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Abstract: We consider a linear control system defined by a scalar stationary linear differential
equation in the real or complex space with multiple non-commensurate lumped and distributed
delays in the state. In the system, the input is a linear combination of multiple variables and its
derivatives, and the output is a multidimensional vector of linear combinations of the state and
its derivatives. For this system, we study the problem of arbitrary coefficient assignment for the
characteristic function by linear static output feedback with lumped and distributed delays. We
obtain necessary and sufficient conditions for the solvability of the arbitrary coefficient assignment
problem by the static output feedback controller. Corollaries on arbitrary finite spectrum assignment
and on stabilization of the system are obtained. We provide an example illustrating our results.

Keywords: linear differential equation; time-delay system; lumped delay; distributed delay; charac-
teristic function coefficient assignment; stabilization; linear static output feedback

1. Introduction

A large number of works have been devoted to the problem of stability of time-delay
systems and problems of stabilization for control systems with delays (see reviews [1–4]).
A number of methods have been developed to solve this problem. One of the methods,
known as the Lyapunov–Krasovskii functional approach [5], allows one to obtain sufficient
conditions for asymptotic and exponential stabilization of delayed systems [6–8]. This
method historically traces back to the second Lyapunov method. Another approach to
studying problems of stability and stabilization of time-delay systems is an eigenvalue-
based approach [9]. This approach traces back to the first Lyapunov method. Here, the
goal is to find conditions providing the desired assignment of the spectrum of the system,
that is, the set of zeros of the characteristic function of the system.

The classical problem of spectrum assignment (for systems without delays) is usually
studied as the problem of coefficient assignment for characteristic function (in another
terminology as the problem of modal control) and is as follows: consider a linear time-
invariant control system

ẋ = Ax + Bu, (1)

x ∈ Kn, u ∈ Km (here K = C or K = R). Let the controller have the form of linear static
state feedback

u = Qx. (2)

The closed-loop system (1), (2) takes the form

ẋ = (A + BQ)x. (3)
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Definition 1. System (1) is called arbitrary spectrum assignable by means of static state feedback
(2) if, for any γi ∈ K, i = 1, n, there exists a gain matrix Q such that the characteristic polynomial
of the matrix A + BQ of the system (3) coincides with the polynomial

λn + γ1λn−1 + . . . + γn. (4)

The problem of arbitrary spectrum assignment was solved in [10] (for K = C) and
in [11] (for K = R)—namely, it has been proven that complete controllability of (1) is a
necessary and sufficient condition for arbitrary spectrum assignability (i.e., for modal con-
trollability) of system (3). This property is a sufficient condition for exponential stabilization
of the system (with any given decay of rate).

For systems with delays, the spectrum is in general infinite. The spectrum depends on
coefficients of the characteristic function. The problem of arbitrary spectrum assignment
of linear time-delay systems (in contrast to systems without delays) is not equivalent to
the problem of arbitrary coefficient assignment (ACA) for the characteristic function of the
closed-loop system. A number of early works dealt with coefficient assignment, spectrum
assignment, and stabilizability problems for linear time-delay systems by means of static
state feedback with delays: sufficient conditions for ACA were obtained in [12] for systems
with multiple lumped delays; decoupling and canonical forms were used for coefficient
assignment in [13,14]; stabilizability and spectrum assignment for linear autonomous sys-
tems with general time delays were studied in [15]; problems of stabilizability independent
of delay were developed for the class of delay differential systems of the retarded type
with commensurate time delays in [16]; spectrum placement problem was studied in [17]
by using a ring of delay operators.

In a study [18], an approach was developed for assigning an arbitrary finite spectrum
for linear systems with delays. Later, the finite spectrum assignment problem for time-delay
systems by linear state feedback was studied in [19] for systems with one lumped delay
in the states with the scalar controller, in [20] for systems with multiple commensurate
lumped delays in the states with the scalar controller, in [21] for systems with multiple
commensurate lumped delays in the states and control with the scalar controller, in [22]
for systems with multiple commensurate lumped delays in the states and control with
the multidimensional controller, in [23] for systems with multiple commensurate lumped
and distributed delays in the states with the scalar controller, and in [24] for systems of
neutral type with multiple commensurate lumped delays in the states with the scalar
controller. In [25], the ACA problem was studied for single-input single-output (SISO)
systems with commensurate lumped delays in the states by the dynamic output feedback
controller. In [26], the problem of stabilization of linear systems with both input and state
delays by observer–predictors was studied. In the paper [27], the assignment of the poles
of a second-order vibrating system through state feedback with one lumped delay was
studied by means of the linear matrix inequality (LMI) approach. A partial pole assignment
approach was presented in [28] for second-order systems with time delay.

Some recent important works on stochastic time-delay systems have been reported
in [29–31]. In [29], the event-triggered control problem of stochastic nonlinear delay sys-
tems with exogenous disturbances and the event-triggered feedback control was studied.
In [30], the stability problem for a class of stochastic delay nonlinear systems driven by
G-Brownian motion was studied. The global stabilization of stochastic nonlinear systems
with time-varying delay, unknown powers, and SISS stochastic inverse dynamics was
studied in [31].

The problem of spectrum assignment by static output feedback (for systems without
delays) is as follows: consider a linear time-invariant control system

ẋ = Fx + Gu, y = Hx, (5)
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x ∈ Kn, u ∈ Km, y ∈ Kk. Let the controller have the form of linear static output feed-
back where

u = Ky. (6)

The closed-loop system (5), (6) takes the form

ẋ = (F + GKH)x. (7)

Definition 2. System (5) is called arbitrary spectrum assignable by means of static output feedback
(6) if, for any γi ∈ K, i = 1, n, there exists a gain matrix K such that the characteristic polynomial
of the matrix F + GKH of the system (7) coincides with the polynomial (4).

The static output feedback problem of eigenvalue assignment (in particular, of stabi-
lization) is one of the most important open questions in control theory; see reviews [32,33].
This problem has been studied for over 40 years by various authors. The most significant
results have been obtained in [34] for K = C, in [35–37] for K = R.

The problems of stabilization and spectrum assignment by static output feedback for
time-delay systems are more difficult to study. A study [38] considered the problem of
stabilization of system (5) by static output feedback with a delay u(t) = Ky(t− τ). For
SISO systems with delays, necessary conditions for the existence of static output feedback
stabilizing controllers were derived in [39]. Another study [40] considered the output
feedback stabilization problem for a class of linear SISO systems with I/O network delays.
The problem of stabilization of linear time-varying systems with input delays via delayed
static output feedback is studied in [41].

Consider a control system defined by a linear differential equation of nth order where
the input is a linear combination of m variables and its derivatives of order ≤ n− p, and
the output is a k-dimensional vector of linear combinations of the state x and its derivatives
of order ≤ p− 1 (1 ≤ p ≤ n):

x(n) + a1x(n−1) + . . . + anx =

= bp1u(n−p)
1 + bp+1,1u(n−p−1)

1 + . . . + bn1u1 + . . .

+ bpmu(n−p)
m + bp+1,mu(n−p−1)

m + . . . + bnmum,

(8)

y1 = c11x + c21x′ + . . . + cp1x(p−1), . . . ,

yk = c1kx + c2kx′ + . . . + cpkx(p−1).
(9)

Here, x ∈ K is a state variable, uα ∈ K are control variables, yβ ∈ K are output variables,
ai, blα, cνβ ∈ K, i = 1, n, l = p, n, ν = 1, p, α = 1, m, β = 1, k. Construct the vectors
u = col(u1, . . . , um) ∈ Km, y = col(y1, . . . , yk) ∈ Kk. Let the control in system (8), (9) have
the form of linear static output feedback:

u = Qy. (10)

System (8), (9), (10) can be rewritten in the form (5), (6). We say that system (8), (9) is arbitrary
coefficient assignable by linear static output feedback (10) if for any γi ∈ K, i = 1, n, there exists
a linear static output feedback control (10) such that the characteristic polynomial of the
closed-loop system (8), (9), (10) has the form (4). The conditions imposed on the orders of
derivatives in (8) and (9) are natural because one needs the orders of the derivatives on the
right-hand side of the closed-loop system to be less than n.

For the scalar system (8), (9), (10), the arbitrary coefficient assignment problem by
static output feedback has been solved in [42]. Construct the matrices B = {blα}, l = 1, n,
α = 1, m, and C = {cνβ}, ν = 1, n, β = 1, k, where blα := 0 for l < p and cνβ := 0 for ν > p.
Let J := {ϑij} ∈ Mn(R) where ϑij = 1 for j = i + 1 and ϑij = 0 for j 6= i + 1. Let T denote
the transposition of a matrix. The following theorem holds [42]:
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Theorem 1. System (8), (9) is arbitrary coefficient assignable by linear static output feedback (10)
if and only if the matrices

CT B, CT JB, . . . , CT Jn−1B

are linearly independent.

Extension of Theorem 1 to the case when the state, input, and output are multidimen-
sional (i.e., x ∈ Ks, uα ∈ Ks, yβ ∈ Ks, s ≥ 1) was obtained in [43].

In the present paper, we extend Theorem 1 on arbitrary coefficient assignment by
static output feedback to systems with non-commensurate lumped and distributed delays
in the state variable.

Notation. Denote K = C or K = R; Kn = {x = col (x1, . . . , xn) : xi ∈ K} is the
linear space of column vectors over K; Mm,n(K) is the space of m× n-matrices over K;
Mn(K) := Mn,n(K); I ∈ Mn(K) is the identity matrix; a is the complex conjugation of a; T
is the transposition of a vector or a matrix; ∗ is the Hermitian conjugation, i.e., A∗ = AT ;
Sp H is the trace of a matrix H ∈ Mn(K); for a matrix H ∈ Mn(K), we use the denotation
H0 := I; denote J := {εij} ∈ Mn(R) where εij = 1 for j = i + 1 and εij = 0 for j 6= i + 1;
denote by vec : Mp,q(K)→ Kpq the mapping, which “unrolls” a matrix Z = {zij}, i = 1, p,
j = 1, q, by rows into the column vector vec Z = col (z11, . . . , z1q, . . . , zp1, . . . , zpq) ∈ Kpq.

2. Main Results

Consider a control system defined by a linear time-invariant differential equation of
nth order with multiple non-commensurate lumped and distributed delays in the state
variable x ∈ K; the input is a linear combination of m variables and its derivatives of order
≤ n− p; the output is a k-dimensional vector of linear combinations of the state x and its
derivatives of order ≤ p− 1,

x(n)(t) + a10x(n−1)(t) + a11x(n−1)(t− h1) + . . . + a1sx(n−1)(t− hs) + . . .

+ an0x(t) + an1x(t− h1) + . . . + ansx(t− hs)

+
n

∑
i=1

s

∑
η=1

∫ −hη−1

−hη

giη(τ)x(n−i)(t + τ) dτ (11)

= bp1u(n−p)
1 (t) + bp+1,1u(n−p−1)

1 (t) + . . . + bn1u1(t)

+ . . . + bpmu(n−p)
m (t) + . . . + bnmum(t), t > 0,

y1(t) = c11x(t) + c21x′(t) + . . . + cp1x(p−1)(t), . . . ,

yk(t) = c1kx(t) + c2kx′(t) + . . . + cpkx(p−1)(t), (12)

with initial conditions x(n−i)(τ) = φi(τ), τ ∈ [−hs, 0]; here 0 = h0 < h1 < . . . < hs are
constant delays, φi : [−hs, 0] → K are continuous functions; aij, blα, cνβ ∈ K, i = 1, n,
j = 0, s, l = p, n, α = 1, m, ν = 1, p, β = 1, k; giη : [−hη ,−hη−1] → K are integrable
functions (i = 1, n, η = 1, s); u = col (u1, . . . , um) ∈ Km is a control vector and y =
col (y1, . . . , yk) ∈ Kk is an output vector; p ∈ {1, n}; the complex conjugation to cνβ is used
for convenience of notation (for consistency with previous works).

Let the controller in system (11), (12) have the form of linear static output feedback
with lumped and distributed delays:

u(t) =
θ

∑
ρ=0

Qρy(t− σρ) +
θ

∑
κ=1

∫ −σκ−1

−σκ
Rκ(τ)y(t + τ) dτ, (13)

y(t) = 0, t < −hs. Here θ ≥ 0 is an integer, 0 = σ0 < σ1 < . . . < σθ are constant delays,
Qρ = {qρ

αβ} ∈ Mm,k(K) are constant matrices (ρ = 0, θ), Rκ(τ) = {rκαβ(τ)} ∈ Mm,k(K),
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rκαβ : [−σκ ,−σκ−1] → K are integrable functions (κ = 1, θ), α = 1, m, β = 1, k. By (12),
we have

yβ(t) =
p

∑
ν=1

cνβx(ν−1)(t), β = 1, k.

Hence, for any α = 1, m,

uα(t) =
k

∑
β=1

[ θ

∑
ρ=0

qρ
αβ

( p

∑
ν=1

cνβx(ν−1)(t− σρ)
)

+
θ

∑
κ=1

∫ −σκ−1

−σκ
rκαβ(τ)

( p

∑
ν=1

cνβx(ν−1)(t + τ)
)
dτ
]
.

The closed-loop system (11), (12), (13) takes the form

x(n)(t) +
n

∑
i=1

s

∑
j=0

aijx(n−i)(t− hj)

+
n

∑
i=1

s

∑
η=1

∫ −hη−1

−hη

giη(τ)x(n−i)(t + τ) dτ (14)

−
m

∑
α=1

n

∑
l=p

blα

( k

∑
β=1

[ θ

∑
ρ=0

qρ
αβ

( p

∑
ν=1

cνβx(ν−1)(t− σρ)
)

+
θ

∑
κ=1

∫ −σκ−1

−σκ
rκαβ(τ)

( p

∑
ν=1

cνβx(ν−1)(t + τ)
)

dτ
])(n−l)

= 0.

Denote by ϕ(λ) the characteristic function of the closed-loop system (14). Then

ϕ(λ) = λn +
n

∑
i=1

λn−i
( s

∑
j=0

aije
−λhj +

s

∑
η=1

∫ −hη−1

−hη

giη(τ)eλτ dτ
)

(15)

−
m

∑
α=1

n

∑
l=p

blα

( p

∑
ν=1

[ k

∑
β=1

( θ

∑
ρ=0

qρ
αβcνβe−λσρ

)
+

θ

∑
κ=1

∫ −σκ−1

−σκ
rκαβ(τ)cνβeλτ dτ

]
λn−l+ν−1

)
.

The set Λ = {λ ∈ C : ϕ(λ) = 0} is the spectrum of system (14). If Λ is contained in the
open left half-plane, then system (14) is exponentially stable. The spectrum of system (14) is
uniquely determined by the coefficients of system (14). We study the problem of assigning
an arbitrary coefficients to the characteristic function (15) of the closed-loop system.

Definition 3. System (11), (12) is said to be arbitrary coefficient assignable by static output
feedback (13) if, for any integer ` ≥ 0, for any given 0 = ω0 < ω1 < . . . < ω`, for any numbers
γiµ ∈ K, i = 1, n, µ = 0, `, and for any integrable functions δiξ : [−ωξ ,−ωξ−1]→ K, i = 1, n,
ξ = 1, `, there exist an integer θ ≥ 0, numbers 0 = σ0 < σ1 < . . . < σθ , constant matrices Qρ ∈
Mm,k(K), ρ = 0, θ, and integrable matrix functions Rκ : [−σκ ,−σκ−1] → Mm,k(K), κ = 1, θ,
such that the characteristic function (15) of the closed-loop system (14) satisfies the equality

ϕ(λ) = λn +
n

∑
i=1

λn−i

(
`

∑
µ=0

γiµe−λωµ +
`

∑
ξ=1

∫ −ωξ−1

−ωξ

δiξ(τ)eλτdτ

)
.

Remark 1. The problem of arbitrary coefficient assignment was studied and solved in [44] for
system (11), (12), (13) with only lumped delays (giη(τ) ≡ 0, i = 1, n, η = 1, s; Rκ(τ) ≡ 0 ∈
Mm,k(K), κ = 1, θ); in [45] for systems with only one lumped and one distributed delays (s = 1,
θ = 1, h1 = σ1 = h > 0); in [46] for systems with multiple commensurate delays (hj = jh,
j = 0, s; σρ = ρh, ρ = 0, θ; h > 0). Here, we consider a more general case.
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From system (11), (12), construct the matrices B = {blα}, l = 1, n, α = 1, m, and
C = {cνβ}, ν = 1, n, β = 1, k, where blα := 0 for l < p and cνβ := 0 for ν > p.

Theorem 2. System (11), (12) is arbitrary coefficient assignable by the static output feedback
controller (13) if and only if the matrices

C∗B, C∗ JB, , . . . , C∗ Jn−1B (16)

are linearly independent.

Proof. Let a function

ψ(λ) = λn +
n

∑
i=1

λn−i

(
`

∑
µ=0

γiµe−λωµ +
`

∑
ξ=1

∫ −ωξ−1

−ωξ

δiξ(τ)eλτdτ

)
(17)

be given, where ` ≥ 0 is an arbitrary integer, 0 = ω0 < ω1 < . . . < ω` are arbitrary given
delays, γiµ ∈ K are arbitrary numbers, and δiξ : [−ωξ ,−ωξ−1]→ K are arbitrary integrable
functions. One needs to construct a number θ ≥ 0, numbers 0 = σ0 < σ1 < . . . < σθ ,
matrices Qρ ∈ Mm,k(K), ρ = 0, θ, and integrable functions Rκ : [−σκ ,−σκ−1]→ Mm,k(K),
κ = 1, θ, such that the characteristic function (15) of the closed-loop system (14) satisfies
the equality

ϕ(λ) = ψ(λ). (18)

Let us write the characteristic function (15) of the closed-loop system (14) in the form

ϕ(λ) = λn +
n

∑
i=1

λn−i
( s

∑
j=0

aije
−λhj +

s

∑
η=1

∫ −hη−1

−hη

giη(τ)eλτ dτ
)
− ∆, (19)

where ∆ = ∆1 + ∆2, and

∆1 =
θ

∑
ρ=0

m

∑
α=1

k

∑
β=1

n

∑
l=p

p

∑
ν=1

blαcνβqρ
αβλn−l+ν−1e−λσρ ,

∆2 =
θ

∑
κ=1

m

∑
α=1

k

∑
β=1

n

∑
l=p

p

∑
ν=1

blαcνβ

∫ −σκ−1

−σκ
rκαβ(τ)λ

n−l+ν−1eλτdτ.

By using the proof of [44] (Theorem 2) (see the reasoning from Formula (11) to Formula
(15) in [44]), we obtain that

∆1 =
θ

∑
ρ=0

n

∑
i=1

Sp (C∗ Ji−1BQρ)λ
n−ie−λσρ .

By the same reasoning, we obtain that

∆2 =
θ

∑
κ=1

n

∑
i=1

∫ −σκ−1

−σκ
Sp (C∗ Ji−1BRκ(τ))λ

n−ieλτdτ.

Substituting ∆1 and ∆2 in (19), we obtain

ϕ(λ) = λn +
n

∑
i=1

λn−i
( s

∑
j=0

aije
−λhj +

s

∑
η=1

∫ −hη−1

−hη

giη(τ)eλτ dτ
)

−
n

∑
i=1

λn−i
( θ

∑
ρ=0

Sp (C∗ Ji−1BQρ)e−λσρ +
θ

∑
κ=1

∫ −σκ−1

−σκ
Sp (C∗ Ji−1BRκ(τ))eλτdτ

)
.

(20)
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Taking into account (20), (18), and (17), we obtain that system (11), (12) is arbitrary coef-
ficient assignable by (13) iff there exist θ ≥ 0, numbers 0 = σ0 < σ1 < . . . < σθ , matrices
Qρ ∈ Mm,k(K), ρ = 0, θ, and integrable matrix functions Rκ : [−σκ ,−σκ−1] → Mm,k(K),
κ = 1, θ, such that for all i = 1, n the following equalities hold:

`

∑
µ=0

γiµe−λωµ =
s

∑
j=0

aije
−λhj −

θ

∑
ρ=0

Sp (C∗ Ji−1BQρ)e−λσρ , (21)

`

∑
ξ=1

∫ −ωξ−1

−ωξ

δiξ(τ)eλτdτ =
s

∑
η=1

∫ −hη−1

−hη

giη(τ)eλτdτ

−
θ

∑
κ=1

∫ −σκ−1

−σκ
Sp
(
C∗ Ji−1BRκ(τ)

)
eλτdτ. (22)

Denote
T1 := {ω1, . . . , ω`}, T2 := {h1, . . . , hs},

S1 := {µ ∈ {1, `} : ωµ ∈ T1 \ T2}, S2 := {µ ∈ {1, `} : ωµ ∈ T1 ∩ T2},

S3 := {j ∈ {1, s} : hj ∈ T1 ∩ T2}, S4 := {j ∈ {1, s} : hj ∈ T2 \ T1}.

Set T := T1 ∪ T2, θ := |T|. Set σ0 := 0. Let us denote the elements of the set T as
σ1 < σ2 < . . . < σθ .

Let
K1 := {ρ ∈ {1, θ} : ∃ µ ∈ S1 σρ = ωµ},

K2 := {ρ ∈ {1, θ} : ∃ j ∈ S3 σρ = hj},

K3 := {ρ ∈ {1, θ} : ∃ j ∈ S4 σρ = hj}.

Then, equalities (21) take the form

γi0 +
(

∑
µ∈S1

+ ∑
µ∈S2

)
γiµe−λωµ

= ai0 − Sp (C∗ Ji−1BQ0) +
(

∑
j∈S3

+ ∑
j∈S4

)
aije
−λhj

−
(

∑
ρ∈K1

+ ∑
ρ∈K2

+ ∑
ρ∈K3

)
Sp (C∗ Ji−1BQρ)e−λσρ .

(23)

Denote R : [−σθ , 0]→ Mm,k(K):

R(τ) :=


R1(τ), τ ∈ [−σ1, 0],

R2(τ), τ ∈ [−σ2,−σ1),

. . . . . . ,

Rθ(τ), τ ∈ [−σθ ,−σθ−1).

Set

δi(τ) :=



δi1(τ), τ ∈ [−ω1, 0],

δi2(τ), τ ∈ [−ω2,−ω1),

. . . . . . ,

δi`(τ), τ ∈ [−ω`,−ω`−1),

0, τ ∈ [−σθ ,−ω`),
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gi(τ) :=



gi1(τ), τ ∈ [−h1, 0],

gi2(τ), τ ∈ [−h2,−h1),

. . . . . . ,

gis(τ), τ ∈ [−hs,−hs−1),

0, τ ∈ [−σθ ,−hs),

Then, equalities (22) take the form∫ 0

−σθ

δi(τ)eλτdτ =
∫ 0

−σθ

gi(τ)eλτdτ −
∫ 0

−σθ

Sp
(
C∗ Ji−1BR(τ)

)
eλτdτ. (24)

Equalities (23) hold for all i = 1, n iff for all i = 1, n the following equalities hold:

γi0 = ai0 − Sp (C∗ Ji−1BQ0);

γiµ =− Sp (C∗ Ji−1BQρ), µ ∈ S1, ρ ∈ K1, σρ = ωµ;

γiµ = aij − Sp (C∗ Ji−1BQρ), µ ∈ S2, j ∈ S3, ρ ∈ K2, σρ = hj = ωµ;

0 = aij − Sp (C∗ Ji−1BQρ), j ∈ S4, ρ ∈ K3, σρ = hj.

(25)

Equalities (24) hold for all i = 1, n iff for a.e. τ ∈ [−σθ , 0] the following equalities hold:

δi(τ) = gi(τ)− Sp
(
C∗ Ji−1BR(τ)

)
, i = 1, n. (26)

Every ρth system of (25) consists of n equations with mk unknown entries of the
matrix Qρ, ρ = 0, θ. System (26) consists of n equations with mk unknown entries of
the matrix function R(τ), τ ∈ [σθ , 0]. Let us rewrite systems (25), (26) in the vector
form. By definition of the mapping vec, we have Sp (XY) = (vec X)T · (vec YT) for any
X ∈ Mp,q(K), Y ∈ Mq,p(K). Let us apply this equality in system (25), for every i = 1, n, to
the matrix X = C∗ Ji−1B and to the matrices Y = Qρ, ρ = 0, θ, and in system (26), for every
i = 1, n, to the matrix X = C∗ Ji−1B and to Y = R(τ). Let us construct the mk× n-matrix

P = [vec(C∗B), vec(C∗ JB), . . . , vec(C∗ Jn−1B)]. (27)

Denote vρ := vec (QT
ρ ) ∈ Kmk, ρ = 0, θ, f (τ) := vec (RT(τ)) ∈ Kmk, τ ∈ [−σθ , 0],

w0 := col (a10 − γ10, . . . , an0 − γn0) ∈ Kn;

wρ := col (−γ1µ, . . . ,−γnµ) ∈ Kn, µ ∈ S1, ρ ∈ K1, σρ = ωµ;

wρ := col (a1j − γ1µ, . . . , anj − γnµ) ∈ Kn, µ ∈ S2, j ∈ S3, ρ ∈ K2, σρ = hj = ωµ;

wρ := col (a1j, . . . , anj) ∈ Kn, j ∈ S4, ρ ∈ K3, σρ = hj;

ϑ(τ) := col
(

g1(τ)− δ1(τ), . . . , gn(τ)− δn(τ)
)
∈ Kn.

Then, one can rewrite systems (25), (26) in the vector form

PTvρ = wρ, ρ = 0, θ, (28)

PT f (τ) = ϑ(τ) a.e. τ ∈ [−σθ , 0]. (29)

System (11), (12) is arbitrary coefficient assignable by feedback (13) if and only if
system (28), (29) is solvable with respect to vρ, ρ = 0, θ, and f (τ), τ ∈ [−σθ , 0], for any
0 = ω0 < ω1 < . . . < ω`, any numbers γiµ ∈ K, µ = 0, `, and any integrable functions
δiξ : [−ωξ ,−ωξ−1] → K, ξ = 1, `, i = 1, n. The condition of linear independency of the
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matrices (16) is necessary and sufficient for solvability of system (28), (29). In that case,
system (28), (29) has the particular solution

vρ = P(PT P)−1wρ, ρ = 0, θ, (30)

f (τ) = P(PT P)−1ϑ(τ), τ ∈ [−σθ , 0]. (31)

The required matrices Qρ, ρ = 0, θ, and R(τ), τ ∈ [−σθ , 0], can be found from
the equalities

Qρ = (vec−1vρ)
T , ρ = 0, θ, R(τ) = (vec−1 f (τ))T .

3. Corollaries

If the characteristic function of the closed-loop system (14) turns into a polynomial,
then the spectrum Λ of system (14) is finite. We say that system (11), (12) is arbitrary finite
spectrum assignable by linear static output feedback (13) if for any ζi ∈ K, i = 1, n, there exist an
integer θ ≥ 0, numbers 0 = σ0 < σ1 < . . . < σθ , constant matrices Qρ ∈ Mm,k(K), ρ = 0, θ,
and integrable matrix functions Rκ : [−σκ ,−σκ−1] → Mm,k(K), κ = 1, θ, such that the
characteristic function (15) of the closed-loop system (14) satisfies the equality

ϕ(λ) = λn + ζ1λn−1 + . . . + ζn.

Corollary 1. System (11), (12) is arbitrary finite spectrum assignable by linear static output
feedback (13) if and only if the matrices (16) are linearly independent.

The proof of Corollary 1 follows from the proof of Theorem 2: the problem under
consideration is equivalent to solvability of system (28), (29), where ` = 0, γi0 = ζi
(i = 1, n), T1 = ∅, T2 = {h1, . . . , hs}, S1 = S2 = S3 = ∅, S4 = {1, s}, θ = s, σρ = hρ

(ρ = 1, s), K1 = K2 = ∅, K3 = S4.

Corollary 2. System (11), (12) is exponentially stabilizable with an arbitrary pregiven decay rate
by linear static output feedback (13) if the matrices (16) are linearly independent.

Corollary 2 follows from Corollary 1.
Consider system (11), (12) containing only lumped delays, i.e., suppose that

giη(τ) ≡ 0, τ ∈ [−hη ,−hη−1], i = 1, n, η = 1, s. (32)

Let the controller (13) also contains only lumped delays, i.e.,

Rκ(τ) ≡ 0, τ ∈ [−σκ ,−σκ−1], κ = 1, θ. (33)

In this case, the closed-loop system (14) does not contain distributed delays. Under
conditions (32) and (33), the statements of the problem is as follows: system (11), (12) is
said to be arbitrary coefficient assignable by static output feedback (13) if, for any integer ` ≥ 0,
for any given 0 = ω0 < ω1 < . . . < ω`, and for any numbers γiµ ∈ K, i = 1, n, µ = 0, `,
there exist an integer θ ≥ 0, numbers 0 = σ0 < σ1 < . . . < σθ , and constant matrices
Qρ ∈ Mm,k(K), ρ = 0, θ, such that the characteristic function (15) of the closed-loop system
(14) satisfies the equality

ϕ(λ) = λn +
n

∑
i=1

`

∑
µ=0

γiµλn−ie−λωµ



Mathematics 2021, 9, 2158 10 of 17

Corollary 3. Under conditions (32) and (33), system (11), (12) is arbitrary coefficient assignable
by linear static output feedback (13) if and only if the matrices (16) are linearly independent.

The proof of Corollary 3 repeats the proof of Theorem 2, under conditions (32), (33)
and condition δi(τ) ≡ 0, τ ∈ [−ω`, 0], i = 1, n. In fact, this proof was carried out
in [44] (Theorem 2). So, Theorem 2 is an extension of [44] (Theorem 2) from systems with
only lumped delays to systems with lumped and distributed delays.

Suppose that the delays in system (11), (12) and in feedback (13) are commensurate,
i.e., for some h > 0,

hj = jh, j = 0, s, (34)

σρ = ρh, ρ = 0, θ. (35)

In this case, the closed-loop system (14) contains only commensurate delays. Under
conditions (34) and (35), the statements of the problem is as follows: system (11), (12)
is said to be arbitrary coefficient assignable by static output feedback (13) if, for any integer
` ≥ 0, for any numbers γiµ ∈ K, i = 1, n, µ = 0, `, and for any integrable functions
δiξ : [−ξh,−(ξ − 1)h] → K, i = 1, n, ξ = 1, `, there exist an integer θ ≥ 0, constant
matrices Qρ ∈ Mm,k(K), ρ = 0, θ, and integrable matrix functions Rκ : [−κh,−(κ− 1)h]→
Mm,k(K), κ = 1, θ, such that the characteristic function (15) of the closed-loop system (14)
satisfies the equality

ϕ(λ) = λn +
n

∑
i=1

λn−i

(
`

∑
µ=0

γiµe−λµh +
`

∑
ξ=1

∫ −(ξ−1)h

−ξh
δiξ(τ)eλτdτ

)
. (36)

Corollary 4. Under conditions (34) and (35), system (11), (12) is arbitrary coefficient assignable
by linear static output feedback (13) if and only if the matrices (16) are linearly independent.

The proof of Corollary 4 repeats the proof of Theorem 2, under conditions (34), (35)
and condition ωµ = µh, µ = 0, `. In fact, this proof was carried out in [46] (Theorem 1). So,
Theorem 2 is an extension of [46] (Theorem 1) from systems with commensurate delays to
systems with non-commensurate delays.

Remark 2. Let us indicate to differences between systems with commensurate and non-commensurate
delays. In systems with commensurate delays, one needs, for a given triplet

T1 =
(
`, {γiµ, i = 1, n, µ = 0, `}, {δiξ(·), i = 1, n, ξ = 1, `}

)
,

to construct a triplet

T2 =
(

θ, {Qρ, ρ = 0, θ}, {Rκ(·), κ = 1, θ}
)

ensuring (36), while in systems with non-commensurate delays, one needs, for a given quadruple

Q1 =
(
`, {ωµ, µ = 0, `}, {γiµ, i = 1, n, µ = 0, `}, {δiξ(·), i = 1, n, ξ = 1, `}

)
,

to construct a quadruple

Q2 =
(

θ, {σρ, ρ = 0, θ}, {Qρ, ρ = 0, θ}, {Rκ(·), κ = 1, θ}
)

,

ensuring the equality from Definition 3. Thus, the problem statements are different. Corollary 4, for
systems with commensurate delays, was proved in [46] (Theorem 1). Here we prove a more general
result. Difference and difficulty here, with respect to [46], is in choosing the required numbers σρ.
The proof given in [46] does not provide an algorithm for constructing the indicated numbers σρ and
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the corresponding gain coefficients Qρ and Rκ(·). Here, we overcome these difficulties. It provides
the novelty of the results obtained.

4. Modeling Example

Let h1 = 1, h2 =
√

2. Consider the system

x′′′(t) + x′′(t− h1) + x′′(t− h2) + x′(t) + x(t)

+ x(t− h1)− x(t− h2) +
∫ 0

−h1

x′′(t + τ) cos τ dτ

− 2
∫ −h1

−h2

x′(t + τ) sin τ dτ −
∫ 0

−h1

x(t + τ) cos 2τ dτ

= u′1(t) + u1(t) + u′2(t), (37)

y1(t) = −x(t)− x′(t), y2(t) = x′(t), (38)

x ∈ R, u = col (u1, u2) ∈ R2, y = col (y1, y2) ∈ R2. System (37), (38) has the form (11), (12)
where n = 3, m = 2, k = 2, p = 2, s = 2;

a10 = 0, a11 = 1, a12 = 1, a20 = 1, a21 = 0, a22 = 0,

a30 = 1, a31 = 1, a32 = −1;

g11(τ) = cos τ, g12(τ) = 0, g21(τ) = 0, g22(τ) = −2 sin τ,

g31(τ) = − cos 2τ, g32(τ) = 0;

b21 = 1, b22 = 1, b31 = 1, b32 = 0;

c11 = −1, c21 = −1, c12 = 0, c22 = 1.

From system (37), (38), construct the matrices B, C: we obtain B =

0 0
1 1
1 0

, C =

−1 0
−1 1
0 0

. Hence,

C∗B =

[
−1 −1
1 1

]
, C∗ JB =

[
−2 −1
1 0

]
, C∗ J2B =

[
−1 0
0 0

]
. (39)

Construct the matrix (27):

P =


−1 −2 −1
−1 −1 0
1 1 0
1 0 0

.

We have rank P = 3 = n, hence, the matrices (39) are linearly independent. Therefore,
by Theorem 2, system (37), (38) is arbitrary coefficient assignable by linear static output
feedback (13). Let us construct such a controller. Suppose, for example, that ` = 2, ω1 = 1,
ω2 =

√
3, and

ϕ(λ) = λ3 + λ2
(

2 + e−λω2 −
∫ 0

−ω1

eλτ(sin τ − cos τ) dτ
)

+ λ
(

1 + 2e−λω1 −
∫ −ω1

−ω2

eλτ sin 2τ dτ
)
+ e−λω1 . (40)
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Then

T1 = {ω1, ω2} = {1,
√

3}, T2 = {h1, h2} = {1,
√

2};
γ10 = 2, γ11 = 0, γ12 = 1, γ20 = 1, γ21 = 2,

γ22 = 0, γ30 = 0, γ31 = 1, γ32 = 0;

δ11(τ) = cos τ − sin τ, δ12(τ) = 0, δ21(τ) = 0,

δ22(τ) = − sin 2τ, δ31(τ) = 0, δ32(τ) = 0.

From the proof of Theorem 2, we obtain

S1 = {2}, S2 = {1}, S3 = {1}, S4 = {2},
T = {h1, h2, ω2} = {1,

√
2,
√

3}, θ = 3,

σ1 = h1 = ω1 = 1, σ2 = h2 =
√

2, σ3 = ω2 =
√

3,

K1 = {3}, K2 = {1}, K3 = {2}.

We have

g1(τ) =


cos τ, τ ∈ [−σ1, 0],

0, τ ∈ [−σ2,−σ1),

0, τ ∈ [−σ3,−σ2),

g2(τ) =


0, τ ∈ [−σ1, 0],

− 2 sin τ, τ ∈ [−σ2,−σ1),

0, τ ∈ [−σ3,−σ2),

g3(τ) =


− cos 2τ, τ ∈ [−σ1, 0],

0, τ ∈ [−σ2,−σ1),

0, τ ∈ [−σ3,−σ2),

δ1(τ) =


cos τ − sin τ, τ ∈ [−σ1, 0],

0, τ ∈ [−σ2,−σ1),

0, τ ∈ [−σ3,−σ2),

δ2(τ) =


0, τ ∈ [−σ1, 0],

− sin 2τ, τ ∈ [−σ2,−σ1),

− sin 2τ, τ ∈ [−σ3,−σ2),

δ3(τ) =


0, τ ∈ [−σ1, 0],

0, τ ∈ [−σ2,−σ1),

0, τ ∈ [−σ3,−σ2).

Next, we have

w0 = col (a10 − γ10, a20 − γ20, a30 − γ30) = (−2, 0, 1),

w1 = col (a11 − γ11, a21 − γ21, a31 − γ31) = (1,−2, 0),

w2 = col (a12, a22, a32) = (1, 0,−1),

w3 = col (−γ12,−γ22,−γ32) = (−1, 0, 0),

ϑ(τ) = col
(

g1(τ)− δ1(τ), g2(τ)− δ2(τ), g3(τ)− δ3(τ)
)

=


col (sin τ, 0,− cos 2τ), τ ∈ [−σ1, 0],

col (0,−2 sin τ + sin 2τ, 0), τ ∈ [−σ2,−σ1),

col (0, sin 2τ, 0), τ ∈ [−σ3,−σ2).
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Calculating v0, v1, v2, v3, and f (τ) by formulas (30), (31), we obtain

v0 = col (−1, 1,−1,−1), v1 = col (0, 1,−1, 3),

v2 = col (1,−1, 1, 0), v3 = col (0, 0, 0,−1);

f (τ) =



col (cos 2τ,− cos 2τ, cos 2τ, sin τ − cos 2τ),

τ ∈ [−σ1, 0],

col (0, sin τ − sin τ cos τ,

− sin τ + sin τ cos τ, 2 sin τ − sin 2τ),

τ ∈ [−σ2,−σ1),

col (0,− sin τ cos τ, sin τ cos τ,− sin 2τ),

τ ∈ [−σ3,−σ2).

From this, it follows that

Q0 =

[
−1 −1
1 −1

]
, Q1 =

[
0 −1
1 3

]
,

Q2 =

[
1 1
−1 0

]
, Q3 =

[
0 0
0 −1

]
.

R(τ) =



[
cos 2τ cos 2τ
− cos 2τ sin τ − cos 2τ

]
,

τ ∈ [−σ1, 0],[
0 − sin τ + sin τ cos τ

sin τ − sin τ cos τ 2 sin τ − sin 2τ

]
,

τ ∈ [−σ2,−σ1),[
0 sin τ cos τ

− sin τ cos τ − sin 2τ

]
,

τ ∈ [−σ3,−σ2).

The controller (13) [
u1(t)
u2(t)

]
= Q0

[
y1(t)
y2(t)

]
+ Q1

[
y1(t− σ1)
y2(t− σ1)

]
+ Q2

[
y1(t− σ2)
y2(t− σ2)

]
+ Q3

[
y1(t− σ3)
y2(t− σ3)

]
+
∫ 0

−σ3

R(τ)y(t + τ)dτ

(41)

has the components

u1(t) = −x′(t− h1) + x(t)− x(t− h2)−
∫ 0

−h1

x(t + τ) cos 2τ dτ

+
∫ −h1

−h2

x′(t + τ)(sin τ cos τ − sin τ) dτ +
∫ −h2

−ω2

x′(t + τ) sin τ cos τ dτ,

u2(t) = −2x′(t) + 2x′(t− h1) + x′(t− h2)− x′(t−ω2)

− x(t)− x(t− h1) + x(t− h2) +
∫ 0

−h1

x(t + τ) cos 2τ dτ +
∫ 0

−h1

x′(t + τ) sin τ dτ

+
∫ −h1

−h2

x(t + τ)(sin τ cos τ − sin τ) dτ +
∫ −h1

−h2

x′(t + τ)(sin τ − sin τ cos τ) dτ

+
∫ −h2

−ω2

x(t + τ) sin τ cos τ dτ −
∫ −h2

−ω2

x′(t + τ) sin τ cos τ dτ.
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System (37), (38) closed-loop by feedback (41) takes the form

x′′′(t) + 2x′′(t) + x′′(t−ω2) + x′(t) + 2x′(t−ω1)

+ x(t−ω1)−
∫ 0

−ω1

x′′(t + τ)(sin τ − cos τ) dτ −
∫ −ω1

−ω2

x′(t + τ) sin 2τ dτ = 0.
(42)

The characteristic function of system (42) is equal to (40). In particular, system (42) (with
ω1 = 1, ω2 =

√
3) is exponentially stable. This is confirmed by Figures 1 and 2. Figure 1

shows the spectrum of system (42) with ω1 = 1, ω2 =
√

3. The spectrum is in the left
half-plane. Figure 2 shows solutions of system (42) with ω1 = 1, ω2 =

√
3, with the

initial functions x(τ) = 1 (blue plot), x(τ) = τ (violet plot), x(τ) = τ2 (green plot) for all
τ ∈ [−

√
2, 0]. Solutions tend to zero exponentially.
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Figure 1. The spectrum of system (42) with ω1 = 1, ω2 =
√
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√
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5. Conclusions

Necessary and sufficient conditions were obtained for the problem of arbitrary coeffi-
cient assignment for the characteristic function of the closed-loop system by static output
feedback for a linear differential equation with non-commensurate lumped and distributed
delays. The obtained results extend the earlier corresponding results for systems with com-
mensurate delays and for systems with only lumped delays. Corollaries on arbitrary finite
spectrum assignment and on stabilization were stated. We provided an example illustrating
our results. In future works, we expect to extend these results to control systems defined
by non-scalar systems of differential equations. Moreover, this approach could be applied
to problems of stabilization by static output feedback for linear quasi-differential equations
and for nonlinear differential equations with delays based on linear approximation.
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