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Abstract: In this paper, we consider the problem of identity document recognition in images captured
with a mobile device camera. A high level of projective distortion leads to poor quality of the restored
text images and, hence, to unreliable recognition results. We propose a novel, theoretically based
method for estimating the projective distortion level at a restored image point. On this basis, we
suggest a new method of binary quality estimation of projectively restored field images. The method
analyzes the projective homography only and does not depend on the image size. The text font and
height of an evaluated field are assumed to be predefined in the document template. This information
is used to estimate the maximum level of distortion acceptable for recognition. The method was
tested on a dataset of synthetically distorted field images. Synthetic images were created based
on document template images from the publicly available dataset MIDV-2019. In the experiments,
the method shows stable predictive values for different strings of one font and height. When used
as a pre-recognition rejection method, it demonstrates a positive predictive value of 86.7% and a
negative predictive value of 64.1% on the synthetic dataset. A comparison with other geometric
quality assessment methods shows the superiority of our approach.

Keywords: projective distortion; image quality assessment; document analysis; text recognition

1. Introduction

The object recognition problem, which has been extensively studied in past decades,
has a wide range of real applications. The accuracy of recognition systems is always the
first priority. However, the error cost largely depends on the problem’s specifics or on the
particular application of the developed system. In many areas, such as identity verifica-
tion [1–3], self-driving vehicles [4,5], and industrial diagnostics [6,7], incorrect recognition
can cause financial loss or even harmful health outcomes. For this reason, the prediction
of recognition reliability is vital for such systems. Obtaining an uncertain result should
lead to the rejection of the image processing output or the transfer of control back to the
user to prevent unfortunate situations. Therefore, modern recognition systems include
different types of reliability assessment modules. There are three main approaches to relia-
bility evaluation: recognition confidence analysis, pixel-based image quality assessment,
and geometric image quality assessment. These approaches work at different recognition
stages and, of course, can be applied together.

The first approach involves the estimation of the recognition confidence provided
by the recognition module. Such systems aggregate the confidences of all recognized
objects, such as text lines, and decide to accept or reject the recognition result depending
on the error cost [8]. However, these methods have several problems. First, recognition

Mathematics 2021, 9, 2155. https://doi.org/10.3390/math9172155 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5560-7668
https://doi.org/10.3390/math9172155
https://doi.org/10.3390/math9172155
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9172155
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9172155?type=check_update&version=1


Mathematics 2021, 9, 2155 2 of 22

neural networks can be unstable to changes in input images. An alteration in several
pixels may lead to a change in the recognition result [9,10] and, thus, different confidences.
Additionally, neural networks tend to be overconfident, i.e., return high confidences for
incorrectly recognized images [11]. Moreover, this approach requires the entire recognition
workflow to be performed for all objects/text fields or other data structures found, even if
they are incorrectly segmented. Thus, it leads to unnecessary time spent on recognition
with a high possibility of an incorrect result and, therefore, efficiency degradation, which
can be a problem for mobile devices and embedded systems.

The other two approaches use image quality assessment because poor image quality is
considered one of the most important sources of unstable recognition quality. Many works
show a correlation between different image distortions and recognition accuracy [12–14].
These distortions can occur for many reasons, such as compression, transmission artifacts,
or uncontrolled capturing conditions, with the possible presence of highlights, motion blur,
defocus, or geometric distortions [15]. Quality assessment methods can be divided into
two groups: pixel-based, which analyzes the image’s pixel values, and geometric, which
does not.

The main focus of recent research has been on pixel-based methods. These meth-
ods consider distortions such as blur, digital noise, compression, and transmission ar-
tifacts [16,17], given that these distortions are common in the majority of recognition
system application fields. In addition, methods exist for evaluating a specular highlight
saliency map by utilizing deep learning [18], an unnormalized form of Wiener entropy [19],
and other approaches. The authors of [20] presented a detection method for holographic
elements, which may significantly decrease text recognition accuracy.

Such methods can easily be incorporated into recognition systems. For example,
in [21,22], the authors present a model of an optical recognition system with embedded
image quality assessment and feedback modules. They rejected images of poor quality
before recognition. This approach demonstrates an increase in recognition accuracy and
reliability. Moreover, the authors showed that, in the case of recognition in a video stream,
these modules provide new possibilities, such as selecting the best quality frames for
further recognition or rejection of the worst frames. Considering the problem of document
recognition, the assessment of text field images allows for a reevaluation of the confidence
of the recognized text. The confidences obtained for one field in different frames can be
further used as weights in the combination method for text field recognition in a video
stream [23,24]. Pixel-based quality assessment methods need to analyze the whole input
image, which can be time-consuming (especially if deep learning is used) and may be a
problem for real-time recognition systems.

Geometric quality assessment methods analyze the geometric distortion of an object
in an image. In the case of document recognition in images taken with a mobile device
camera, the most common distortion is a projective transform of a plane. A user trying
to avoid highlights may take a photo with a high projective distortion of the document.
In this case, document text regions become poorly recognizable (Figure 1). Geometric
quality assessment methods allow such regions to be rejected without analyzing their pixel
intensities. This approach is fast and perfectly suited for the document recognition problem.
However, there is a lack of research considering this subject.

In [25], the authors consider the recognition of rectangular documents. They obtained
document quadrangles and checked three conditions: (1) at least one pair of opposed quad-
rangle edges is parallel, (2) the average difference in angles between each pair of opposed
angles is relatively small, and (3) the average perpendicularity of the four vertices is less
than 25◦. In [26], the criterion includes the following conditions: (1) the ratio of a document
quadrangle area to the area of the whole image must exceed a threshold, (2) the aspect ratio
for the document quadrangle must fit some predefined interval, and (3) the angles of the
document quadrangle must be close to 90◦. Unfortunately, the authors do not report the
thresholds and intervals used, so it is impossible to evaluate them experimentally. These
empirical methods are reasonable. However, there is no theoretical proof or experimental
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evaluation of their connection to the level of projective distortion and recognition accuracy.
For example, considering the relative area of a recognized object, images restored from one
area may have significantly different quality (Figure 2).

Figure 1. An example of document projective distortion (a) and the resulting quality of the extracted
text regions (b).

Figure 2. Restoration results of (a) a slightly projectively distorted image and (b) a highly distorted
image of equal area. Restoration was conducted with bilinear interpolation.

In this paper, we propose a novel, no-reference method for the quality assessment of
images restored from projectively distorted sources. The image quality is considered in
terms of the probability of correct text recognition. The proposed method was tested exper-
imentally on synthetic data created from the publicly available dataset MIDV-2019 [27].

2. Document Image Quality Assessment Problem Statement

We consider the problem of document recognition in images obtained with a mobile
camera. We use the pinhole camera model (Figure 3), so the camera is assumed to have
no optical aberrations. Given that the document is a flat rectangular object, the document
image is affected by projective distortion [28], and the document boundary is a quadrangle.
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Figure 3. The captured image of the rectangular document in a pinhole camera model.

Document recognition systems commonly consist of several submodules: document
localization in a source image, segmentation of required zones such as text and photo fields,
and field image restoration and recognition (Figure 4). Considering the field segmenta-
tion step, the majority of the systems utilize document models. There are three general
classes of models: templates, flexible forms, and end-to-end models. Templates define
the strictest constraints on the location of each zone and are most commonly used for
identity documents. In [25,29,30], document templates are used for the localization and
classification of document images, but they are also helpful in field segmentation [31].
Flexible form models are based on text segmentation and recognition result analysis and
describe documents with soft restrictions on their structure. This model may contain text
feature points [32] or attributed relational graphs [33] as a structural representation of a
document. End-to-end models involve the simultaneous segmentation and recognition of
text field regions [34] and may not require any document structure.

localization
fields

segmentation
field

restoration
text

recognition

Sojli

Monika

01-01-1980

16-06-2004

Figure 4. The general model of the document recognition system.

We consider identity document recognition systems such as [2] based on the template
description of documents. For many identity documents, the regions of text and photo
fields are fixed, and text fonts and font properties (size, boldness, etc.) for each of them
are known. This information may be inserted into the document template description and
used to further assess field image quality.
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We assume that the results of the field segmentation are provided as a quadrangle
in the source image. According to its coordinates, the field image should be restored and
recognized. The main goal of this paper is to assess the quality of the restored image
in terms of the reliability of recognition before the restoration itself (see Figure 5). If the
quality is insufficient, then the system ceases further processing to prevent false recognition
results. Moreover, the possibility of early rejection decreases the runtime of the system,
as the restoration and recognition are not performed on images of low quality. Based only
on the source field quadrangle and a priori information of its size and fon, the restored
field image can be assessed by relying on known properties of further submodules. We
briefly discuss the submodules below.

The restoration submodule resamples the source image according to the projective
transform, which maps the quadrangle of the field in the source image to the rectangle of a
predefined size in the document model. The resampling process is usually characterized
by interpolation and antialiasing methods. Given that, under a high level of projectivity,
the field image may have an arbitrary small area and consequently may not be recognizable,
in this work, we focus only on the magnification problem when mapping magnifies a source
region. In this particular case, anti-aliasing methods can be excluded, as after magnification,
the restored image cannot contain high frequencies. The most well-known interpolation
methods [35] are the nearest neighbor, bilinear, bicubic, and cubic B-spline methods. For all
of the mentioned interpolation methods, except the nearest-neighbor algorithm, a small
source area causes blur in the restored area, as shown in Figure 2. The images obtained
by nearest-neighbor interpolation have comparatively low quality (see Figure 6), so we
exclude this method from consideration.

The results presented in [21,36] show that the presence of blur in text field images
decreases the quality of recognition. It should be noted that the recognition submodule
may contain a pre-processing step that refines the image using a deblurring method,
for example, [37]. However, its scope is limited, and a level of blurring exists under which
the text field cannot be reliably recognized.

check quad rejected

check quad rejected

check quad restore &
recognize

bad

bad

good

field segmentation field quads
quality

assessment verdict

. . .

Figure 5. The model of the quality assessment submodule.

(a) (b) (c) (d)

Figure 6. Interpolation examples [38]. (a) Nearest pixel, (b) bilinear, (c) B-spline, and (d) bicubic.

Assuming that the image restoration and the text recognition submodules can be
predefined, we can use the given font and size of the field to estimate the maximum local
distortion level that provides stable recognition of any text. We assume that the level can
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be evaluated as a rational value and denote the threshold distortion level as θ ∈ R. In this
work, however, it is more convenient for us to use the inverse value l ∈ R, l =

1
θ

, which
we call the minimum scaling coefficient threshold. It should be noted that this threshold
value is presumed to be evaluated once while developing the recognition system.

Let us denote the source image as Isrc, the segmented field quadrangle, i.e., four points
of its corners in the source image, as F, and the rectangle of the restored image borders,
defined in the document model, as R. We need to estimate whether the quality of the
restored field image Irst is sufficient in terms of reliability for further text recognition.
For this purpose, let us denote the quality assessment function as Q. Q analyzes the
source field quadrangle F, the restored field rectangle R, and the a priori minimum scaling
coefficient threshold l and returns 1 if the image quality allows for reliable recognition and
0 otherwise:

Q(F, R, l) : F ×R×R→ {0, 1}, (1)

where F is the set of all quadrangles lying inside the source image andR is the set of all
possible rectangles. The function Q does not take the restored image itself as an argument.
The evaluation process here is assumed to involve the analysis of a geometric transform
rather than pixel intensities. Therefore, the quality assessment can be conducted before the
use of the restoration submodule (Figure 3).

3. The Models of Distorted Field Image Acquisition and Restoration

First, let us briefly describe the model of projectively distorted text field image acqui-
sition [35]. For simplification, we consider the one-dimensional case. Let us define the
undistorted field image signal as a continuous bounded function I(x):

0 < I(x) < B, x ∈ R, B ∈ R, (2)

where B is the upper bound of I(x).
While being captured with a camera, the signal is distorted with a projective transform

u = H(x):
Ic
src(u) = I(H−1(u)), u ∈ R, (3)

where Ic
src(u) is the continuous projectively distorted signal. Then, the signal Ic

src(u) is
sampled by a function s(u) with a known sampling pitch ∆us to obtain a discrete image
Isrc(k), k ∈ Z:

Id
src(u) = Ic

src(u)s(u),

Isrc(k) = Id
src(k∆us), k ∈ Z,

(4)

where Id
src(u) is the sampled distorted signal defined on R. We consider ideal sampling with

the following:
s(u) = ∑

n∈Z
δ(u− n∆us), (5)

where δ(u) is the Dirac delta function.
The image Isrc(k) is the input of the recognition system. Before the final text recog-

nition, the image should be restored to compensate for the projective distortion. In the
image restoration process, the image is resampled with the inverse of the original projective
transform x = H−1(u). This transformation can be evaluated based on the source field
quadrangle F obtained in the field segmentation step and the rectangle of the restored field
R defined by the template description: R = H−1(F). The resampling model is as follows.
The discrete image Isrc(k) is reconstructed to obtain a continuous signal Ic

src(u) through
convolution with a reconstruction filter r(u):

Ic
src(u) = ∑

k∈Z
Isrc(k)r(u− k∆us), u ∈ R. (6)
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After that, the domain of the continuous signal Ic
src(u) is warped with the projective

transform x = H−1(u):
Ic
rst(x) = Ic

src(H(x)), x ∈ R, (7)

where Ic
rst(x) is the restored continuous signal.

Depending on the mapping function H−1(x), Ic
rst(x) may have arbitrary high fre-

quencies. To conform to the Nyquist rate, the signal should be bandlimited by a prefilter
function h(x, y) that prevents aliasing:

Îc
rst(x) = Ic

rst(x)~ h(x) =
∫
R

Ic
rst(t)h(x− t)dt, (8)

where Îc
rst(x) is the bandlimited restored signal and ~ denotes convolution. Then, the ob-

tained signal is sampled with the same sampling pitch ∆xs = ∆us:

Id
rst(x) = Îc

rst(x)s(x),

Irst(j) = Id
rst(j∆xs), j ∈ Z,

(9)

where Id
rst(x) is the sampled restored signal on R and Irst(j) is the discrete restored signal.

In this paper, we consider only the magnification case, when the source region
is stretched:

|H(x)− H(x + ∆x)| < ∆x (10)

In this scenario, the signal mapping cannot provide high frequencies. Therefore,
the prefilter has little impact on the restored image signal and can be ignored. Then,
the restored image Irst(j) is as follows:

Irst(j) = ∑
k∈Z

Isrc(k)r(H(j∆xs)− k∆us), j ∈ Z. (11)

Let us define the sample pitches as equal to 1: ∆xs = ∆us = 1. For simplicity, we
refer to discrete images Isrc(k) and Irst(j) as Isrc(u) and Irst(x) and specify u, x ∈ Z. Then,
Formula (11) can be rewritten as follows:

Irst(x) = ∑
k∈Z

Isrc(k)r(H(x)− k), x ∈ Z. (12)

The ideal reconstruction filter r(u), u ∈ R, is an ideal low-pass filter sinc = sin πx/πx

according to the cardinal theorem of interpolation [39]. However, in practice, one uses its
approximations with a finite window radius R:

r(u) = 0, |u| ≥ R. (13)

The bilinea, bicubic B-spline, and bicubic reconstruction functions have finite windows
of radii R = 1 and R = 2.

We also assume that the reconstruction function is Lipschitz continuous with con-
stant M:

|r(u)− r(u + ∆u)| < M∆u, M > 0. (14)

Hypothesis 1. The bilinear, bicubic B-spline, and bicubic reconstruction functions (see Figure 7)
are Lipschitz continuous.

Let us consider the bilinear reconstruction function.
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Lemma 1. The bilinear interpolation function rl(u) is Lipschitz continuous (14), where rl(u) is
defined as follows:

rl(u) =

{
1− |u|, |u| < 1,
0, |u| ≥ 1.

(15)

Proof. Let us consider a pair of arbitrary points x, y. Due to the piecewise nature of rl(u),
we have three cases.

Case 1: ∀x, y ∈ (−∞,−1] ∪ [1, ∞)

|rl(x)− rl(y)| = 0 ≤ M|x− y|, ∀M > 0. (16)

Case 2: ∀x, y ∈ (−1, 1)
By the reverse triangle inequality, we can obtain:

|rl(x)− rl(y)| = ||1− |x|| − |1− |y||| ≤ ||x| − |y|| ≤ |x− y|. (17)

Case 3: ∀x ∈ (−1, 1), ∀y ∈ (−∞,−1] ∪ [1, ∞)

|rl(x)− rl(y)| = |1− |x|| = 1− |x| ≤ |y| − |x| ≤ |x− y|. (18)

Hence, the bilinear reconstruction function rl(u) is Lipschitz continuous with the
constant M = 1.

The bicubic B-spline and bicubic reconstruction functions are shown in Figure 7b,c. We
can see that they are continuous and have a bounded value increment and are thus Lipschitz
continuous. The direct proof of Hypothesis 1 falls outside of the scope of this work.

(a) (b) (c)

Figure 7. Reconstruction functions: (a) bilinear, (b) B-spline, and (c) bicubic.

4. The Minimum Scaling Coefficient Assessment at a Restored Image Point

In [21,36], the authors incorporated an estimation of image blur into the algorithms
of a combination of text recognition results in a video stream. Since an unblurred text
image has high contrast in regions corresponding to strokes, they assume that the level of
image blur is inversely related to the sharpness (called focus in the cited papers), which
represents the directional minimum of the highest local contrasts of the image. In these
papers, the blur is caused by defocusing or motion blur and is constant for the whole image.
The sharpness is calculated based on the intensities in the source image. For this purpose,
gradient images are calculated in different directions; for each of them, a 0.95 quantile of
the gradient image is obtained, and their minimum represents the sharpness estimation.

In our case, the blurring distortion of the restored image is caused by projective map-
ping and, hence, is uneven over different points of the image. Let us consider the original
undistorted image I(x) and denote its local contrast in a region between neighboring
sampling points [x̄, x̄ + ∆xs] as L(x̄, ∆xs) : 0 < L(x̄, ∆xs) ≤ B/∆xs:

L(x̄, ∆xs) =
|I(x̄)− I(x̄ + ∆xs)|

∆xs
. (19)
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One can verify whether the restored image is able to provide the expected contrast in
this region. Let us denote the local contrast of the restored image as Lrst(x̄, ∆xs). It can be
calculated as follows:

Lrst(x̄, ∆xs) =
1

∆xs
|Irst(x̄)− Irst(x̄ + ∆xs)|

(12)
=

1
∆xs

∣∣∣∣∣ ∑
k1∈K1

Isrc(k1)r(H(x̄)− k1)−

− ∑
k2∈K2

Isrc(k2)r(H(x̄ + ∆xs)− k2)

∣∣∣∣∣,
(20)

where Irst(x) is the discrete restored signal; Isrc(k) is the discrete distorted signal; and
K1 = |H(x̄)− t1| < R, t1 ∈ Z and K2 = |H(x̄ + ∆xs)− t2| < R, t2 ∈ Z are sets of samples
in the source image that are used for the reconstruction of samples x̄ and x̄ + ∆xs, respectively.

According to (10), the distance between points H(x̄) and H(x̄ + ∆xs) in the source
image is less then its sampling pitch:

|H(x̄)− H(x̄ + ∆xs)| < ∆xs = ∆us (21)

Then, in the worst case, the points H(x̄) and H(x̄ + ∆xs) have the same set of samples
used for reconstruction, i.e., K1 = K2. In that case, the contrast (20) provided by the restored
image can be estimated as follows:

Lrst(x̄, ∆xs) =
1

∆xs
|Irst(x̄)− Irst(x̄ + ∆xs)| =

=
1

∆xs

∣∣∣∣∣ ∑
k1∈K1

Isrc(k1)(r(H(x̄)− k1)− r(H(x̄ + ∆xs)− k1))

∣∣∣∣∣ ≤
≤ 1

∆xs
∑

k1∈K1

Isrc(k1)|r(H(x̄)− k1)− r(H(x̄ + ∆xs)− k1)|
(14)
≤

≤ ∑
k1∈K1

Isrc(k1)
M|H(x̄)− H(x̄ + ∆xs)|

∆xs

(2)
≤ |K1|BM

|H(x̄)− H(x̄ + ∆xs)|
∆xs

,

(22)

where |K1| is the size of set K1.
If the restored local contrast is much lower than the contrast in the original undistorted

image L(x̄, ∆xs), then the restored image edges are highly blurred or even undetectable.
As we can see, the upper bound of the restored image local contrast Lrst(x̄, ∆xs) depends on
the distance between the corresponding points in the source image |H(x̄)− H(x̄ + ∆xs)|.
Thus, the smaller the distance, the higher the level of blur distortion in the considered
region. Then, the ratio of the distance between source points to the sampling pitch can be
used to estimate the maximum achievable sharpness of the restored region. Let us denote
this function as the scaling coefficient s(x̄, ∆x):

s(x̄, ∆xs) =
|H(x̄)− H(x̄ + ∆xs)|

∆xs
(23)

Above, we considered the one-dimensional case; however, the image is a two-dimensional
function. The projective transform of the plane (u, v) = H(x, y) is determined as follows:

u = hx(x, y) =
h0,0x + h0,1y + h0,2

h2,0x + h2,1y + h2,2

v = hy(x, y) =
h1,0x + h1,1y + h1,2

h2,0x + h2,1y + h2,2

, (x, y) ∈ R2, (u, v) ∈ R2, (24)

where hq,w, q, w ∈ {0, 1, 2} are the coefficients of the projective transform H.
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The projective transform map points unevenly. For a fixed point (x, y) and several
shifts (∆xm, ∆ym) of one length: |(∆xm, ∆ym)| = const ∀m, the distance |H(x, y)− H(x +
∆xm, y + ∆ym)| can significantly vary. Since the directions of text strokes causing high local
contrast in the image are arbitrary, the sharpness should be estimated for all possible shifts.
Image sampling is conducted with a grid, so the sampling pitch in different directions
also varies. However, the function s(x̄, ∆xs) is the length ratio, so a useful simplification is
to consider ∆xs equal for all of them. It should be noted that, here, we implicitly change
the domain of the function s(x̄, ∆xs) from Z2 to R2. This can be performed because the
image function is no longer used, and the projective transform H is defined on a set of
real numbers.

Then, the scaling coefficient function s( p̄, ∆xs) defined in (23) should be rewritten for
the two-dimensional case as follows:

s( p̄, ∆xs) = min
∆p:|∆p|=∆xs

|H( p̄)− H( p̄ + ∆p)|
∆xs

, p̄ ∈ R2 (25)

Let us denote this function as the minimum scaling coefficient. The region under consid-
eration is a circle with the center at the point p̄ = (x̄, ȳ) and the radius equal to ∆xs:

| p̄− p| = ∆xs, p ∈ R2. (26)

The projective transform (u, v) = H(x, y) maps the points of the infinity line l∞ :
h2,0x + h2,1y + h2,2 = 0 to infinity. If the line crosses or touches the circle, then some points
of its inner region become infinite, which is not possible in image restoration. Consequently,
we can assume that the circle is not crossed by the l∞ line and is mapped onto an ellipse.
Then, the length amin of the ellipse semi-minor axis is the minimum distance between pairs
of projected points:

min
∆p:|∆p|=∆xs

|H( p̄)− H( p̄ + ∆p)| = amin (27)

Since ∆p is assumed to be small, one can locally approximate the projective transform
H with an affine transform. In this approach, it can be shown that, for a unit circle,
the lengths of the ellipse semi-axes are equal to the roots of eigenvalues λmin and λmax of
the matrix J̄T J̄, where J̄ is the Jacobian matrix of the transform H at the point p̄ [40]. Then,
for the circle with the radius ∆xs, the lengths of the semi-minor and semi-major axes for
the restored point p̄, amin and amax, respectively, are calculated as follows:

J̄ = Jacobian(H, p̄) =


∂hx(x, y)

∂x
∂hx(x, y)

∂y
∂hy(x, y)

∂x
∂hy(x, y)

∂y


∣∣∣∣∣∣∣∣
(x,y)=(x̄,ȳ)

λmin,max( p̄) : J̄T J̄ p = λp,

amin( p̄) = ∆xs

√
λmin( p̄),

amax( p̄) = ∆xs

√
λmax( p̄).

(28)

It should be noted that the points on the infinity line l∞ become infinite under the
transformation, so eigenvalues are not defined on this line. Then, the length function
domain is R2 \ l∞.

It is a well-known fact that the eigenvalues are the roots of the characteristic equation.
Then, the lengths of the semi-minor and semi-major axes can be calculated as follows:

amin,max( p̄) = ∆xs

√
λmin,max( p̄) = ∆xs

√
trace( J̄T J̄)±

√
trace( J̄T J̄)2 − 4det( J̄)2

2
, p̄ ∈ R2 \ l∞ (29)
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One can derive the values of the trace and the determinant of the matrix J̄T J̄ expressed
in terms of coefficients of the homography H:

det( J̄) =
det(H)

(h2,0 x̄ + h2,1ȳ + h2,2)3

trace( J̄T J̄) =
T2

1 + T2
2 + T2

3 + T2
4

(h2,0 x̄ + h2,1ȳ + h2,2)4

T1 = αȳ + c1, T2 = −αx̄ + c2, T3 = βȳ + c3, T4 = −βx̄ + c4

α = h0,0h2,1 − h0,1h2,0, β = h1,0h2,1 − h1,1h2,0

c1 = h0,0h2,2 − h0,2h2,0, c2 = h0,1h2,2 − h0,2h2,1,

c3 = h1,0h2,2 − h1,2h2,0, c4 = h1,1h2,2 − h1,2h2,1

(30)

In this work, we use only the values of the semi-minor axis length. However, the other
lengths may be helpful in the problem of image decimation estimation. To illustrate the
behavior of the semi-minor and semi-major length functions, we constructed heatmaps for
a synthetic example. An arbitrary source quadrangle F (Figure 8a) and a restored rectangle
R (Figure 8b,c) were used to estimate semi-minor (Figure 8b) and semi-major (Figure 8c)
axis lengths at grid points on the restored plane. As we can see, the values increase as we
approach the infinity line l∞, shown as a blue line in the figure. The region inside rectangle
R with semi-minor axis lengths less than the threshold appears to be connected.

(a) (b) (c)

Figure 8. The heatmaps of the semi-minor and semi-major axis lengths: (a) the source quadrangle F, (b) semi-minor axis
lengths, and (c) semi-majorFL axis lengths.

Then, according to (27)–(29), the minimum scaling coefficient (25) does not depend on
the sampling pitch ∆xs and can be redefined as s( p̄):

s( p̄) ≡ s( p̄, ∆xs)
(27, 28)
=

∆xs
√

λmin( p̄)
∆xs

=

(29)
=

√
trace( J̄T J̄)−

√
trace( J̄T J̄)2 − 4det( J̄)2

2
, p̄ ∈ R2 \ l∞.

(31)

This function can be used to estimate the local sharpness at each point of the restored
image and is directly related to the local image quality. It should be noted that, if the
transformation H is affine, i.e., h2

2,0 + h2
2,1 = 0, then the Jacobian matrix and the minimum

scaling coefficient are constant for the whole plane. Thus, only one value at an arbitrary
point can be calculated.

5. The Proposed Method of Projectively Distorted Image Quality Assessment

Next, we define the quality assessment method Q, which provides a binary estimation
of the whole restored image in terms of recognition reliability. Considering that incorrect
recognition of any character leads to incorrectness of the whole recognized field text,
the image quality can be estimated according to the region with the lowest quality.

For this purpose, we can estimate the maximum level of local distortion θ that en-
ables stable recognition of the restored image. The threshold depends on the recognition
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subsystem and on the chosen interpolation algorithm. Since the function s( p̄) is inversely
proportional to the local distortion level, for simplification, we use the minimum scaling
coefficient threshold l, which is the inverse of the level of distortion θ:

l = 1/θ (32)

Then, we can construct the level curve of the minimum scaling coefficient function
as follows:

s(p) = l, p ∈ R2 \ l∞. (33)

If the level curve intersects the restored rectangle R, then one of two corresponding
parts of the restored field image is not recognized reliably. Otherwise, if there is no
intersection, we can calculate the value for one arbitrary point inside the rectangle to check
whether the whole restored image has sufficient quality.

According to (31) and (30), the level curve (33) can be written as follows:

l4(h2,0x + h2,1y + h2,2)
6 − l2(h2,0x + h2,1y + h2,2)

2(T2
1 + T2

2 + T2
3 + T2

4 )+

+det(H)2 = 0, (x, y) ∈ R2 \ l∞.
(34)

This equation holds for both the minimum scaling coefficient function s(p) and the
maximum scaling coefficient function smax(p), which is defined as the ratio of the semi-
major axis length to the sampling pitch ∆xs:

smax(p) ≡ amax(p)
∆xs

, p ∈ R2 \ l∞. (35)

If the smax(p) branch intersects the rectangle, then both of its parts have low quality.
For simplification, Equation (34) is translated to the new coordinate system by trans-

formation T:
(X, Y) = T(x, y) = (h2,1x− h2,0y, h2,0x + h2,1y + h2,2). (36)

Under this transform, the infinity line l∞ is mapped to the line Y = 0. After the substitution
of (36) into the level curve in Equation (34), we obtain the following:

l4Y6 − l2 α2 + β2

h2
2,0 + h2

2,1
(Y4 +

(αδ− βγ)2

(α2 + β2)2 Y2 + (X− αγ + βδ

α2 + β2 )
2Y2) + det(H)2 = 0,

Y 6= 0.

(37)

where γ = h2,0c1 + h2,1c2, δ = h2,0c3 + h2,1c4 and α, β, c1, c2, c3, c4 are defined in (30).
As we can see, Equation (37) is quadratic in terms of X and, hence, symmetric. Then,

we can approximate it by a piecewise linear curve. For this purpose, the minimum and
maximum Y values of the rectangle R are calculated. After that, we choose several values
Yi, i = {0, n− 1}, Yi 6= 0 between them and, for each Yi, calculate two corresponding X
coordinates of the curve according to the following equality:

Xi,j =
αγ + βδ

α2 + β2 ±
√

Di, i = {0, n− 1}, j = {1, 2},

Di = l2 h2
2,0 + h2

2,1

(α2 + β2)
Y4

i −Y2
i −

(αδ− βγ)2

(α2 + β2)2 +
det(H)2(h2

2,0 + h2
2,1)

l2Y2
i (α

2 + β2)
, Yi 6= 0.

(38)

We should also take into account that, for semi-minor and semi-major axis lengths,
both branches of the curve may intersect the rectangle simultaneously. In order to construct
the curve approximation correctly, we need to separate the points related to different
branches. Then, moving along the Y-axis for each Yi value, we compare the corresponding
discriminant Di with zero. If it is positive, then the obtained points lie on one branch. If the
discriminant for a Yi value is equal to zero, then there is an inflection point in the current
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branch and the following values Yi+k, k = {1, n− i− 1} relate to another branch of the
curve. Similarly, the negative discriminant Di implies a gap between branches, and points
calculated for further values Yi+k lie on another branch.

As soon as the curve is obtained, we should decide whether the considered field
quality is sufficient. There are several possible approaches. For example, we can calculate
the ratio of sufficient and insufficient quality areas inside the restored rectangle. However,
in this work, we mark the quality of the whole image as insufficient if there is a low-quality
region of any area. The whole procedure for evaluating the restored image quality has O(1)
complexity because it is not dependent on the input image size but only on the number of
points in the curve approximation, which we assume to be predefined. The procedure is
summarized in Algorithm 1.

Algorithm 1 For quality assessment of a projectively distorted field quadrangle.
Input:
F—field quadrangle in source image;
R—rectangle of restored field;
l—minimum scaling coefficient threshold;
n—vertex number of curve approximation.
Output:
True ≡ 1, if the restored field is predicted as recognizable;
False ≡ 0, otherwise.

1: procedure Q(F, R, l, n)
2: calculate coefficients of a projective transform H : H(R) = F
3: center ← center point of R
4: if h2

2,0 + h2
2,1 = 0 then . affine transformation

5: sc ← s(center) according to (31)
6: return sc ≥ l
7: R′ ← T(R) according to (36) . calculate new coordinates of rectangle
8: Ymin ← min{R′iY}i={1..4}
9: Ymax ← max{R′iY}i={1..4}

10: calculate α, β, γ, δ according to (30)

11: Xsym ←
αγ + βδ

α2 + β2

12: no_roots_prev← True
13: one_root_prev← False
14: curve← {}
15: for i = {0, ..n− 1} do

16: Yi ← Ymin + i
Ymax −Ymin

n− 1
17: calculate Di according to (38)
18: if Di > 0 then
19: Xi1,2 ← Xsym ±

√
Di

20: if NOT(no_roots_prev) then
21: Insert(curve, Segment{(Xi1, Yi), (Xi−1,1, Yi−1)})
22: Insert(curve, Segment{(Xi2, Yi), (Xi−1,2, Yi−1)})
23: if no_roots_prev AND i 6= 0 then
24: Insert(curve, Segment{(Xi1, Yi), (Xi2, Yi)})
25: one_root_prev← False
26: no_roots_prev← False
27: else if Di = 0 then
28: Xi1,2 ← Xsym
29: if NOT(one_root_prev) AND NOT(no_roots_prev) then
30: Insert(curve, Segment{(Xi, Yi), (Xi−1,1, Yi−1)})
31: Insert(curve, Segment{(Xi, Yi), (Xi−1,2, Yi−1)})
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Algorithm 1 Cont.

32: one_root_prev← True
33: no_roots_prev← False
34: else
35: if NOT(one_root_prev) AND NOT(no_roots_prev) then
36: Insert(curve, Segment{(Xi−1,1, Yi−1), (Xi−1,2, Yi−1)}
37: one_root_prev← False
38: no_roots_prev← True
39: for each segment from curve do
40: if segment intersects R′ then
41: return False
42: sc ← s(center) according to (31)
43: return sc ≥ l

6. Experimental Results

In this section, the experimental results obtained using the proposed algorithmfor the
quality assessment of projectively distorted field images are presented and compared with
the performance of the algorithm described in [25]. In the recognition system workflow,
in order to obtain a quadrangle of the field to be restored and recognized, we need to
perform document localization and field segmentation. Evaluating quality assessment
methods, we had to eliminate the errors that occurred in these stages. For this purpose,
datasets that provide ground truth for field quadrangles are commonly used. To the best of
our knowledge, the only publicly available dataset with at least mild projective distortions
is MIDV-2019 [27]. However, a preliminary experiment showed that it does not contain
images with enough projectivity to produce insufficient restored image quality. For this
reason, we created a dataset with synthetically distorted images of text fields.

6.1. Data Generation

In order to generate the data, we used the MIDV-2019 dataset. This dataset contains
50 different types of annotated identity documents (ID cards, passports, driving licenses, etc.).
It consists of 50 template images (original high-quality document images used for creating
physical document copies, one per document type) and video clips of these documents
acquired in different conditions. An example of a template document is shown in Figure 9.

All of the images were annotated manually. The video frames have a ground truth for
their type and document quadrangle. The template images have a ground truth description
consisting of field rectangles and their text content.

Figure 9. The template of the new Austrian driving license document.

We considered template images only and scaled them to 300 dpi to obtain comparable
pixel sizes for all documents. We used ground truth field rectangles to extract undistorted
images of text fields with an additional 10% margin of their size. We only considered
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numeric fields and fields written with the Latin alphabet: dates, document numbers,
machine-readable zone (MRZ) lines, document holder name, and surname. We recognized
text in the obtained field images with Tesseract Open Source OCR Engine 4.1.1, which
employs the LSTM neural network [41]. Incorrectly recognized fields were eliminated from
further processing. In our experiments, we used 184 fields collected from all document
templates. Since the text in the fields may have different fonts, font sizes, and other
properties, we considered them separately in our experiments. Here, we describe synthetic
data generation for one field.

We denote an original image of a field f as D f and a rectangle bounding the field
as R f .

To test our algorithm, we generated a set of N projectively distorted field images
{Ii

src, f }i=1..N with bounding quadrangles {Fi
f }i=1..N and corresponding projective trans-

forms {Hi
f }i=1..N : Fi

f = Hi
f (R f ). In order to generate a distorted quadrangle Fi

f , we added

random shifts to the corners of R f . Then, the quadrangle Fi
f was downscaled to approxi-

mately the same size as the original field image for a more representative dataset. We also
ensured that the obtained distorted quadrangle Fi

f and corresponding quadrangle of the

whole distorted document were convex. Then, the homography Hi
f was calculated, and the

original field image was transformed to obtain the distorted field image: Ii
src, f = Hi

f (D f ).
Algorithm 2 shows the procedure of distorted image generation.

Then, the restoration process was conducted. The distorted images {Ii
src, f }i=1..N

were rectified with projective transforms that map their bounding quadrangles Fi
f to the

rectangles R f : R f = Hi
f
−1

(Fi
f ). Thus, we obtained a set of restored images {Ii

rst, f }i=1..N :

Ii
rst, f = Hi

f
−1

(Ii
src, f ). The projective mapping of images was conducted using the bilinear

interpolation method.
Finally, we generated the ground truth for our problem of the binary quality assess-

ment. We consider it to be a binary classification problem, with a positive case when
«field image is recognizable» and a negative case otherwise. Thus, we used Tesseract to
recognize the restored field images Ii

rst, f and compared the results with the annotation
from MIDV-500. If the recognition was correct, then the restored image was marked
as recognizable.

6.2. Performance Metrics

To evaluate the performance of quality assessment algorithms, we calculated the
positive and negative predictive values, PPV and NPV, respectively, as follows:

PPV =
TP

TP + FP
,

NPV =
TN

TN + FN
,

(39)

where TP is the number of true-positive samples (restored field images were correctly
recognized by Tesseract and marked as recognizable by the quality assessment algorithm
under evaluation), TN is the number of true-negative samples (fields were not recognized
by Tesseract and marked as non-recognizable by the algorithm), FP is the number of
false-positive samples (fields were not correctly recognized by Tesseract but marked as
recognizable by the algorithm), and FN is the number of false-negative samples (fields
were correctly recognized by Tesseract but marked as non-recognizable by the algorithm).

We also had to ensure the balance of data used to evaluate the algorithm. The decision
made by the proposed quality assessment algorithm Q depends on the minimum scaling
coefficient threshold l. Hence, the probability of randomly generating a sample predicted
to be positive or negative varies when l changes. To overcome this issue, for each l, we
took 1000 restored field images marked as positive and 1000 restored field images marked
as negative by the algorithm.
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Algorithm 2 Generation of projectively distorted images of a field.
Input:
D—an undistorted field image;
R(A, B, C, D)—a bounding rectangle of an undistorted field, where A, B, C, and D are

points of its corners from top left to bottom left clockwise;
T(At, Bt, Ct, Dt)—a bounding rectangle of a whole undistorted document, where At,

Bt, Ct, and Dt are points of its corners from top left to bottom left clockwise;
N—the number of samples to generate.
Output:
{Ii

src}i=1..N—a set of distorted field images;
{Fi(A′i, B′i , C′i , D′i)}i=1..N—a set of bounding quadrangles of distorted field;
{Hi}i=1..N—a set of corresponding projective transforms.

1: procedure G(D, R, T, N)
2: calculate width of R: w← B.x− D.x
3: calculate height of R: h← A.y− D.y
4: set a uniform real random number generator: rand = uni f orm(0, 5 min(w, h));
5: set generated number of samples n← 0
6: while n < N do
7: A′ ← A + (−rand(), rand())
8: B′ ← B + (rand(), rand())
9: C′ ← C + (rand(),−rand())

10: D′ ← D + (−rand(),−rand())
11: generated quadrangle F′ = (A′, B′, C′, D′)
12: w′ = max(A′.x, B′.x, C′.x, D′.x)−min(A′.x, B′.x, C′.x, D′.x)
13: h′ = max(A′.y, B′.y, C′.y, D′.y)−min(A′.y, B′.y, C′.y, D′.y)

14: calculate scale factor s = min
(

1.5
w
w′

, 1.5
h
h′

)
15: if s < 1 then
16: F′ ← sF′

17: if F′ is not convex then
18: continue
19: calculate projective transform H′: F′ = H′(R)
20: if quadrangle H′(T) is not convex then
21: continue
22: Fi ← F′

23: Hi ← H′

24: Ii
src ← Hi(D)

25: n← n + 1
26: return {Ii

src, f }i=1..N , {Fi
f }i=1..N , {Hi

f }i=1..N

6.3. Behavior of the Proposed Method for Fields of Same and Different Fonts

In the framework of the first experiment, we estimated the variations in the PPV
and NPV for the proposed algorithm Q, depending on the minimum scaling coefficient
threshold l. We calculated the PPV and NPV functions separately for each field f . We
varied the threshold l values from 0.075 to 0.9 with a step of 0.025. For each threshold l, we
generated 1000 positively and 1000 negatively marked images and calculated the predictive
values. The parameter n of the algorithm Q that defines the vertex number of the level
curve approximation was set to 100. Figure 10 shows an example of the estimated PPV and
NPV curves that were calculated for several text fields of the new Austrian driving license
document, which is shown in Figure 9.

While developing the assessment method, we assumed that the threshold is equal
for all characters of one font. Thus, the predictive value functions should be close for
different fields of one font and may vary if the font or font properties (size, boldness, etc.)
are changed. As we can see, the curves for the date fields with the same font (Figure 10a–c)
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show almost equal predictive values, as was expected. This means that we can estimate
the valid threshold for all possible text fields of one font in advance. At the same time, PPV
and NPV differ for a document number field that has a bold font (Figure 10d). Comparing
them, we can infer that bold text can be more projectively distorted while still being reliably
recognized. Thus, the minimum scaling coefficient threshold should be chosen separately
for each font and font property.

For all fields, the specific behavior of the curves is similar. The greater the l, the sharper
the restored image should be to be marked as «recognizable». Indeed, in Section 2, we
define the minimum scaling coefficient threshold to be inverse to the level of distortion θ.
As the threshold l increases, rejection occurs at a lower level of distortion. The threshold
value can be chosen according to the cost of false-positive and false-negative errors. In the
case of equal cost, the PPV and NPV are higher than 80% for all four considered fields.

It should be noted that the obtained predictive value curves are non-monotonic. This
effect occurs because the OCR is not strictly monotonic with the projective distortion level.
However, the tendency toward reduced recognition accuracy is evident.

Figure 10. Positive and negative predictive values for varied minimum scaling coefficient thresholds estimated on the set of
distorted images for fields: (a) “31.12.1981”, (b) “19.01.2013”, (c) “18.01.2028”, and (d) “12345678”.

6.4. Recognition System Simulation

In the second experiment, we estimated the recognition system’s performance with
the incorporated reject submodule. We compared the results obtained for the proposed
algorithm with the rejection criterion presented in [25], which assesses the whole distorted
document quadrangle. In addition, we estimated the same algorithm applied to each field
quadrangle separately.

The geometric criterion presented in [25] is based on the analysis of the quadrangle
angles. The document quadrangle is rejected if not satisfying the following conditions:

1. At least one pair of the opposed edges is parallel with a tolerance of 5◦:[
(][
−→
AB]−][

−→
CD]) < 5◦

(][
−→
AD]−][

−→
BC]) < 5◦

, (40)

where A, B, C, and D are the corners of the document quadrangle and ][
−→
AB],][

−→
CD],

][
−→
AD], and ][

−→
BC] denote the edges’ angles with the horizontal axis defined in the

range [−90◦, 90◦].
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2. The average difference in angles between each pair of opposed angles is less than 10◦:
|Â− B̂|+ |Ĉ− D̂|

2
< 10◦

|Â− D̂|+ |B̂− Ĉ|
2

< 10◦
, (41)

where Â, B̂, Ĉ, and D̂ are the angles of the quadrangle defined in the range [0◦, 180◦].
3. The average perpendicularity of the four corners is less than 25◦:∣∣∣∣∣ Â + B̂ + Ĉ + D̂

4
− 90◦

∣∣∣∣∣ < 25◦. (42)

In order to estimate the system performance and to avoid errors that may occur in
the document localization and segmentation stages, we synthesized distorted field images,
as described in Section 6.1. Before the experiment evaluating the performance of the
proposed algorithm, we automatically estimated the field thresholds for the proposed
algorithm as follows. Each of the 184 original field images D f was gradually uniformly
downscaled from 0.9 to 0.1 of its size with a step of 0.025. The smallest scale that provided
a correct recognition result was chosen as the threshold l f . Then, for each field f and
threshold l f , we generated 1000 positively and 1000 negatively marked restored field
images. The proposed algorithm parameter n defining the vertex number of the level
curve approximation was set to 100. All positive images for all fields were contained in the
overall positive set with a size of 184,000. The overall negative set was obtained similarly.
The restored images of both sets were recognized using Tesseract, and the cumulative PPV
and NPV values were calculated.

In the experiments conducted to evaluate the algorithm [25], we used two versions
of the criterion. The first, original criterion assesses the document quadrangle and, thus,
ceases further processing of all document fields simultaneously. Additionally, we evaluated
the strategy of applying the criterion to each distorted field quadrangle. For both versions,
we used the same processes of data generation and performance evaluation, except that
the set of 1000 images predicted to be recognized was constructed based on the algorithm
under evaluation. The same applies to the set predicted to be unrecognized.

The results of the conducted experiments are shown in Table 1. It can be seen that the
thresholds of the algorithm in [25] were defined under the assumption of a much higher
cost of false-positive error. However, the proposed algorithm outperforms both versions of
the algorithm from [25] not only in NPV but also in PPV.

Table 1. The cumulative predictive values, positive (PPV) and negative (NPV), of the quality assessment algorithms.

PPV NPV TP FP TN FN

The proposed algorithm 86.7% 64.1% 159,622 24,378 117,998 66,002
The algorithm [25] for document quadrangle 79.2% 24.1% 145,672 38,328 44,332 139,668
The algorithm [25] for field quadrangle 77.2% 24.6% 142,098 41,902 45,331 138,669

Examples of false-positive and false-negative field images for the proposed method
are shown in Figures 11 and 12, respectively. As we can see, for some, the recognition
error is due to the OCR submodule, while the images themselves can be easily read. In the
examples of false-negative images, the level of corruption differs. For example, field (b)
is barely recognizable, while field (e) has adequate sharpness. The main reason is that
we estimated the minimum possible sharpness in all directions. However, if the image is
scaled orthogonally to the stroke, the blurring effect is small, which is seen in Figure 12e.
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Figure 11. Examples (a–e) of false-positive distorted and restored field images for the second experiment.

Figure 12. Examples (a–e) of false-negative distorted and restored field images for the second experiment.

Another possible reason for the proposed algorithm errors is the chosen approach
for the estimation of the threshold. Due to the errors of the recognition submodule, some
of the fields may overestimate the minimum scaling coefficient threshold. Moreover,
in real applications, the text of a considered document field differs from the text in the
template image. The current threshold estimation method is limited to only one possible
text version. Thus, a more stable approach to threshold estimation needs to be developed
to increase the performance of the algorithm. However, the presented results show that the
proposed algorithm for text field quality assessment can already be successfully exploited
for recognition reliability prediction.

7. Conclusions

In this paper, we consider the problem of quality assessment of a field image restored
from a projectively distorted source document image. The quality is interpreted in terms
of text recognition reliability. The results show that, by using a priori information about
the field font, the restored field image quality can be estimated based only on the pro-
jective transform analysis. We present a theoretically based method for evaluating the
distortion level at a point in the restored image. Moreover, we propose a novel algorithm
of binary quality assessment that does not depend on the image size, i.e., it has O(1)
complexity. We also discuss the model of the reject submodule embedded in the document
recognition system.

The algorithm was tested on synthetically distorted field images. The dataset was
created based on document template images from the publicly available dataset MIDV-
2019. According to the obtained results, the algorithm provides equal predictive value
curves, both positive and negative, for different text strings of one font and one font
size. For dissimilar fonts, these curves differ. Thus, the assumption is confirmed that the
maximum level of distortion that enables reliable recognition depends on the font of the
recognized text. Therefore, the threshold of the algorithm can be estimated in advance for
each font, regardless of the text that may occur in the input distorted field images.

In the experiment evaluating the performance of the reject submodule, we compared
the proposed algorithm with the rejection criterion presented in [25]. This algorithm is
designed to assess the whole document quadrangle and, therefore, to reject or accept all
document fields simultaneously. Additionally, we applied the same criterion separately
for each distorted field image. The thresholds for the proposed algorithm were estimated
in advance for each field by iterative downscaling of the undistorted field image and
by recognizing the obtained image. The results show the superiority of our algorithm.
The cumulative positive predictive value (PPV) for the proposed algorithm equals 86.7%,



Mathematics 2021, 9, 2155 20 of 22

which is 7.5% higher than the best PPV value of other compared algorithms. The cumulative
negative predictive value (NPV) estimated for our algorithm is 64.1%, and the difference
from the best value of the other algorithm is 39.5%.

For future work, a more stable method for estimating the threshold should be devel-
oped. It should utilize all alphabet characters of an estimated font and projective distortions
in addition to the scaling transform. Additionally, the current approach may be improved
by relying on the ratio of sufficient and insufficient region areas defined by the constructed
level curve.

It should be noted that the proposed method may be exploited not only for the reject
submodule. The other possible application field is combination methods for text field
recognition in video streams. The binary quality estimation can be used to reevaluate the
confidence of the recognition result for one frame. Moreover, as the method also provides
the level curve that bounds the low-quality region, we can utilize it to reevaluate the
confidence of each recognized character according to its location. This may increase the
video stream recognition accuracy.

For future work, a stable method of threshold estimation should be developed. It has
to analyze the recognition correctness after restoration from different levels of projective
distortions instead of only scaling transformations. The whole alphabet of the font con-
sidered is to be included to provide a stable threshold for all possible text strings in the
field. Additionally, an experimental comparison should be conducted for the approaches
to image quality estimation according to the constructed level curve. The current approach
may be improved by relying on the ratio between sufficient and insufficient region areas.
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