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Abstract: Several phenomena in nature are subjected to the interaction of various physical parameters,
which, if these latter are well known, allow us to predict the behavior of such phenomena. In
most cases, these physical parameters are not exactly known, or even more these are unknown, so
identification techniques could be employed in order to estimate their values. Systems for which
their inputs and outputs vary both temporally and spatially are the so-called distributed parameter
systems (DPSs) modeled through partial differential equations (PDEs). The way in which their
parameters evolve with respect to time may not always be known and may also induce undesired
behavior of the dynamics of the system. To reverse the above, the well-known adaptive boundary
control technique can be used to estimate the unknown parameters assuring a stable behavior of the
dynamics of the system. In this work, we focus our attention on the design of an adaptive boundary
control for a parabolic type reaction–advection–diffusion PDE under the assumption of unknown
parameters for both advection and reaction terms and Robin and Neumann boundary conditions.
An identifier PDE system is established and parameter update laws are designed following the
certainty equivalence approach with a passive identifier. The performance of the adaptive Neumann
stabilizing controller is validated via numerical simulation.

Keywords: applied mathematics; adaptive boundary control; backstepping; computational methods;
distributed parameter systems; partial differential equations; reaction–advection–diffusion equation

1. Introduction

A large number of physical phenomena in nature can be modeled by partial dif-
ferential equations (PDEs) like those in the field of engineering, physics, or chemical
sciences since these disciplines encompass the study of phenomena such as electromag-
netic field, acoustics, fluid flow, heat transfer, strength of materials, chemical reactions and
concentration, mechanical vibrations, among other like logistics, flocking behavior, or even
disease spreading. These phenomena have interactions between different variables and
parameters for which it becomes necessary to correlate them into a mathematical model
through the use of fundamental laws of nature, like those about conservation of energy,
mass, and momentum. Due to the interaction between variables and parameters and by
the way in which they vary both temporally and spatially, such processes are known as
distributed parameter systems (DPSs). An essential feature of the DPSs is that they are
infinite-dimensional systems that lead to PDEs for which, in some scenarios, it is possible
to use a reduction methodology to transform the system into a finite-dimensional ordinary
differential equation (ODE) in order to simplify the DPS making it more accurate for a
specific application.

The PDEs are classified into three main categories, namely, the parabolic type, elliptic
type, and hyperbolic type, according to the properties that each equation may have. Each
one of these latter are used to describe the behavior of different phenomena, e.g., parabolic
PDEs mainly describe heat transfer and diffusion processes, elliptic PDEs describe steady
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state behavior for systems like electrostatic fields, and the hyperbolic type are associated
with vibrations or wave phenomena [1]. Unlike an ODE, where the solution leads to
finding a specific state, the solution from a PDE lead us to find a family of functions due
to its infinite-dimensional nature becoming necessary to establish certain conditions that
help us to find the family of solutions inside a domain; such conditions are the so-called
boundary conditions, namely, Dirichlet, Neumann, and Robin conditions, which ensures
the well-posedness of the PDE [2].

In many DPSs, the physical parameters are unknown because these vary as the dy-
namics of the system evolve over time. From control theory, a recurrent approach has
been widely used for estimation of unknown parameters from finite-dimensional systems,
namely, the adaptive control technique, which has been extended to the control of infinite-
dimensional PDEs. The adaptive control technique for PDEs successfully contribute to
estimating the unknown parameters assuring the convergence to their true values. De-
pending on the location of the sensors and actuators, the control of PDEs can be performed
either in the domain or at the boundary.

Some of the first works conducting studies of convergence of the estimation error
to zero in DPSs were reported in [3–5]. These works were focused on the design of a
model reference adaptive control (MRAC) for different types of PDEs. First, attempts
on the development of a robust methodology to the design of adaptive controllers in
the boundary of PDEs systems was reported in [6] to the Burgers’ equation case when
considering unknown viscosity as well as that for an axially moving string system in [7];
for both cases, the adaptive laws were designed through the Lyapunov’s direct method. An
adaptive boundary controller for a parabolic PDE, containing an unknown destabilizing
parameter affecting the interior of the domain, was developed in [8]. In [9,10], it was shown
how adaptive boundary control problems for unstable parabolic PDEs of infinite relative
degree were solved via output feedback approach. In [11], the first adaptive controllers
for parabolic PDEs with actuation at the boundary and spatially-varying parameters were
introduced. In this latter work, the Lyapunov’s direct method was used in the design
of adaptive laws guaranteeing convergence to zero for the estimation and parametric
errors. The most relevant contributions for adaptive boundary control of parabolic PDEs
through a backstepping approach were reported in [12–14]. The backstepping approach
was used to establish an explicit expression for the kernel gain applied to the control law.
The control law is then modified substituting the unknown parameters by their estimates.
Parameter update (adaptive) laws were designed through the Lyapunov’s technique for
the establishment of the parameter identifier assuring convergence to zero of the estimation
error. In [15,16], adaptive boundary control laws were developed for wave equations,
namely hyperbolic type PDEs. In [17], the design of a nonlinear adaptive controller, using
the Lyapunov’s technique, for a hyperbolic PDE model representing crowd dynamics was
reported. A system of a reaction–advection–diffusion (R–A–D) PDE of a parabolic type with
a distributed input subject to an arbitrarily large and unknown time-delay was considered
in [18]; although the control was not applied at the boundary, the main contribution lies
with the need to compensate unfavorable effects on communication delays. The trend in
this latter work was directed in the sense of [19,20], which addresses the development of
control designs for coupled PDEs systems of hyperbolic and parabolic type, respectively.

Adaptive boundary control for PDEs has been positioned as an effective tool for
estimation of the dynamic behavior of the state and unknown parameters from infinite-
dimensional systems; the control signal is actuated at the boundary so as not to be intrusive
in the domain under the fact that placement of sensors and actuators within the system
becomes unfeasible [21,22].

In [23], adaptive boundary control design methods, namely, the Lyapunov’s method,
and certainty equivalence approaches with passive and swapping identifiers, were shown.
Backstepping controllers for boundary control of PDEs, previously designed and explicitly
parametrized in physical parameters of the respective plants to be controlled, were consid-
ered as nominal controllers in the development of such adaptive control schemes. In that
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work, the certainty equivalence approach with passive identifier was used for the design
of an adaptive boundary controller for a two-dimensional (2D) R–A–D PDE system having
Dirichlet boundary conditions with actuation in one of them. In addition, authors claim that
these adaptive control methods can be extended to R–A–D PDE systems in 2D and 3D as
well as to systems with spatially varying (functional) parametric uncertainties and to other
types of boundary conditions. Moreover, an adaptive boundary control design method
via the output–feedback approach was shown, where authors also claim that this method
can be applied to general R–A–D PDE systems. In [24], an adaptive boundary controller
via Lyapunov’s method for a R–A–D PDE system with unknown diffusion and advection
parameters having Dirichlet boundary conditions was designed. In addition, the design of
an adaptive boundary control via certainty equivalence approach with passive identifiers
for a 3D R–A–D system and Dirichlet boundary conditions was included. Moreover, the
certainty equivalence approach but with swapping identifiers was used to the design of an
adaptive boundary controller for a R–A–D system having Dirichlet boundary conditions.

In the field of control for nonlinear PDEs, there is so much to explore. The study of the
backstepping methodology is motivated from its potential for nonlinear PDEs. For some
of the problems that have been addressed, the nonlinearity appears in the PDE in such
a way that it does not affect stability, i.e., the choice of a Lyapunov function was simple,
as it was to the case for the Burgers’ equation in [6,25–27]. Problems of most practical
interest and mathematically challenging are those with boundary control and with in-
domain nonlinearities. The design of nonlinear feedback laws for this latter kind of systems
is a complex task. An approach which consists in spatial discretization of a nonlinear
PDE plant to the development of an optimal feedback law for the resulting ODE system
was introduced in [28]. However, this proposal would entail the problem of the curse of
dimensionality. The feedback linearization approach has been considered for PDEs but
using spatial discretization or some ways of ODE model reduction. It is well known that a
bound of the numerical solution is crucial in the establishment of stability and convergence
for a fully discrete scheme applied to nonlinear PDEs. The analysis for stability and
convergence of the pseudospectral (Fourier collocation) method, coupled with a variety of
specially designed time-stepping methods of up to fourth order, for the numerical solution
of a 3D viscous Burgers’ equation with periodic boundary conditions was carried out
in [29]. The major advantage of the pseudospectral method is that it is easier to implement
and very efficient due to the fast Fourier transform. The ease of implementation comes
from the fact that the pseudospectral approach avoids some difficulties when evaluating
3D nonlinear terms. In that work, the inverse inequality approach is avoided, which is a
classical way to obtain such a bound and leads to a restriction on the time-step in terms of
the spatial grid size, which can be prohibitive in two or three dimensions.

In this work, we try with a non-previously exposed case where the adaptive boundary
control methodology is used for the control of a parabolic type R–A–D PDE when assuming
unknown constant parameters for the reaction and advection terms and both Robin and
Neumann type boundary conditions. We focus our attention on reaching convergence
to zero for the estimation error by designing adaptive laws that estimate the unknown
parameters where the adaptive controller signal is actuated in one of the boundaries. Our
work is motivated from [24,28], where the adaptive boundary control design for the R–A–D
PDE system considered here has been left as an open problem.

This paper is organized as follows: In Section 2, the properties for function spaces are
summarized. In Section 3, the R–A–D PDE system is described. In addition, a Neumann
stabilizing controller previously designed, in a work of our own, for the class of PDE
system considered here is shown. The identifier PDE and estimation error PDE are properly
established through Sections 4 and 5, respectively. In Section 6, parameter update (adaptive)
laws are designed following the certainty equivalence approach with passive identifier. The
performance of the adaptive boundary controller is shown in Section 7. Some concluding
remarks are given at the end of the manuscript.
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2. Function Spaces

Let us denote by Ω an open set of Rn with boundary Γ. Assume that either Ω is Lips-
chitz or Ω is of class Cr for r ≥ 1. The generic point of Rn is denoted by x = {x1, . . . , xn}.
The Lebesgue measure on Rn is denoted by dx = dx1 . . . dxn.

Let us denote by C(Ω) (resp. Ck(Ω), k ∈ N or k = ∞) the space of real continuous
functions on Ω (resp. the space of k times continuously differentiable functions on Ω),
C(Ω) (resp. Ck(Ω)) represents the space of real continuous functions on Ω (resp. the space
of k times continuously differentiable functions on Ω). Let us denote by C∞

0 the spaces of
real C∞ functions on Ω with a compact support in Ω.

For p ∈ [1, ∞), Lp(Ω) is the space of real functions on Ω which are Lp for the Lebesgue
measure. It is a Banach space for the norm

‖u‖Lp(Ω) =

( ∫
Ω
|u(x)|pdx

)1/p

. (1)

For p = ∞, L∞(Ω) is the space of measurable and bounded real functions on Ω. It is
also a Banach space for the norm

‖u‖L∞(Ω) = ess supx∈Ω|u(x)|. (2)

For p = 2, L2(Ω) is a Hilbert space for the scalar product

(u, v) =
∫

Ω
u(x) · v(x)dx (3)

with the corresponding norm denoted by

| u |= ‖u‖L2(Ω) = {(u, u)}1/2. (4)

Let us denote by Ws,p(Ω), s ∈ N, p ∈ [1, ∞], the Sobolev space of functions u in Lp(Ω)
whose distribution derivatives of order less than or equal to s are in Lp(Ω). It is a Banach
space for the norm

‖u‖Ws,p(Ω) = ∑
[α]≤s
‖Dαu‖Lp(Ω) (5)

where Diu = ∂u/∂xi, i ∈ [1, n], is the notation for the partial differential derivatives of
a function u, Dαu = Dα1

1 . . . Dαn
n u = (∂α1+···+αn u)/(∂xα1

1 . . . ∂xαn
n ), α = {α1, . . . , αn} ∈ Nn,

and [α] = α1 + · · ·+ αn.
For p = 2, Ws,2(Ω) = Hs(Ω) and this is a Hilbert space for the scalar product

((u, v))Hs(Ω) = ∑
[α]≤s

(Dαu, Dαv). (6)

Let us consider the Sobolev spaces Hs(Ω) which contain C∞(Ω) and Cs(Ω). The clo-
sure of C∞

0 (Ω) in Hs(Ω) (resp. Ws,p(Ω)) is denoted by Hs
0(Ω) (resp. Ws,p

0 (Ω)). In particular,

H1(Ω) = {u ∈ L2(Ω), Diu ∈ L2(Ω), 1 ≤ i ≤ n}, (7)

H1
0(Ω) = the closure of C∞

0 (Ω) in H1(Ω), (8)

which are Hilbert spaces for the scalar product

((u, v))H1(Ω) = (u, v) +
n

∑
i=1

(Diu, Div). (9)
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For a bounded Ω, the Poincaré inequality

|u| ≤ c0(Ω)

{ n

∑
i=1
|Diu|2

}1/2

, ∀ u ∈ H1
0(Ω), (10)

implies that H1
0(Ω) is a Hilbert space for the scalar product

((u, v)) =
n

∑
i=1

(Diu, Div) (11)

and that the corresponding norm

‖u‖ = {((u, u))}1/2 (12)

is equivalent to the norm induced by H1(Ω) [30].

3. Reaction–Advection–Diffusion (R–A–D) Equation

The R–A–D PDE model deals with the time evolution of concentration of species in a
flowing medium. The adaptive boundary control methodology to be applied in this work
for stabilizing a certain class of R–A–D PDE requires of the prior design a backstepping-
based boundary control law (nominal backstepping controller) [23,24] that achieves the
stabilization objective.

Let us consider the R–A–D system

ut(x, t) = uxx(x, t) + bux(x, t) + λu(x, t), (13)

ux(0, t) = − b
2

u(0, t), (14)

ux(1, t) = U (t), (15)

where u(x, t) is a function defined in x ∈ [0, 1] ∀ t ∈ [0, ∞), b and λ are known constant
coefficients. The system has a Robin condition imposed at the boundary x = 0 as well as a
Neumann actuation signal U (t) applied on the other one boundary x = 1. Here, uxx(x, t),
bux(x, t), and λu(x, t) are the diffusion, advection and reaction terms, respectively. This
last term is the one that causes instability in the system for λ > 0 or it behaves as a stable
system otherwise. The R–A–D PDE system (13)–(15) represents a hypothetical simple case
developed in one spatial dimension and rectangular coordinates.

A Neumann stabilizing controller for the system (13)–(15) was designed in [31], via
the previously mentioned backstepping approach, which is given by

ux(1, t) = −1
2
(λ0 + b + 1)u(1, t)

−3
2

λ0

∫ 1

0

I1(
√

λ0(1− y2))√
λ0(1− y2)

u(y, t) exp
(

b
2
(y− 1)

)
dy

−λ0

∫ 1

0

I2(
√

λ0(1− y2))

(1− y2)
u(y, t) exp

(
b
2
(y− 1)

)
dy, (16)

when considering the heat equation

wt(x, t) = wxx(x, t), (17)

wx(0, t) = 0, (18)

wx(1, t) = −1
2

w(1, t), (19)

as a target system, where “exp” stands for the Euler exponential constant, the parameter
λ0 is given as λ0 = λ− b2

4 , and I1(·), I2(·) stands for modified Bessel functions of the first
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and second kind, respectively. The Neumann stabilizing controller (16) is applied in the
boundary condition (15) assuring the stabilization of the system even if the parameter λ is
large enough. It must be noticed that the stabilizing control law (16) was designed in [31]
under the assumption that the parameters b and λ from the system (13)–(15) are known.

4. Identifier PDE

Let us now consider that the constant parameters b and λ of the system (13)–(15) are
unknown and that it is still desired to stabilize the system.

We begin the analysis of our case study by introducing the auxiliary system

ût(x, t) = ûxx(x, t) + b̂(t)ux(x, t) + λ̂(t)u(x, t) + γ2[u(x, t)− û(x, t)]
∫ 1

0
u2

x(x, t)dx, (20)

ûx(0, t) = − b̂(t)
2

u(0, t), (21)

ûx(1, t) = U (t). (22)

This auxiliary system (20)–(22) is called identifier PDE. Notice here that the identifier
PDE employs a copy of the original R–A–D PDE and one additional nonlinear term
along with its boundary conditions. In this identifier PDE, we employ the notation (·̂)
to denote the estimate of a function or from a parameter, so that b̂(t) and λ̂(t) are the
estimate parameters. The nonlinear additional term within the identifier is γ2[u(x, t)−
û(x, t)]

∫ 1
0 u2

x(x, t)dx, where γ > 0 is an arbitrary constant, u(x, t)− û(x, t) is the so-called

error signal or estimation error, and
∫ 1

0 u2
x(x, t)dx is the squared L2-norm of u2

x(x, t). The
L2-norm is defined by

‖v(t)‖ =
(∫ 1

0
v2(x, t)dx

)1/2

. (23)

This identifier PDE will help us with obtaining the estimation error, which, during
the adaptation process, should be gradually reduced until it becomes equal to zero as time
progresses. The stabilizing control signal for the system (20)–(22) is the same as (16), but
the constant parameters b, λ are being replaced by their estimates b̂ and λ̂, respectively, i.e.,

ux(1, t) = − 1
2

(
λ̂0(t) + b̂(t) + 1

)
û(1, t)

− 3
2 λ̂0(t)

∫ 1
0

I1(
√

λ̂0(t)(1−y2))√
λ̂0(t)(1−y2)

û(y, t) exp
(

b̂(t)
2 (y− 1)

)
dy

−λ̂0(t)
∫ 1

0
I2(
√

λ̂0(t)(1−y2))
(1−y2)

û(y, t) exp
(

b̂(t)
2 (y− 1)

)
dy,

(24)

where λ̂0(t) = λ̂(t)− b̂2(t)
4 .

5. Estimation Error PDE

In order to be able to approximate the value of the unknown parameters b and λ
from (13)–(14), we need to establish an expression capable of comparing the estimated
parameters b̂, λ̂ from (20)–(21) with their real values; this expression is the so-called
estimation error PDE. Let us consider the estimation error

e(x, t) = u(x, t)− û(x, t). (25)

Taking the derivative of (25) with respect to time, it yields

et(x, t) = ut(x, t)− ût(x, t). (26)
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Then, the first and second space derivatives from (25), i.e., the first and second
derivative with respect to x, are given by

ex(x, t) = ux(x, t)− ûx(x, t), (27)

exx(x, t) = uxx(x, t)− ûxx(x, t). (28)

Now, regarding ut(x, t) and ût(x, t) from (13) and (20), respectively, and substituting
these latter in (26), we get

et(x, t) = uxx(x, t) + bux(x, t) + λu(x, t)− ûxx(x, t)− b̂(t)ux(x, t)− λ̂(t)u(x, t)

−γ2[u(x, t)− û(x, t)]
∫ 1

0
u2

x(x, t)dx. (29)

Rearranging (29) results in

et(x, t) = uxx(x, t)− ûxx(x, t) + bux(x, t)− b̂(t)ux(x, t) + λu(x, t)− λ̂(t)u(x, t)

−γ2[u(x, t)− û(x, t)]
∫ 1

0 u2
x(x, t)dx.

(30)

Now, introducing the notation (·̃) to refer to the difference between the real and
estimated parameters, regarding (25) and (28), and considering the L2-norm from (23),
we obtain

et(x, t) = exx(x, t) + b̃(t)ux(x, t) + λ̃(t)u(x, t)− γ2e(x, t)‖ux(t)‖2, (31)

where b̃(t) and λ̃(t) are the parameter estimation errors, i.e.,

b̃(t) = b− b̂(t), (32)

λ̃(t) = λ− λ̂(t). (33)

To determine the boundary conditions in terms of the estimation error, let us first
consider (27) along with (14) and (21), and, evaluating them at x = 0,

ex(0, t) = ux(0, t)− ûx(0, t),

= − b
2 u(0, t)− b̂(t)

2 u(0, t),

= −[b− ˆb(t)]u(0, t),

= − b̃(t)
2 u(0, t).

(34)

Repeating the previous process for (15) and (22) evaluated at x = 1 yields

ex(1, t) = ux(1, t)− ûx(1, t),

= U (t)−U (t),

= 0.

(35)

Thus, we get the estimation error PDE (31) with boundary conditions (34) and (35).

6. Parameter Update Laws

Up to this point, we have established three PDE systems: the unstable R–A–D
PDE (13)–(15) with unknown parameters b and λ, the identifier PDE (20)–(22) with para-
metric estimates b̂(t) and λ̂(t), and the estimation error PDE (31)–(35) which contains
the preceding systems via estimation error (25). In what follows, we will prove that the
system (31)–(35) is bounded and square integrable in time in the sense of the L2-norm (23).
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Let us consider the Lyapunov function

V(t) =
1
2

∫ 1

0
e2(x, t)dx +

b̃2(t)
2γ1

+
λ̃2(t)
2γ2

(36)

and its time derivative given by

V̇(t) =
∫ 1

0 e(x, t)et(x, t)dx + b̃(t)
γ1

˙̃b(t) + λ̃(t)
γ2

˙̃λ(t),

=
∫ 1

0 e(x, t)et(x, t)dx + b̃(t)
γ1

[ḃ− ˙̂b(t)] + λ̃(t)
γ2

[λ̇− ˙̂λ(t)],

=
∫ 1

0 e(x, t)et(x, t)dx− 1
γ1

b̃(t) ˙̂b(t)− 1
γ2

λ̃(t) ˙̂λ(t),

(37)

where ḃ, λ̇ = 0 since these are constants and γ1, γ2 > 0. From (31), (37) becomes

V̇(t) =
∫ 1

0 e(x, t)
(
exx(x, t) + b̃(t)ux(x, t) + λ̃(t)u(x, t)− γ2e(x, t)‖ux(t)‖2)dx

− 1
γ1

b̃(t) ˙̂b(t)− 1
γ2

λ̃(t) ˙̂λ(t),

=
∫ 1

0 e(x, t)exx(x, t)dx + b̃(t)
∫ 1

0 e(x, t)ux(x, t)dx + λ̃(t)
∫ 1

0 e(x, t)u(x, t)dx

−γ2‖ux(t)‖2
∫ 1

0 e2(x, t)dx− 1
γ1

b̃(t) ˙̂b(t)− 1
γ2

λ̃(t) ˙̂λ(t).

Using integration by parts on some terms of (38) along with boundary conditions
(34)–(35) and regarding the L2-norm (23), we get

V̇(t) = −‖ex(t)‖2 − γ2‖ux(t)‖2‖e(t)‖2 + b̃(t)
2 e(0, t)u(0, t)

+b̃(t)
∫ 1

0 e(x, t)ux(x, t)dx + λ̃(t)
∫ 1

0 e(x, t)u(x, t)dx

− 1
γ1

b̃(t) ˙̂b(t)− 1
γ2

λ̃(t) ˙̂λ(t).

(38)

From the adaptive control theory [32], we need to get rid of those terms that do not
allow for ensuring that (38) is negative definite. In order to achieve this latter, the following
adaptive laws (also known as parameter update laws) are chosen:

˙̂b(t) = γ1

(∫ 1

0
e(x, t)ux(x, t)dx +

1
2

e(0, t)u(0, t)
)

, (39)

˙̂λ(t) = γ2

∫ 1

0
e(x, t)u(x, t)dx, (40)

which, when replaced in (38), causes the last five terms be cancelled, yielding

V̇(t) = −‖ex(t)‖2 − γ2‖ux(t)‖2‖e(t)‖2, (41)

which implies
V(t) ≤ V(0). (42)

Now, according to (36), we can see that b̃ and λ̃ as well as the term
∫ 1

0 e2(x, t)dx = ‖e(t)‖2

are all bounded functions.
Certain properties can be achieved from (41) if we integrate it, with respect to time, by

setting t from zero to infinity, i.e.,

V(∞)−V(0) = −
∫ ∞

0
‖ex(t)‖2dt−

∫ ∞

0
γ2‖ux(t)‖2‖e(t)‖2dt,



Mathematics 2021, 9, 2224 9 of 17

and accordingly to (42)

V(∞) +
∫ ∞

0
‖ex(t)‖2dt +

∫ ∞

0
γ2‖ux(t)‖2‖e(t)‖2dt ≤ V(0), (43)

from which ‖ex(t)‖ and ‖ux(t)‖‖e(t)‖ are square integrable functions of time, i.e., ‖ex(t)‖,
‖ux(t)‖‖e(t)‖ ∈ L2.

In addition, from the adaptive laws (39)–(40), | ˙̂b(t)| ≤ γ1‖e(x, t)‖‖ux(x, t)‖ and
| ˙̂λ(t)| ≤ γ2‖e(x, t)‖‖u(x, t)‖, so ˙̂b(t), ˙̂λ(t) ∈ L2.

In the manner described above, it has been proved that the system (20)–(22) effectively
estimates b̂ and λ̂ which converge to the true parameters b and λ via adaptive laws (39)–(40),
allowing for the dynamics of the system (20)–(22) also converge with that from (13)–(15).
Then, the following lemma can be stated.

Lemma 1. The identifier (20)–(22) with update laws (39)–(40) guarantees

‖e(t)‖ ∈ L∞ ∩ L2, (44)

‖ex(t)‖, ‖ux(t)‖‖e(t)‖ ∈ L2, (45)

b̃(t), λ̃(t) ∈ L∞, (46)
˙̂b(t), ˙̂λ(t) ∈ L2. (47)

From Lemma 1, although the stability of the identifier has been proven, the proof for
closed-loop stability of the whole adaptive boundary control scheme designed here can be
carried out along the same lines as in [24].

In Figure 1, a block diagram is shown to illustrate the adaptive control scheme for the
R–A–D PDE system (13)–(15).

Figure 1. Adaptive boundary control scheme for the R–A–D PDE system (13)–(15).

7. Simulation Results

In this section, we discuss the simulation results from the dynamics in the closed
loop of the adaptive Neumann stabilizing controller. The main objective is to show the
convergence to zero for the estimation error (25) as a function of time and that the estimated
parameters b̂ and λ̂ converge to their true values as time progresses. The simulation is set
to b = 2 and λ = 12 along with initial condition u0(x) = 10 sin(πx). A built-in function
in MATLAB with a previous finite discretization in space process to solve a resulting
2× 2 parabolic PDE system, consisting of the R–A–D PDE system (13)–(15) and identifier
PDE (20)–(22), is implemented. Figure 2 shows the dynamics of the R–A–D PDE system
with adaptive Neumann control at the boundary while Figure 3 shows the progression
in time of the identifier PDE. The dynamics from the identifier PDE are very similar to
that from the R–A–D PDE system. Figure 4 clearly shows how the estimation error (25)
converges to zero almost immediately after starting the process. In Figure 5, we can see the
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effort of the control signal (24), where the parametric estimates b̂ and λ̂ actively affect its
behavior as they are computed at each time interval. Figures 6 and 7 show the progression
of convergence over time of the estimated parameters λ̂ and b̂ versus their true values,
respectively. The performance of the adaptive Neumann stabilizing control scheme but for
parameters set to b = 10 and λ = 30 and initial condition u0(x) = 5(1− 2 sin(3πx/2)) is
shown from Figures 8–13.
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Figure 2. Dynamics in closed-loop of the adaptive boundary controller.
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Figure 3. Dynamics of the identifier PDE.



Mathematics 2021, 9, 2224 11 of 17

-0.05

0

0

0.2

0.05

6

0.1

0.4
5

0.15

4
0.6

0.2

3

20.8

1

1 0
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Figure 13. Progression of the convergence for b̂.

8. Conclusions

In this work, an adaptive Neumann stabilizing controller is designed to a certain class
of an R–A–D PDE system under the assumption of unknown constant parameters to the
reaction and advection terms along with combined boundary conditions of both Robin
and Neumann type. The performance of the adaptive boundary controller is evaluated via
numerical simulation. Simulation results from the convergence to zero for the estimation
error as well as the convergence of the parametric estimates to their true (assumed as
unknowns but constant) values show that the backstepping-based adaptive boundary
control scheme, particularly the certainty equivalence design with passive identifier, also
works well with this certain class of PDE system. As future work, the design of an adaptive
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Neumann stabilizing controller could be explored to try with boundary control of coupled
R–A–D PDE systems with spatially-varying coefficients, or having the same diffusivity
parameter, but with both Robin and Neumann boundary conditions or to extend our
proposal to the case of distributed actuation and unknown input delay.
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