. Both systems are described, as mentioned
above, by means of differential equations with a discrete and variable fractional order with
time delay. Synchronization and anti-synchronization are obtained by discrete fractional
PID control laws [5], and using the stability theory by Lyapunov–Krasovskii [6], as can be
seen in the illustrations, the results are satisfactory and the analytical results agree with the
results obtained by means of simulation via Simulink and MATLAB.

In this paper, we do not discretize the systems; we work with the nonlinear system,
under the conditions indicated by variable fractional order [7] discrete-time nonlinear
systems [8].

This paper is organized as follows: In Section 2, the problem of synchronization of
the aforementioned systems is raised. In Section 3, the problem of anti-synchronization of
the systems is raised. In Sections 4 and 5, the synchronization and anti-synchronization
of the chaotic systems are analyzed, respectively, and control laws are obtained using the
Lyapunov–Krasovskii stability analysis and a fractional order discrete PID control law. In
Section 4, examples of the synchronization of the Chen chaotic systems (master) and the
Rossler chaotic system (slave) are presented, with simulations carried out in Simulink and
MATLAB. In Section 5, examples of anti-synchronization of the Chen and Rossler systems
are presented, with simulations carried out in Simulink and MATLAB.

2. Statement of the Problem for Time-Delay Synchronization of a Variable-Order
Fractional Discrete-Time Chaotic System

In this section, we present the problem of synchronization between two chaotic
systems, and in Section 4, we solve the problem of synchronization of the system of Chen,
the master system, which is described by the following:

∇αi x(k + 1) = [Pxm + f (xm)]∆, where P =

 −35 35 0
−7 28 0
0 0 −3

; Xm = (x1, x2, x3)
T

and f (xm) = (0,−x1x3, x1x2)
T .

Rossler’s system is considered the slave system, and the equations are in the form of a
time-delayed discrete variable fractional order, as follows:

∇αi y(k + 1) = [Qys(t− τ) + g(ys(t− τ)) + U]∆, where Q =

 0 −1 −1
1 0.2 0
0 0 −5.7

 ;

Ys(t− τ) = (y1(t− τ) , y2 (t− τ), y3(t− τ))T and g(Ys) = (0, 0, 0.2 + y1y2)
T , and τ > 0.

If we consider that variable-order fractional derivatives are variables with constant
values [9,10], a chaotic system as a drive system having state vector Xm ∈ Rn and P ∈ Rnxn,
with n = 3, is the master system matrix, is given by the following:

∇αi x(k + 1) = f (x(k))− x(k)
Xm(k + 1)− Xm(k) = [P(Xm) + f (Xm)]∆

(1)

If we consider another chaotic system as a slave system having state vector Ys ∈ Rn

and Q ∈ Rnxn, n = 3, the slave system matrix is given as follows:

∇αi y(k + 1) = g(y(k))− y(k)
Ys(k + 1)−Ys(k) = [Q(Ys(t− τ)) + g(Ys(t− τ)) + U]∆

(2)
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where g is the nonlinear part of the slave system, as in (11), and U is a nonlinear active
controller added in (2) for the synchronization action. Synchronization error e ∈ Rn

between Xm and Ys is defined as:
e = Ys − Xm (3)

Substituting (1) and (2) in the dynamics of the synchronization error (3), we obtain the
following:

∇αi e(k + 1) = f (e(k))− e(k)
∇αi e = ∇αi Ys −∇αi Xm

[Ys(k + 1)−Ys(k) ]− [Xm(k + 1)− Xm(k)] = {[Q(Ys(t− τ)) + g(Ys(t− τ)) + U]− [ P(Xm) + f (Xm)]}∆
(4)

Therefore, the synchronization problem is to determine the nonlinear controller U, so
that:

lim
t→∞
‖ e(t) ‖= 0 (5)

To demonstrate the above, we consider a positive definite Lyapunov function as
follows:

V(e) =
1
2

n

∑
k=1

e2
k (6)

where ek is the kth error of the state, and our objective is to determine a control action U,
such that the Lyapunov–Krasovskii derivative ∆(V(e)) < 0 is a negative definite, by which
it can be guaranteed that the synchronization error tends to zero when t tends to infinity,
and the systems are therefore globally asymptotically synchronized.

We use the derivative function, given in definition 2.1.3 of Leithold’s The Calculus 7,
seventh edition, as follows:.

f = f′(x) = lim
∆x→0

f (x+∆x)− f (x)
∆x , if this limit exists.

Assuming that the first partial time derivative of ek exists, then

∆(V(ek)) =
n
∑

k=1

1
2 lim

∆→0

(ek+∆)2−ek
2

∆ =

∑n
k=1

[
1
2 lim

∆→0

ek
2+2ek(∆)+(∆)2−ek

2

∆

]
=

∑n
k=1

[
1
2 lim

∆→0

2ek(∆)+(∆)2

∆

]
Adding and subtracting ek, we have

∆(V(ek)) =

∑n
k=1

[
1
2 lim

∆→0

2ek[(ek+(∆)−ek]+(∆)2

∆

]
∆(V(ek)) =

∑n
k=1

[
2ek
2 lim

∆→0

[(ek+(∆))−ek]
∆

]
+

∑n
k=1

[
lim
∆→0

[∆2]
∆

]
= ∑n

k=1 ekėk

For our purpose, in this paper, we use the next inequality widely used in fractional
order control systems, as follows:

1
2

C
t0

Dα
t ek

2(t) ≤ e(t)C
t0

Dα
t e(t) (7)

∀ α ∈ (0, 1) (see [8,11,12]).
We find U, such that ∆(V(ek)) < 0 is negative definite, and as V(e, t)→ ∞ as

e(t)→ ∞ , the error is globally asymptotically stable. The drive and response system
states are globally asymptotically synchronized.
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In the next section, the anti-synchronization problem for the chaotic system is dis-
cussed.

3. Problem Statement for Time-Delay Anti-Synchronization of a Variable-Order
Fractional Discrete-Time Chaotic System

In this section, we denote the anti-synchronization error of the aforementioned systems
by eas ∈ Rn, and in our case, n = 3, and in Section 5, we solve the problem of anti-
synchronization. Between states Xm and Ys, this error is defined for the system (1) and
response system (2) states by the following:

eas = Ys(t− τ) + Xm (8)

Substituting (1) and (2) in the dynamics of the anti-synchronization error (8), we obtain
the following:

∇αi x(k + 1) = f (x(k))− x(k)
Xm(k + 1)− Xm(k) = [P(Xm) + f (Xm)]∆

∇αi y(k + 1) = f (y(k))− y(k)
Ys(k + 1)−Ys(k) = [Q(Ys(t− τ)) + g(Ys(t− τ)) + U]∆

From (8), we get the fractional variable order derivative:

∇αi eas = ∇αi Ys(t− τ) +∇αi Xm
[Ys(k + 1)−Ys(k) ] + [Xm(k + 1)− Xm(k)] =

{[Q(Ys(t− τ)) + g(Y(t− τ)s) + U] + [ P(Xm) + f (Xm)]}∆
(9)

The anti-synchronization problem is to determine the nonlinear control U that satisfies
lim
t→∞
‖ e(t) ‖= 0, ∀ eas(t) ∈ R3.

To achieve the goal that the anti-synchronization error tends to zero, we define the
following positive definite Lyapunov–Krasovskii function:

V(eas) =
1
2

n

∑
k=1

e2
ask

With the assumption that the parameters of drive and response systems are known
and the states are measurable, the problem is to find U, such that the derivative of V(eas)
exists and will be a negative definite. Using the inequality (7), we have the following:

∆(V(eas)) =

[
n

∑
k=1

eask
.
eask

]
< 0

We find U, such that ∆(V(eas)) < 0 is negative definite, and as V(eas, t)→ ∞ as
eas(t)→ ∞ , then the error is globally asymptotically stable. The drive and response system
states are globally asymptotically anti-synchronized.

In the next section we determine the control law, U, which is obtained by means of
the Lyapunov–Krasovskii function, as previously defined.
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4. Synchronization of Time-Delay Variable-Order Fractional Discrete-Time Chen and
Rossler Chaotic Systems

In this section, we solve the problem of synchronizing the discrete-time Chen and
Rossler systems considered as master and slave, respectively. The discrete-time Chen
system dynamics are given as follows:

∇αi x(k + 1) = f (x(k))− x(k),
αi = 1, 2, 3

α1 = 0.9, α2 = 0.8, α3 = 0.7
x1(k + 1)− x1(k) = [35(x2 − x1)]∆

x2(k + 1)− x2(k) = (−7x1 − x1x3 + 28x2)∆
x3(k + 1)− x3(k) = (−3x3 + x1x2)∆

(10)

where x1, x2, and x3 are the states (10). The phase portrait of the chaotic Chen system is
given in Figure 1.
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The time-delay discrete-time chaotic Rossler system is chosen as the slave system. The
dynamics of this system are given as follows:

∇αi y(k + 1) = f (y(k))− y(k),
αi = 1, 2, 3

α1 = 0.9, α2 = 0.8, α3 = 0.7

y1(k + 1)− y1(k) =
[(−y2(t− τ)− y3(t− τ) + P1 I1D1 + u1)]∆

y2(k + 1)− y2(k) =
[(y1(t− τ) + 0.2y2(t− τ)) + P2 I2D2 + u2]∆

y3(k + 1)− y3(k) =[
0.2− 5.7y3(t− τ) + y1(t− τ)y3(t− τ) + P3 I3D3 + u3

]
∆

(11)

where y1, y2, and y3 are the states of (11). The phase portait of system (11) with ui = 0,
and Pi IiDi = 0, ∀ i is given in Figure 2.
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The synchronization error e ∈ R3 is defined as follows:

ei = yi(t− τ)− xi , i = 1, 2, 3 (12)

The error dynamics equations are obtained as follows:

∇αi e(k + 1) = f (e(k))− e(k),
α1 = 1, 2, 3

αi = 0.9, α2 = 0.8, α3 = 0.7

In this paper, we use the discrete-time fractional-order PID controller [13], where
Pi IiDi, i = 1, 2, 3 for each control ui, i = 1, 2, 3:

u1, u2, u3

PID = Kp + Kd ∑M
k=0 fk(µ)z−k + Ki

1+z−1

1+z−1 ∑M
k=0 fk(1− λ)z−k

and Kp = kp, Kd = kdαµ, Ki = kiα
−λ

e1(k + 1)− e1(k) =
y1(k) + [(−y2(t− τ)− y3(t− τ) + u1 + P1 I1D1)]∆− {x1(k) + [35(x2 − x1)]∆} =

[−(y1(t− τ)− x1) + (y1(t− τ)− x1)− y2(t− τ)− y3(t− τ)− 35x2 + 35x1 + u1 + P1 I1D1]∆+
y1(k)− x1(k) =

[−e1 + (y1(t− τ)− x1)− y2(t− τ)− y3(t− τ)− 35x2 + 35x1 + u1 + P1 I1D1 ]∆ + y1(k)− x1(k)

(13)

e2(k + 1)− e2(k) =
y2(k) + [y1(t− τ) + 0.2y2(t− τ) + P2 I2D2 + u2]∆− {x2(k) + [−7x1 − x1x3 + 28x2]∆} =

{−(y2(t− τ)− x2) + (y2(t− τ)− x2) + [y1(t− τ) + 0.2y2(t− τ) + P2 I2D2 + u2 + 7x1 + x1x3 − 28x2]}∆+
y2(k)− x2(k) =

[−e2 + y2(t− τ)− x2 + y1(t− τ) + 0.2y2(t− τ) + +P2 I2D2 + u2 + 7x1 + x1x3 − 28x2]∆ + y2(k)− x2(k)

e3(k + 1)− e3(k) =
y3(k) + [0.2− 5.7y3(t− τ) + y1(t− τ)y3(t− τ) + P3 I3D3 + u3]∆− [x3(k) + (−3x3 + x1x2)∆] =

{−(y3(t− τ)− x3) + (y3(t− τ)− x3)+
0.2− 5.7y3(t− τ) + y1(t− τ)y3(t− τ) + P3 I3D3 + u3 + 3x3 − x1x2}∆ + y3(k)− x3(k) =

−e3 + (y3(t− τ)− x3)+
0.2− 5.7y3(t− τ) + y1(t− τ)y3(t− τ) + P3 I3D3 + u3 + 3x3 − x1x2}∆ + y3(k)− x3(k)

We need to find the nonlinear active control law for ui, ∀ i, in such a manner that the
error dynamics of (13) are globally asymptotically stable. Let
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u1 = (−y1(t− τ) + x1) + y2(t− τ) + y3(t− τ) + 35x2 − 35x1 − P1 I1D1
u2 = −y2(t− τ) + x2 − y1(t− τ)− 0.2y2(t− τ)− P2 I2D2 − 7x1 − x1x3 + 28x2

u3 = (−y3(t− τ) + x3)− 0.2 + 5.7y3(t− τ)− y1(t− τ)y3(t− τ)− P3 I3D3 − 3x3 + x1x2

(14)

Substituting the controller dynamics (14) into the error dynamics (13), we have error
dynamics as follows:

e1(k + 1)− e1(k) = [−e1]∆ + y1(k)− x1(k)
e2(k + 1)− e2(k) = [−e2]∆ + y2(k)− x2(k)
e3(k + 1)− e3(k) = [−e3]∆ + y3(k)− x3(k)

e1(k + 1)− e1(k) = [−e1]∆ + e1
e2(k + 1)− e2(k) = [−e2]∆ + e2
e3(k + 1)− e3(k) = [−e3]∆ + e3

(15)

The synchronization problem is used to determine the nonlinear controller U so that:

lim
t→∞
‖ e(t) ‖ = 0

To show that the previous limit is satisfied, we make use of the positive definite
Lyapunov–Krasovskii function as follows [14–16]:

V(e) =
1
2

(
e2

1 + e2
2 + e2

3

)
+
∫ t

t−τ
g(x(ζ))dζ (16)

The Lyapunov–Krasovskii function is defined for systems that are continuous in
time, and for discrete systems, as in our case study, the integral in (16) is replaced by the
following summation, and the function thus obtained is called the Lyapunov–Krasovskii
function for discrete systems in time:

V1(et) =
t−1

∑
i=t−h

eT(i)Qe(i)

Here, we use the known inequality in fractional order systems as follows:

1
2

C
t0

Dα
t ek

2(t) ≤ e(t)C
t0

Dα
t e(t), ∀ α ∈ (0, 1)

Assuming first-order partial derivatives of (16) exist, using the procedure in (7), we
have

∆(V(e)) = e1
.
e1 + e2

.
e2 + e3

.
e3 + eT(t)Qe(t)− eT(t− h)Qe(t− h) (17)

Substituting (15) into (17), we obtain

∆(V(e)) = −e2
1∆ + e2

1 − e2
2∆ + e2

2 − e2
3∆ + e2

3 + eT(t)Qe(t)− eT(t− h)Qe(t− h)
∆(V(e)) = −e2

1∆+ ‖ e1 ‖ −e2
2∆+ ‖ e2 ‖ −e2

3∆+ ‖ e3 ‖ +
‖ e(t− h) ‖

(18)

∆(V(e)) = −e2
1∆− e2

2∆− e2
3∆ < 0

)
where ∆(V(e)) is a negative definite. For the Lyapunov stability theory, the error dynamics
(15) are globally asymptotically stable and will converge to zero as t→ ∞ with the control
law in (14). The Chen (10) and Rossler (11) chaotic systems are globally asymptotically
synchronized for any initial condition.

The analytical results obtained through the examples developed by simulation are
illustrated below for sinchronization.
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The Chen and Rossler systems were simulated in Simulink in MATLAB using the
control law U (14) for synchronization. The initial conditions for these systems are x(0) =
[−10, 0, 37]T and y(0) = [0.1, 0, 0]T , and similarly for the simulation.

The time evolution of the states of the Chen and Rossler systems for synchronization
with time delayed is shown in Figures 3–5.
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5. Anti-Synchronization of Variable-Order Fractional Discrete-Time Chen and Rossler
Chaotic Systems

In this section, we solve the problem of anti-synchronization of the discrete-time Chen
and Rossler systems, considered as master and slave, respectively. The discrete-time Chen
system dynamics are given as follows:

The discrete-time anti-synchronization error eas ∈ R3 is defined as follows:

easi = Ys + Xm, i = 1, 2, 3 (19)

From (1), (2), and (19), the dynamics of the error are as follows:

.
eas =

.
Ys +

.
Xm =

[Ys(k + 1)−Ys(k) ] + [Xm(k + 1)− Xm(k)] =
{[Q(Ys) + g(Ys) + U] + [ P(Xm) + f (Xm)]}∆

The anti-synchronization problem is used to determine the nonlinear control U that
satisfies lim

t→∞
‖ e(t) ‖= 0, ∀ easi (t) ∈ Rn.

Consider a positive definite Lyapunov function, as follows:

V(easi) =
1
2

n

∑
k=1

e2
ask

and using the procedure in (7), we have the following:

∆(V(eas)) = [
n
∑

k=1
easkėask]

1
2

C
t0

Dα
t eask

2(t) ≤ e(t)C
t0

Dα
t eask

2(t), ∀ α ∈ (0, 1),

With V(eas)→ ∞ as ‖ eas(t) ‖→ ∞ , eas is globally asymptotically stable, and the
states and response systems are globally asymptotically synchronized.

The discrete-time Chen and Rossler systems are considered as master and slave,
respectively. The discrete-time Chen system dynamics are given as follows:

∇αi x(k + 1) = f (x(k))− x(k),
αi = 1, 2, 3

α1 = 0.9, α2 = 0.8, α3 = 0.7

x1(k + 1)− x1(k) = [35(x2 − x1)]∆
x2(k + 1)− x2(k) = (−7x1 − x1x3 + 28x2)∆

x3(k + 1)− x3(k) = (−3x3 + x1x2)∆

where x1, x2, and x3 are the states (10).
The discrete-time Rossler chaotic system is chosen as the slave system. The dynamics

of this system are given as follows:

∇αi y(k + 1) = f (y(k))− y(k),
αi = 1, 2, 3

α1 = 0.9, α2 = 0.8, α3 = 0.7

y1(k + 1)− y1(k) = [(−y2(t− τ)− y3(t− τ) + P1 I1D1 + u1)]∆
y2(k + 1)− y2(k) = [(y1(t− τ) + 0.2y2(t− τ)) + P2 I2D2 + u2]∆

y3(k + 1)− y3(k) = [0.2− 5.7y3(t− τ) + y1(t− τ)y3(t− τ) + P3 I3D3 + u3]∆

where y1, y2, and y3 are the states of the system (11). The phase plane for system (11) with
ui = 0 and Pi IiDi = 0 ∀ i, where u1, u2, and u3 are the active nonlinear controllers to be
designed.
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The anti-synchronization error e ∈ R3 is defined as follows:

easi = yi(t− τ) + ui + xi , i = 1, 2, 3

The error dynamics equations are obtained as follows:

∇αi easi (k + 1) = f (easi (k))− easi (k),
αi = 1, 2, 3

α1 = 0.9, α2 = 0.8, α3 = 0.7

eas1(k + 1)− eas1(k) = y1(k) + [(−y2(t− τ)− y3(t− τ) + u1 + P1 I1D1)]∆
+{x1(k) + [35(x2 − x1)]∆} =

[−(y1(t− τ) + x1) + (y1(t− τ) + x1)− y2(t− τ)− y3(t− τ) + 35x2 − 35x1 + u1 + P1 I1D1]∆+
y1(k) + x1(k) =

[−e1 + (y1(t− τ) + x1)− y2(t− τ)− y3(t− τ) + 35x2 − 35x1 + u1 + P1 I1D1 ]∆+
y1(k) + x1(k)

(20)

eas2(k + 1)− eas2(k) = y2(k) + [y1(t− τ) + 0.2y2(t− τ) + P2 I2D2 + u2]∆
+{x2(k) + [−7x1 − x1x3 + 28x2]∆} =

{−(y2(t− τ) + x2)+(y2(t− τ) + x2) + [y1(t− τ) + 0.2y2(t− τ) + P2 I2D2 + u2 − 7x1 − x1x3 + 28x2]}∆+
y2(k) + x2(k) =

[−e2 + y2(t− τ) + x2 + y1(t− τ) + 0.2y2(t− τ) + +P2 I2D2 + u2 − 7x1 − x1x3 + 28x2]∆+
y2(k) + x2(k)

eas3(k + 1)− eas3(k) =
y3(k) + [0.2− 5.7y3(t− τ) + y1(t− τ)y3(t− τ) + P3 I3D3 + u3]∆ + [x3(k) + (−3x3 + x1x2)∆] =

{−(y3(t− τ) + x3) + (y3(t− τ) + x3)+ 0.2− 5.7y3(t− τ) + y1(t− τ)y3(t− τ) + P3 I3D3 + u3 − 3x3 + x1x2}∆ + y3(k) + x3(k) =
[−e3 + (y3(t− τ) + x3)+

0.2− 5.7y3(t− τ) + y1(t− τ)y3(t− τ) + P3 I3D3 + u3 − 3x3 + x1x2}∆+
y3(k) + x3(k)

We need to find the nonlinear active control law for ui, ∀ i, such that the error dynamics
of (13) are globally asymptotically stable. Let

u1 = (−y1(t− τ)− x1) + y2(t− τ) + y3(t− τ)− 35x2 + 35x1 + u1 − P1 I1D1
u2 = −y2(t− τ)− x2 − y1(t− τ)− .2y2(t− τ)− P2 I2D2 + 7x1 + x1x3 − 28x2

u3 = (−y3(t− τ)− x3)− 0.2 + 5.7y3(t− τ)− y1(t− τ)y3(t− τ)− P3 I3D3 + 3x3 − x1x2}
(21)

Substituting the controller dynamics (21) into the error dynamics (20), we have error
dynamics, as follows:

eas1(k + 1)− eas1(k) = [−eas1 ]∆ + y1(k) + x1(k)
eas2(k + 1)− eas2(k) = [−eas2 ]∆ + y2(k) + x2(k)
eas3(k + 1)− eas3(k) = [−eas3 ]∆ + y3(k) + x3(k)

eas1(k + 1)− eas1(k) = [−eas1 ]∆ + eas1

eas2(k + 1)− eas2(k) = [−eas2 ]∆ + eas2

eas3(k + 1)− eas3(k) = [−eas3 ]∆ + eas3

(22)

The synchronization problem is to determine the nonlinear controller U, so that:

lim
t→∞
‖ e(t) ‖= 0

Considering a positive definite Lyapunov function, as follows [14–16]:

V(eas) =
1
2

(
e2

as1
+ e2

as2
+ e2

as3

)
+
∫ t

t−τ
g(x(ζ))dζ
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The Lyapunov–Krasovskii function is defined for systems that are continuous in time,
and for discrete systems, as in our case study, the integral is replaced by the following
summation, and the function thus obtained is called the Lyapunov–Krasovskii function for
discrete systems in time.

V1(et) =
t−1
∑

i=t−h
eT(i)Qe(i)

V(eas) =
1
2
(
e2

as1
+ e2

as2
+ e2

as3

)
+

t−1
∑

i=t−h
eT(i)Qe(i)

(23)

Assuming first-order partial derivatives of (23) exist, we use the procedure in (7), as
follows:

∆(V(eas1)) = eas1

.
eas1 + eas2

.
eas2 + eas3

.
eas3 + eT(t)Qe(t)− eT(t− h)Qe(t− h) (24)

Substituting (22) into (24), we obtain

∆(V(eas)) = −e2
as1

∆ + e2
as1
− e2

as2
∆ + e2

as2
− e2

as3
∆ + e2

as3
+ eT(t)Qe(t)− eT(t− h)Qe(t− h)

∆(V(eas)) = −e2
as1

∆+ ‖ eas2 ‖ −e2
as3

∆+ ‖ eas3 ‖ −e2
as3

∆+ ‖ eas3 ‖ + ‖ eas3 ‖ +
‖ e(t− h)

‖ ∆(V(eas)) = −e2
as1

∆− e2
as2

∆− e2
as3

∆

(25)

where ∆(V(e)) is a negative definite. For the Lyapunov stability theory, the error dynamics
(22) are globally asymptotically stable and the error dynamics will converge to zero as
t→ ∞ with the control law in (21). The Chen (10) and Rossler (11) chaotic systems are
globally asymptotically anti-synchronized for any initial condition, and with this analysis,
we have the next theorem.

The analytical results obtained through examples developed by simulation are illus-
trated below for anti-synchronization.

The Chen and Rossler systems were simulated in Simulink in MATLAB using the
control law U (21) for anti-synchronization.

The initial conditions for these systems are x(0) = [−10, 0, 37]T and y(0) = [0.1, 0, 0]T ,
and similarly for the simulation.

The evolution over the time of the states of the Chen and Rossler systems for anti-
synchronization is shown in Figures 7–9.

For these simulations, we used ∆ = 0.001 and τ = 20 s.
Anti-synchronization errors of states are shown in Figure 10.

Theorem 1. The synchronization and anti-sinchronization problem of discrete fractional-order
chaotic systems in time is solved by means of control laws (14) and (21), which are obtained using
the stability analysis through the Lyapunov–Krasovskii and PID control laws for fractional-order
systems, so we ensure that ∆(V(e)) < 0 ∀e 6= 0, and then lim

k→∞
e(k) = 0, ∆(V(eas)) < 0

∀ eas 6= 0, and then lim
k→∞

eas(k) = 0; therefore, the synchronization and anti-synchronization

problem is solved.
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6. Conclusions

In this research work, a solution is given to the problem of the synchronization and
anti-synchronization of chaotic systems described by differential equations of a variable
order derivative and discrete time with a time delay. The problem is solved by means of a
control law, which is deduced by the well-known discrete Lyapunov–Krasovskii stability
analysis and discrete PID control laws, as can be seen in the simulations in Sections 4 and 5.
The analytical results obtained are illustrated by simulations; as can be seen, the results are
satisfactory. These simulations were carried out in the Simulink-MATLAB environment.

Remarks:
Although the study that was carried out was for Chen and Rossler chaotic systems of

a variable fractional order with time delay, the methodology can be used for other chaotic
or hyperchaotic systems, or other types of systems.
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