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Abstract: In recent years, cardiovascular diseases are on the rise, and they entail enormous health
burdens on global economies. Cardiac vibrations yield a wide and rich spectrum of essential
information regarding the functioning of the heart, and thus it is necessary to take advantage
of this data to better monitor cardiac health by way of prevention in early stages. Specifically,
seismocardiography (SCG) is a noninvasive technique that can record cardiac vibrations by using
new cutting-edge devices as accelerometers. Therefore, providing new and reliable data regarding
advancements in the field of SCG, i.e., new devices and tools, is necessary to outperform the current
understanding of the State-of-the-Art (SoTA). This paper reviews the SoTA on SCG and concentrates
on three critical aspects of the SCG approach, i.e., on the acquisition, annotation, and its current
applications. Moreover, this comprehensive overview also presents a detailed summary of recent
advancements in SCG, such as the adoption of new techniques based on the artificial intelligence
field, e.g., machine learning, deep learning, artificial neural networks, and fuzzy logic. Finally, a
discussion on the open issues and future investigations regarding the topic is included.

Keywords: cardiovascular; seismocardiography (SCG); noninvasive; SCG annotation; SCG acquisi-
tion; SCG applications; artificial intelligence; machine learning; deep learning

1. Introduction

Recently, human cardiac health deteriorated significantly because of several risk
factors such as unhealthy lifestyle, physical inactivity, and poor work-life balance [1]. Car-
diovascular diseases (CVD) are the principal source of an increasing number of deaths
across the globe. According to the latest report published by the American Heart Asso-
ciation (AHA), 24.3 million people over the age of 20 are affected by CVD in the US [2].
Nearly 17.6 million deaths occurred globally due to CVD. An AHA report estimated that
more than 130 million, i.e., 45.1% of the US population, will suffer from some form of CVD
by 2035. Therefore, cardiac health monitoring became an essential public health goal [3].
Cardiac anomalies occur irregularly and may progress completely unnoticed, which makes
it very challenging to detect at an early stage [4]. There are several existing technologies
for monitoring cardiac health [5,6]. Several noninvasive monitoring approaches are shown
in Figure 1.

Specifically, Phonocardiography (PCG) detects sounds produced by the heart and
blood flow [7]. Electrocardiography (ECG) studies the electrical functioning of the heart [8].
Recently, the viability of ECG for cardiac health monitoring was reviewed in [9]. In ballis-
tocardiography (BCG), the mechanical vibrations induced by heart and cardiac reaction
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forces acting on the whole body are measured ([10]). Next, impedance cardiography (ICG)
was proposed to measure the changes in thoracic impedance induced due to changes in
the fluid content of the chest [11]. Echocardiography (ECHO) is a cardiac imaging method
based on ultrasound [12]. SCG studies mechanical vibrations induced by heart, which,
unlike BCG, measures only cardiac reaction forces acting locally on the chest [13]. In the
early seventies, nuclear cardiology (NC) was introduced as a method where radioisotopes
are injected into the vascular system, and the emitted radiation is recorded externally [14].
As a subsequent improvement, the X-ray computed tomography (X-CT) approach is an
imaging modality where slice images of the heart are created using X-rays [15]. Next,
cardiovascular magnetic resonance imaging (C-MRI) is a cardiac imaging method based
on nuclear magnetic resonance [16]. Few years back in 2016, Gyrocardiography (GCG),
a noninvasive technique based on SCG was proposed. It assesses the cardiac motion using
gyroscope—a sensor that measures the angular motion [17,18]. The techniques mentioned
above are reliable but they provide very little knowledge of more complex cardiac activities.
Among them, SCG is one such technique that facilitates the monitoring of cardiac mechani-
cal activities. However, due to technological limitations and several competing methods,
SCG did not gain widespread clinical use in the past. Nevertheless, the development of
modern technologies recently brought interest back to SCG. Additionally, compared to
that of existing cardiac methods, SCG can provide a cost-effective solution with the added
advantage of regular and automated monitoring.

Figure 1. Timeline evolution of existing techniques for monitoring cardiac health.

As stated, SCG is a noninvasive measurement of cardiac vibrations transmitted to the
chest wall due to the heart’s mechanical activities [19]. In 1959, it was observed in [20]
that the influence of heart sound nearly disappears at low frequencies, which makes it
difficult to interpret its correlation with cardiac functions. Therefore, further study was
required to confirm the use of heart sounds for diagnosis and cardiac function evaluation.
After a period of nearly 26 years, SCG was reintroduced in 1990 in USA to monitor cardiac
vibrations [19]. The recordings were correlated with acute and chronic changes in the
functioning of left-ventricular (LV) [21]. In 1994, the combination of SCG and ECHO
was also evaluated [22], and the low-frequency cardiac vibrations became a promising
niche of research. However, considering the advancement of ECG and other medical
imaging techniques, SCG was again largely abandoned throughout the 90s. It was after
the emergence of micro electromechanical system technology that research interest in SCG
returned [23]. In particular, SCG and BCG are the only two techniques that cover both
aspects, i.e., the myocardial vibrations produced by cardiac muscle contraction and the
vibrations caused due to arterial circulation resulting from the flow of blood [24].

Nowadays, there is an increasing interest in the adoption of SCG-based noninvasive
assessment as an approach for monitoring cardiac health. Significant advancements in
lightweight sensor technology made SCG resurgent, and it opened a new perspective for
its clinical and in-home use. Existing reviews on SCG mainly concentrate on advances in
instrumentation and signal processing [25,26]. Although SCG was thoroughly investigated
in the last few years, it requires a comprehensive and updated review of its three most
critical regarding: acquisition, annotation, and current applications.

In this paper, our contribution is two-fold: (i) review and taxonomy of the current
SCG acquisition and annotation approaches in the SoTA, and (ii) an overview of the recent
application approaches in SCG.

The rest of the paper is organized as follows. Section 2 discusses data acquisition.
Next, Section 3 describes data preprocessing and noise reduction schemes. Sections 4 and 5
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discusses the annotation of signal feature points and introduce some recent works in the
field of SCG. Section 6 is aimed at testing the inherent properties of using SCG signals by
performing several demonstrative experiments. Sections 7 and 8 describe novel applica-
tions and present several open challenges to be addressed in future investigations. Finally,
Section 9 concludes this paper with the outcomes achieved in this research.

2. Data Acquisition

SCG signals are mostly composed of very low-frequency waves, which are much
below the human hearing capacity [27]. Due to low auditory sensitivity, it is very difficult
to accurately extract the signal characteristics. Hence, an efficient and robust acquisition
system for extracting SCG signals is required.

Acquisition of SCG signals is divided into two categories, i.e., contact- and noncontact-
based methods. In the former methods, the sensors or the acquisition device is physically
attached to the body of the patient which is sometimes uncomfortable for the subject and
requires some experience from the practitioner. However, the latter methods have no such
issues, and they have the potential to acquire signals without physically attaching the
device to the body. The overall taxonomy of the SCG acquisition task is shown in Figure 2.

Figure 2. Taxonomy of the SCG acquisition task.

The next subsections are devoted to introducing the SCG data acquisition approaches
that were frequently adopted in the SoTA.

2.1. Contact-Based Acquisition from Patients at Rest

In [28], a simplified model was proposed to explain the mechanical coupling of
the 3-axis accelerometer, gyroscope, and chest wall. Gyroscope was used in parallel to
accelerometer because rotational components of chest wall vibrations induced by cardiac
mechanical activities may provide better insights for cardiac activities. Then, the author
also used a hardware setup as shown in Figure 3, which consists of a wireless sensor node
positioned to the middle of the sternum near the 3rd rib and attached with a tightened
strap on the front chest wall of the patient.

Specifically, the sensor node consists of a 3-axis MEMS accelerometer (Kionix KXRB5-
2042, Kionix Inc, Ithaca, NY, USA) and a 3-axis MEMS gyroscope (Invensense MPU9150,
Invensense Inc, Sunnyvale, CA, USA). Both accelerometer and gyroscope make use of the
same coordinate system. Additionally, Z-axis represents the dorsal-ventral direction, which
corresponds to the linear acceleration reading of SCG. On the other hand, both the X-axis
and the Y-axis represent the head-to-foot direction and shoulder-to-shoulder direction,
respectively, which correspond to the angular speeds. In [29], a wireless acquisition system
was developed that was comprised of high-resolution time-based MEMS accelerometer
capable of achieving micro-g resolutions. Time-based accelerometers are more accurate
compared to that of the conventional capacitive accelerometers. The acquisition system
introduced in the proposed work contained a small system measuring 40 × 40 × 20 mm3

having wireless capabilities, as shown by the block diagram in Figure 4.
The proposed system included a differential actuation mechanism and an application-

specific integrated circuit (ASIC) for accelerometer operation control. Three main sub-
systems were used: the ASIC controller, the ECG signal acquisition circuit, and the Pro-
grammable System on Chip (PSoC). ASIC controls the MEMS element through a digital-
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to-analog converter. The ECG acquisition system was based on AD8232 (Analog Devices,
Norwood, MA, USA), connected through an analog-to-digital converter that allowed the
reading of a single-lead ECG. The PSoC (Cypress Semiconductor Corporation, San Jos, CA,
USA) is aimed at reading the signal data, synchronizing it, and transmitting the same over
the integrated blue-tooth, low-energy peripheral.

Figure 3. SCG contact-based hardware setup containing accelerometer and gyroscope.

Figure 4. Block diagram of SCG contact-based acquisition device.

The development of novel information and communication technologies in the field
of health care services encouraged and facilitated the research in mobile health (m Health).
In [30], an early warning system was proposed for regularly monitoring cardiac health.
The designed system consisted of three different modules: (i) data acquisition module;
(ii) data communication module, and (iii) an early warning module. The data acquisition
process was accomplished using a body area network-based by fitting various sensors to
specific parts of the body. The data acquisition module was designed in such a way that
the data collection process was not specific to the laboratory. It could collect data round the
clock using small and energy-efficient wireless body sensors. However, directly fitting the
sensors on the body surface of the patient was reportedly uncomfortable. Recently, in [31] a
novel and convenient electro-mechano-acoustic cardiovascular (EMAC) sensing tattoo was
designed by integrating the soft SCG sensor by means of a pair of soft gold ECG electrodes.
Then, the EMAC tattoo could perform synchronous ECG and SCG measurements. Some
other popular existing wearables for collecting different cardiac data are smart belt, smart
band, smart helmet, and smart cloth, which may be enhanced for collection of SCG data.

In [32], a body area network-based wireless sensing system, i.e., KNOWME, was
designed. It used accelerometer, oximeter, and electrocardiograph sensors for regularly
monitoring and analyzing signals through smartphones. In [33], a body area network-
based sensor was designed to simultaneously collect the ECG and SCG signals. The model
contained separate ECG and SCG sensing modules as shown in Figure 5.
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Figure 5. Architecture of ECG/SCG data collection model.

The SCG sensing module was placed at the tricuspid valve (TV) and the ECG sensing
module (i.e., the electrode) was placed at the right arm. For ECG sensing, high-quality dis-
posable electrodes from bio-medical instruments (Clinton Township, MI, USA) were used.
On the other hand, the accelerometer sensor LIS331DLH (ST microelectronics, Geneva,
Switzerland) was used for SCG sensing. The sensing ability, sensing range, and gravita-
tional force sensitivity of the SCG sensing module was set to 0.5 Hz to 1 kHz, +2 g to −2 g,
and 1 mg, respectively. The bandpass filter with frequency 0.5–50 Hz and sampling rate
1000 Hz was applied to get the required ECG and SCG signals. Micro-controller system
ADuC7020 (Analog devices Inc., Cambridge, MA, USA) was used for communication
between ECG/SCG sensing modules to the analog-to-digital converter. Finally, a 16/35
system (AD instruments, Dunedin, New Zealand) was used for synchronous data logger
Power Lab to further amplify and filter the concurrent signals.

2.2. Contact-Based Acquisition from Ambulatory Patients

A major challenge in the acquisition of SCG and other cardio mechanical signals is
that high-fidelity signals can only be obtained at rest position. Any type of movement like
walking will reduce the signal-to-noise ratio and can even make the signals unreadable.
That is why most of the researchers are prone to use wearable sensing of cardio-mechanical
signals at rest state only. Recently, in [34] it was shown that sensing during movement can
provide deeper insight into cardiovascular functions. A small wearable patch (See Figure 6)
was developed for simultaneously measuring ECG and SCG signals during walking at
different speeds.

The patch recorded data onto a micro secure digital (Micro-SD) card and the patch con-
tained ATMEGA1284P micro-controller (Atmel Corporation, San Jose, CA, USA). For ECG
sensing, an analog-front-integrated circuit with an on-board analog-to-digital converter
ADS1291 (Texas Instruments, Dallas, TX, USA) was used. Micro-USB was an optional
addition for debugging or telemetry (i.e., remote monitoring) [35]. Last, an accelerometer
BMA280 (Bosch Sensortec GmbH, Reutlingen, Germany) was used for SCG sensing. All
the signals were sampled at 1 kHz.

2.3. Noncontact Based Acquisition from Single Point

A noncontact method based on laser doppler vibrometry (LDV) was proposed for
measuring the chest wall vibrations. This enabled the possibility of detecting SCG features.
However, LDV suffers from some major hindrances like cost, size, and its inability to
penetrate through obstacles [36]. Later, this inability of penetrating through obstacles was
well-considered, and microwave signals were used, which can penetrate through many
solid objects. In [37], a microwave doppler radar-based contactless technique for acquiring
SCG signals was proposed; the technique was able to collect valuable mechanical aspects
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of cardiac health. However, cardiac induced vibrations measured through the proposed
technique also contained respiration patterns in addition to a heartbeat. This was dealt
with by applying order 10 comb filters with a bandwidth of 0.024 Hz to eliminate the
interference caused by up to 10th order respiration harmonics. In [38], another microwave
doppler radar-based sensing of the SCG signal was proposed. A system was set up
to capture the radar acceleration waveforms (RAW). The setup mainly comprised of
four components: microwave signal generator N5222A (Agilent), horn antennas A-INFO
LB20180-SF, I/Q frequency downconverter HMC951LP4E (Hittite), and data acquisition
unit AD7770 (Analog Devices). In parallel contact, the SCG sensor was used to acquire the
SCG signal and the similarity between both RAW and SCG was compared; there was a
high morphological similarity between both RAW and SCG.

Battery 

Micro-USB 

Micro-SD 

Electronic Circuits 

Figure 6. A wearable device for the collection of ECG/SCG signals and its placement.

2.4. Noncontact-Based Acquisition from Multipoint

One primary limitation of the noncontact sensing methods discussed in the literature
is that they are mostly confined to single point measurement. Recently, in [39] a system
namely ICARE (Cardio Respiratory Imager) was developed, which allows us to study
the complete thoracic and abdominal systems simultaneously. ICARE can detect surface
motion of any region of interest. The system consisted of a 3D airborne noncontact ul-
trasound vibrometer, which was composed of three emission arrays arranged vertically
and one 16 × 16 square array of receivers (Knowles microphone FG-23629) in the middle.
A total of 32 transducers (Murata MA40S4S) were uniformly distributed over each panel of
24 × 24 cm2. The panel in the middle combines both the radiating and receiving elements
(32 emitting transducers and 256 microphone receivers). For a visual representation of the
subject, a camera was also included in the system. The ICARE system works in pulse-echo
mode. Emitters were connected to a programmable digital-to-analog acquisition card with
32 channels (D-TACQ ACQ1001). Each of the 32 channels was connected to 3 transducers—
one for each emission panel. The emission waveform was a linearly modulated frequency
signal, which ranges from 35–45 kHz. The time duration was 320 µs. The signals were
successively emitted by the 32 × 3 emitting transducers with a time delay of 160 µs be-
tween 2 signal emissions. The total duration of 1 sequence of emission was 5.12 ms, and
the repetition rate was 195 Hz. Receivers were connected to a 256-channel analog-to-digital
acquisition card ACQ196 (DAQ D-TACQ 16 bits, 400 kS/s). Finally, a comparison of various
SCG acquisition techniques is presented in Table 1.
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.
Table 1. Comparison of SCG acquisition techniques.

Type Subject Position Methodology Acquisition Device Sampling Rate Location of Device Details of Subjects Limitation

Siting

Gyroscope was used in
parallel with accelerometer for
recording rotational
component of the cardiac
signal [28].

3-axis accelerometer
(Kionix KXRB5-2042)
and 3-axis gyroscope
(Invensense MPU9150)

256 Hz Near to 3rd rib on sternum 5 (3 male + 2 female), all
healthy

Proposed method is not
feasible for a large number
of subjects, including elderly
and unhealthy subjects.

Supine High resolution time based
accelerometer was used [29]. MEMS accelerometer 248 Hz Near to heart on sternum

22 (16 male + 6 female),
5 healthy, 17 CVD
patient

Proposed method is not
validated against any
standard benchmark signal.

Contact based Supine

Multichannel acquisition of
signal was done by placing
sensors at 4 different valvular
asculation positions [30].

Accelerometer (ST
Microelectronics
LIS331DLH

400 Hz
At tricuspid, mitral,
pulmonary, and aortic
valve

50 (25 male + 25 female),
20 healthy, 30 unhealthy

Proposed method is not
feasible in real life as it did
not work for subjects with
psychological factors like
nervousness, excitement etc.

Supine

Sensor placed only at tricuspid
valve because inter ventricular
septum is located beneath it
which provide more clear
signal [33]

Accelerometer (ST
Microelectronics
LIS331DLH)

1000 Hz At tricuspid valve 20 (10 male + 10 female),
12 healthy, 8 unhealthy

Only basic features are
considered. One lead ECG
signal was used.

Walking
Used wearable patch for
acquiring from ambulatory
subjects [34].

Accelerometer (Bosch
Sensortec BMA280)
fitted in a patch

1000 Hz On sternum 17 (11 male + 6 female),
All healthy

Proposed technique is not
suitable for elderly and
CVD-affected subjects. It
does also not work in
real-life, as for majority of
the time, the walking
surface for any subject is not
smooth and level.

Supine

Optical recording of the
movements of the chest wall
was done by means of laser
doppler vibrometry [36].

Laser vibrometer N/A Laser head placed at 1.5 m
from the subject chest wall

10 (5 male + 5 female),
All healthy

Proposed technique is very
expensive because of laser
vibrometer.

Noncontact-based Siting
Microwave radar based
technique used for recording
accelerations [38].

Microwave signal
generator, horn
antennas and I/Q
frequency down
converter

N/A 50 cm from the subject 8 (all male), All healthy

Proposed setup is not able to
cover any specific location
on the torso area of the
subject. Only the area under
radar antenna is covered.

Siting

3D SCG images with high
frequency frame rate obtained
using ultrasonic imaging
technique [37].

3D airborne noncontact
ultrasound vibrometer
and camera

N/A In front of subject at 72 cm
distance 8 (all male), All healthy

Proposed method assumes
that the sternum moves as a
single solid object.
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3. Data Preprocessing and Noise Reduction

The SCG signals acquired through accelerometer need to be preprocessed to transform
the raw signal into a clean signal that is more suitable for further analysis and is easily
interpretable by humans. In the case of SCG signals, preprocessing generally refers to noise
removal from the raw signal for getting closer to the actual SCG signal. There are various
reasons why preprocessing is required for SCG signals; most of the time, SCG signals
get adulterated by noise from various sources including motion artifacts, environmental
vibrations, and sensor mechano-electronics. This signal adulteration might cause errors
in feature extraction, which can lead to wrong signal classification. When the patient is
moving, the motion artifact recorded by the accelerometer is stronger than the actual heart-
induced vibration signals at the chest wall. It becomes tough to identify the peaks in the
SCG signals. SCG signal preprocessing is still an active area of research, though there is
no such globally accepted technique. Researchers are free to choose how to transform the
raw signal.

In the past, most researchers applied conventional band-pass filters for removing
baseline wandering, body movements, and breathing artifacts from SCG signals. In [34],
finite impulse response filters were used for bandpass filtering, having the following cutoff
frequencies: 0.8–40 Hz for the ECG, and 0.8–35 Hz for SCG signals. After getting the
filtered signal, they were segmented into individual frames. The collected extracted frames
were called an ensemble. The obtained ensembles were averaged to get signals with
reduced noise. For correcting the baseline wandering, high-frequency components of the
acquired signal were removed. The signals obtained from the initial measurement unit
discussed in [40] were filtered using a band-pass filter with cut-off frequency 0.8–25 Hz.
In [41], infinite impulse response Butterworth filters were used as band-pass filters with
cutoff frequency 0.8–25 Hz for filtering the SCG signals.

In [42], eighth-order Bessel low pass filter was used for the antialiasing of the signals
generated by the accelerometer. The filter was set to the cutoff frequency of 100 Hz and
attenuation of at least 96 dB at 800 Hz. All signals were band-pass filtered within a range of
0.5–40 Hz frequency. In [43], a method for analyzing nonlinear and nonstationary data was
developed based on empirical mode decomposition (EMD), an adaptive time-frequency
data analysis method. EMD is very versatile for the extraction of signals generated from
noisy nonlinear and nonstationary processes. A real-time approach for detecting the
motion and noise (MN) artifacts were proposed for cardiac signal collected from Holter
monitors. The approach used EMD for obtaining the first-order intrinsic mode function
(F-IMF) for isolating the high-frequency components of the signal under the assumption
that they contain most of the MN artifacts. Then, the high-pass-filtered signal was looked-
up for signatures of randomness associated with MN artifacts. The methods utilized were
Shannon entropy, mean, and variance values. A threshold value was calculated based on
the study of 15 healthy patients with 24-h Holter recordings. A threshold was used for
separating the clean and MN-corrupted data.

In [44], an ensemble empirical mode decomposition (EEMD) based filter was proposed
for noise removal from vibrocardiographic (VCG) signals. The VCG signals were first
decomposed into a set of intrinsic mode functions (IMF), and then the partial sum of IMFs
was done for removing the white noise. In [45], to evaluate the capability of EEMD-based
filter in noise cancellation, white Gaussian noise was added to pollute the VCG signal, with
the signal-to-noise ratio (SNR) ranging from 1–20 dB.

In [46], the effectiveness of EMD-based, EEMD-based, and FIR Wiener filters for
removing the Gaussian noise from ECG signals was studied. Researchers mostly used
only one accelerometer placed on the sternum. Recently in [47], a multi accelerometers-
based noise removal technique was proposed. Accelerometers were placed in various
positions on the chest. The combination of all three axes of the accelerometer was also
examined to see if a better detection can be obtained rather than using only the z-axis. The
study reported that the use of the multiaccelerometer for noise removal outperformed the
single-sensor method.
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4. Annotation of Signal Feature Points

Annotation helps to achieve a better understanding of the signal by labeling some
interesting points known as feature points of the acquired signal. In [22], nine feature
points were identified corresponding to the echocardiogram signal. The identified points
and their correspondence with echocardiogram signals are shown in Table 2. In our review,
we categorized the overall SCG signal annotation process in four different categories:
temporal envelope-based with ECG, temporal envelope-based without ECG, machine
learning-based, and visual inspection and comparison-based.

4.1. Temporal Envelope-Based with ECG as Reference

In [48], an automated method based on temporal envelope calculation was proposed
for annotation of AV Closure (AC) and isovolumic movement (IM) points on the SCG signal
with reference to the ECG signal. The high-frequency acceleration (HFACC) signals were
used to facilitate the annotation task. Four different envelope calculation methods were
used: Cardiac Sound Characteristic Waveform (CSCW), Shannon, Absolute, and Hilbert.
The CSCW envelope calculation method produced the highest detection accuracy for both
IM and AC. The overall process of detection is shown in Figure 7.

Accelerometer Signal 

5th Order Butterworth Filter 

< 30 Hz 

Low Pass 

> 20 Hz 

High Pass 

SCG 

IM and AC 

Points 

HFACC 

Envelope Calculation 

Envelope 

SCG Window Selection 

SCG First Extrema Detection 

Envelope Peak Detection 

ECG Signal 

Hamilton-Tompkins Algorithm 

HFACC Window Estimation 

Percentage of the Peak (α) 

ECG  

R-Wave 

Figure 7. Process of detecting AC and IM Points.

In [49], an automated approach for detecting AO and AC feature points with reference
to ECG Q-wave was proposed. The approach was based on the formulation of the initial
template by calculating the average of the first few dominant beats in the cardiac cycle
and then finding the rough estimate about the location of AO and AC points. Further,
finer estimates were obtained by detecting the peaks in the sliding templates calculated by
taking averaging the previous values and the incoming value. This approach also helped
in minimizing the effects of noise and distortions. In the initial template, the AO peak was
identified as the maxima in the interval of Q + 45 ms, Q + 125 ms, whereas AC peak was
identified as the maxima in the interval AO + 240 ms, AO + 350 ms.
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4.2. Temporal Envelope-Based without ECG as Reference

In [50], an algorithm for detecting AO point without ECG R-wave as reference was
proposed. The algorithm was based on dominant multiscale kurtosis (DMK) and dominant
multiscale central frequency (DMCF) using wavelet. Kurtosis measurement gives the sharp-
ness of the peak of any probability distribution. The multiscale kurtosis gives the estimation
of Gaussianity of the signal sub-bands. Kurtosis value equal to 3 represents Gaussian,
less than 3 represents sub-Gaussian, and greater than 3 represents super-Gaussian [51].
The central frequency of any signal gives the centroid of the corresponding power spec-
trum. Multiscale central frequency computes the center of gravity of each signal sub-bands.
The sub-bands with DMCF in the frequency range of 6–45 Hz are only considered (i.e., the
sub-bands whose central frequency follows the systolic profile). DMK and DMCF together
provided criteria for selecting the most probable signal sub-band containing AO peak.
The signal was reconstructed and further enhanced with weights based on relative squared
dominant multiscale kurtosis (RSDMK). RSDMK was calculated for the selected sub-bands
as the normalized sum of the squared DMK. Finally, the envelope was constructed using
Shannon energy (SE), and Gaussian derivative filtering based peak detection logic was
used for detecting AO point. In [52], a new method based on continuous wavelet transform
(CWT) for detecting AO and IM points was proposed. It did not use ECG as the reference
signal. CWT was used as the base and approximation was done based on certain decision
rules followed by a fine position detection point.

4.3. Machine Learning-Based Approach

In [53], an automatic algorithm was proposed for detecting the specific fiducial points
(IM, AO, and AC). The algorithm used two approaches: using ECG as a reference and the
other without ECG as a reference signal. In the absence of an ECG signal, the heart rate
envelope was used for detection. Unlike in previous contributions, the proposed algorithm
used a more accurate window for envelope calculation with the help of moving average
filtering. The machine learning-based approach was used for accurate estimation of the
specific fiducial points. The probabilistic measure was used to discard the low-quality
cardiac cycles.

Recently, in [54], a binary classification-based automatic and fast annotation scheme
was proposed. The three different classifiers: Naive Bayes (NB), Logistic Regression (LR),
and Support Vector Machine (SVM) were used for annotation. The main objective was to
perform the real-time automatic annotation in continuous manner. The complex ML classi-
fiers may not serve this purpose as they require greater computational power and more
time for parameter tuning. The NB, SVM, and LR methods were exclusively chosen as they
are highly robust against over-fitting, besides being significantly less computer-intensive.
Most importantly, the latter three classifiers require few parameters to tune in, which is
a suitable feature for achieving fast learning and annotation. An annotation framework
was designed, which was divided into three parts: preprocessing, training, and testing.
For training purposes, three different features were selected, namely, amplitude, time
of appearance, and count. Before testing, the preprocessing of the signals was done to
identify the candidate peaks. In the preprocessing phase, three different zones were used
for reducing the search area. The maxima and the minima in each zone were identified
as the potential candidate peaks. The trained classifiers were finally used for filtering
out the undesired candidate peaks and selecting the desired peaks. The models were
rigorously validated according to the metrics Precision, Recall, and F-measure, followed by
5-fold cross-validation. The comparative results with the recent state-of-the-art schemes
establishes the robustness of the proposed method.

4.4. Visual Inspection and Comparison-Based Approach

In [55], a technique based on visual inspection of echocardiographic images was
proposed. The timing of all valvular opening and closing was identified using m-mode
echo images. The timing of peak blood flow through each valve was identified using
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pulse-wave doppler images. This timing information was simultaneously compared with
that of the SCG signal. The technique was able to identify six new feature points: LCV, SCV,
AF, PF, MFA, and MFE shown in Table 2.

Table 2. SCG feature points.

Feature Point Physiological Event Location Identifier on SCG Signal with Reference to ECG

AS Peak of Atrial Systole 2nd positive peak occurring after ECG P-wave on SCG.
PAI Peak Atrial Inflow Point on 1st positive slope after AS on SCG.
MC Mitral-valve (MV) Closure Beginning of the sharp downslope on SCG after onset of ECG QRS complex.
IM Isovolumic Movement Lowest point of the downslope beginning at MC on SCG.
AO Aortic-valve (AV) Opening Peak of the upsloping segment starting at IM on SCG.
PSI Peak Systolic Inflow Point on the 2nd positive slope after AO on SCG.
IC Isotonic Contraction Lowest point of the downslope beginning at AO on SCG.
RE Peak of Rapid systolic Ejection Peak of the rounded positive wave after IC on SCG.
AC AV Closure Sharp down-going slope change on SCG near the end of ECG T-wave.
MO MV Opening 2nd lowest point on the downslope after AC on SCG.
EVF Early Ventricular Filling Point on 1st positive slope after MO on SCG.
RF Peak of Rapid diastolic Filling 2nd rounded peak of the SCG after MO.

LCV Left ventricular lateral wall contraction peak
velocity

Identified by matching the MV trace of SCG with tissue doppler
echocardiographic images of LV lateral wall.

SCV Septal wall contraction peak velocity Identified by matching the TV trace of SCG with tissue doppler
echocardiographic images of interventricular septal wall.

AF Transaortic valvular peak flow Identified by matching the AV trace of SCG with pulse-wave doppler
echocardiographic images of AV.

PF Transpulmonary peak flow Identified by matching the pulmonary valve (PV) trace of SCG with
pulse-wave doppler echocardiographic images of PV.

MFA Transmitral atrial contraction peak flow Identified by matching the MV trace of SCG with pulse-wave doppler
echocardiographic images.

MFE Transmitral ventricular relaxation peak flow Identified by matching the MV trace of SCG with pulse-wave doppler
echocardiographic images.

In [56], a method was proposed to define 8 different fiducial points correlated with
different cardiac physiological events identified by ultrasound imaging. SCG signals were
manually annotated to ensure uniformity in the way of labeling the points with the same
characteristics. A tool in MATLAB was developed for the same purpose. Annotation was
done in two steps: firstly, all significant peaks and valleys were marked; secondly, different
events were separately labeled in systolic and the diastolic complex. Common patterns
were identified for labeling in the systolic and the diastolic complexes. The Pearson’s Linear
Correlation Coefficient was used for finding the correlation between the fiducial points
and the physiological events found in the ultrasound images. After finding the correlation,
the mean differences and the standard deviation were calculated between the SCG fiducial
points and the corresponding points using the ultrasound images. The combination of the
time difference and correlation gave an indication as to which SCG fiducial points best
corresponds to which physiological event found in the ultrasound images. The significant
outcome of the proposed method was that the physiological events do not always take
place at the local extrema of the SCG signal, but it may take place on the slopes of the
signal. A total of eight points, namely, AS, PAI, MC, AO, PSI, AC, MO, and EVF, were
found as shown in Table 2 with their corresponding physiological events. Table 3 compares
the different annotation techniques.
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Table 3. Comparison of SCG Annotation techniques.

Type Methodology Reference Signal Feature Points Identified Characteristics of Patients Limitations

Four different envelope
calculation methods, namely,
CSCW, shannon, absolute, and
hilbert, were used and
compared [48].

ECG AC, IM
67 (35 male + 32 female), All
healthy; 18(15 male + 3 female),
Increased Heart Rate

The proposed technique only
considers the high frequency
components of the signal.

Envelope-based

Moving average sliding template
with initial condition for AO
(maxima in interval Q + 45 ms
and Q + 125 ms ), for AC
(maxima in interval AO + 240 ms
and AO + 350 ms) [49].

ECG AO, AC Four (all male), All healthy

The proposed technique is not
feasible in real-life as it only
works for the stationary patients.
It did not consider the distortion
due to motion artifacts.

Continuous wavelet transform
was used with certain decision
rules [52].

N/A AO, IM 20 (12 male + 8 female), All
healthy

The proposed method only
works with elderly patients.

Method based on multiscale
kurtosis and central frequency
using wavelet was used [50].

N/A AO 20 (12 male + 8 female), All
healthy

The proposed method only
works for healthy patients.

Both machine learning- and
envelope-based

Probabilistic-based machine
learning method was used for
discarding low-quality signals
and finding peaks of
envelopes [53].

With and Without ECG AO, AC, IM

65, Healthy young; 15, Healthy
old; 48 (32 male + 16 female),
Increased Heart Rate; 25 (13
male + 12 female), Unhealthy
CVD Patient

The proposed technique did not
produce a good result for elderly
or unhealthy patients.

Machine learning-based

Three different binary classifiers
were used namely naive bayes,
logistic regression, and support
vector machine [54].

N/A AS, MC, IM, AO, IC, RE, AC, MO,
RF

20 (12 male + 8 female), All
healthy

The proposed method relies on
ECG to help annotate the SCG
peaks.

Visual inspection and Multichannel SCG and ECG was
used [55]. Echo-cardio images LCV, SCV, AF, PF, MF(A), MF(E) 25 (13 male + 12 female), All

healthy

The proposed method only
considers the signal acquired
from single point on the chest.

Comparison based
Pearson linear correlation
coefficient was used for finding
the relation [56].

Ultrasound images AS, PAI, MC, AO, PSI, AC, MO,
EVF

42 (20 male + 22 female), All
healthy

The proposed method uses very
low temporal resolution images.
Only 2–4 consecutive cardiac
beats were considered at a time.
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5. Recent Works

In this section, we present some of the recent works contributed to the SoTA of
SCG. In [57], a study focused on temporal changes in the fiducial points of SCG signal
was proposed. These changes in signal morphology was dependent on the placement
of different sensors on the sternum. In long-term cardiovascular monitoring, SCG offers
a variety of alternatives. However, little information is present regarding SCG signal
morphology of infants and kids. In [58], it was proposed a highly specialized system which
processed both SCG and ECG data of healthy infants and kids between 0–14 years of age.
A detailed analysis of different SCG features with regard to amplitudes and time intervals
was performed. The infant’s SCG amplitude was up to five-times smaller, but the actual
signal morphology is the same. In [59], a novel method for SCG template generation was
proposed. The method was based on the K-means clustering algorithm and the waveform
alignment capability of the dynamic time warping algorithm.

In [60], SCG was used to estimate the cardiorespiratory fitness, and it was calculated by
measuring the maximal oxygen consumption (VO2max) during intense exercise. A nonex-
ercise prediction model for VO2max was proposed, which used the amplitude and timing
interval information extracted from SCG signals. In [61], a novel method for removing the
motion artifacts from SCG signals was contributed. The proposed method used adaptive
recursive least squares filters for removing the motion artifacts. In [62], the kinetic energies
and their temporal integrals in linear as well as rotational dimensions were computed
according to both SCG and BCG signals. A study was conducted to test that the kinetic
energy from SCG and BCG are related to sympathetic activation during maximal voluntary
end-expiratory apnea. The experimental results have shown that maximal end expiratory
apnea increases cardiac kinetic energy, which will be useful to assess sympathetic nerve
changes in patients with sleep disturbances.

In [63], SCG was used for measuring the pulmonary artery pressure (PAP) by esti-
mating the cardiac timing intervals and hemodynamic parameters such as stroke volume.
The results show strong correlation between changes in PAP mean and changes in the
SCG-dorso-ventral signal, this means that it has potential to remotely monitor HF patients.
In [64], a unified method for assuring the SCG signal quality was proposed. The distance
between a signal and reference template was obtained using the dynamic-time feature
matching method, which defines signal quality index as a function of the inverse distance
between a large set of template signals and the SCG signal. In [65], a neural network-
based method was proposed for finding the mapping between SCG and BCG signals; thus,
BCG data can be acquired using wearable accelerometers. The newly introduced UNet
architecture was used for finding the mapping. In [66], an automated unsupervised pro-
cedure was proposed for the analysis of SCG signals through timing annotation. Initially,
a suitable heartbeat template was extracted based on SCG traces. Then, timing annota-
tion was performed in two stages: firstly, candidate beats were identified using suitable
detection signals, and then, timing annotation was done by aligning candidate beats to the
extracted template.

In [67], a noncontact based approach was proposed for acquisition of SCG signal
based on the analysis of the reflections of millimeter-wave radar signals. The approach
used the hybrid architecture that included a 4D Cardiac Beam former which focused
on the reflections of the heart and then a deep learning-based approach was used for
transforming these reflections into SCG waveforms. Recently, the coronavirus pandemic
(COVID-19) pointed out the need to simplify the process of data collection in intensive care
unit particularly for the critically ill-patients [68]. The SCG-based acquisition of cardiac
data may be a useful tool to serve the particular need. In [69], an approach for annotation
of AO peak was proposed. The SCG signal was acquired using a noncontact method based
on microwave Doppler radar. The radar displacement signal of heartbeat (RDH) was used
as the reference signal for locating the cardiac cycle and masking the systolic profile to
annotate the AO peak. The radar signal was passed through band pass filter followed by
application of complex Fourier transformation to get the RDH.
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In [70], a delineation framework was introduced to simultaneously identify both
systolic and diastolic fiducial points of SCG signals. The proposed method used the wavelet-
based scalographic PPG, and an envelope construction scheme to estimate the prominent
peaks. Three fiducial points of SCG diastole and three of SCG systolic phase was estimated
using a set of amplitude-histogram-based decision rules. To enable the adoption of SCG
signal for continuous noninvasive monitoring of hemodynamic parameters in outside-
of-hospital settings, a novel denoising pipeline-based method for accurate detection of
SCG fiducial points was proposed in [71]. An ensemble empirical mode decomposition
method was used to decompose the SCG signal. The corrupted part of the decomposed
signal was then removed using the quasiperiodicity behavior of the SCG signal. Finally,
the unreliable SCG beats were removed using the quality assessment of the reconstructed
SCG beats. The proposed denoising framework can be used to recover usable SCG signal
from vehicle-corrupted SCG signals. In [72], SCG signals-based method was proposed
for the measurement of the heart rate variability (HRV). The AO peak of SCG signal was
estimated using a modified variational mode decomposition-based approach combined
with a decision-rule-based scheme. The tachogram of AO–AO intervals was used for the
estimation of the HRV parameters. Experimental results showed the effectiveness and
strong correlation of the proposed method with standard ECG based analysis.

In [73], both SCG and BCG signals were combined together to produce a novel
technique called kinocardiography (KCG) for recording myocardial functions. The body
motion produced due to myocardial contractions and flow of blood through cardiac
chambers were measured as 12 degrees-of-freedom for combining SCG and BCG signals.
The KCG parameters derived from BCG/SCG signals showed high repeatability. In [74],
an automatic and remotely controlled system based on multidimensional SCG was used to
detect the real-time changes in myocardial contraction during acute myocardial ischemia.
It also provides a quantitative assessment of cardiac kinetic energy computed from SCG
signals. The experimental results showed that the proposed system empower the healthcare
providers and patients to remotely monitor the real-time abnormalities of cardiac health.
In [75], SCG and BCG were used for assessing the twist mechanics of left ventricle.

In [76], a novel technique based on contactless wearable patch to remotely record
SCG signals is proposed. The technique makes use of stretchable, piezoelectric thin films,
and near-field communication technology to power the patch and record the SCG data
wirelessly. In [77], the feasibility of using the SCG and gyrocardiac signals for biometric
recognition purposes was investigated. A deep learning-based technique using the concept
of transfer learning is used for evaluating the existence of discriminative characteristics
in SCG and gyrocardiac signals. The results obtained showed that promising recognition
rates could be achieved by properly placing the signal acquisition devices.

In [78], clinical status of the heart failure patients were assessed using the application
of machine learning algorithms on SCG signal obtained from wearable sensing patches.
In [79], machine learning algorithms were used on SCG signal during the cardiopulmonary
exercise testing for assessing the status of heart failure patients. In [80], an evolving fuzzy
neural network based method was proposed for automatic prediction of the artefactual
beats present in the SCG recordings.

6. Experimental Analysis Using SCG

This section presents some of the experimental analysis carried out in the existing
literature for assessing the SCG-based cardiac health monitoring procedure. To assess the
performance of the proposed methodologies, different matrices were monitored. In this
paper, we present the performance of different proposed analysis in terms of precision
and sensitivity.

In [30], 5 patients, 3 normal and 2 abnormal, each consisting of 20 cardiac cycles were
analyzed for identifying 9 different fiducial points such as, AS, MC, IM, AO, IC, RE, AC,
MO, and, RF. The performance results are shown in Figure 8a. The higher outcome of true
positive rate, i.e., sensitivity, indicates that the method is efficient in selecting thecorrect
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important points of ECG and SCG signal. In [33], cardiac anomaly detection mechanism
based on the investigation of various feature points of SCG signals was proposed. The per-
formance evaluation was carried out on 12,000 cardiac cycles collected from 5 real patients,
out of which 3 were normal and 2 were abnormal. For each patient, the evaluation parame-
ters precision and sensitivity were calculated and reported in Figure 8b. The results shows
that the SCG annotation mechanism is efficient, as indicated by higher value of precision
and sensitivity. The SCG annotation mechanism performed better for the normal subjects
compared to that of the abnormal one. The possible reasons behind the reduced perfor-
mance for the abnormal subjects may be the missing feature points, abnormal morphology,
presence of external noise, overlapping of waves, etc. This can be improved marginally by
preprocessing the SCG signal by using the data-smoothing techniques.

(a) (b)

Figure 8. Precision and sensitivity values of (a) Experiment 1, (b) Experiment 2.

In [50], a SCG AO-peak detection framework was proposed. The data from 20 healthy
individuals were considered. The performance of the proposed framework is reported in
Figure 9a. The results shows that the SCG recordings of subject S1, S3, S11, S14, S18, and S20
produces more false positives which results in low precision value, and the recordings
of subject S12, S16, S17, and S18 produces more false negatives, which results in low
sensitivity value. Subject S3 and S20 gives maximum false positives across all the records
in the database due to their distorted beats and spurious spikes. Thus, by eliminating these
two records, the overall performance may increase. In [81], a methodology for annotating
MC, IM, AO, AC, and, MO fiducial points of SCG signal was contributed. SCG traces of
15 patients having 3375 cardiac cycles were analyzed and the corresponding performance
results are shown in Figure 9b. The results shows that in terms of precision, the proposed
method achieves high scores, just 1% of identified peaks are false positives, this may imply
that detected premature beats are actual beats. In terms of sensitivity, the result is bit low
due to more stringent requirements for a full match, i.e., no data are actually discarded.
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(a) (b)

Figure 9. Precision and sensitivity values of (a) Experiment 3, (b) Experiment 4.

Several SCG peak retrieval methods were proposed in [54] for the automatic anno-
tation of SCG signals. The annotation scheme was formulated as a binary classification
problem. Three binary classifiers such as NB, SVM, and LR were used for the annota-
tion. The performance evaluation was carried out using 9000 cardiac cycles taken from
20 healthy patients. The outcomes of the proposed classifiers are shown in Figure 10a.
Results showed that LR outperformed the other classifiers, and NB consistently performed
poorly. The results also showed that with the increase in the number of testing cardiac cy-
cles, the quantitative performance decreases marginally for all annotation schemes. In [82],
an AO-peak identification technique was introduced. SCG signal analysis of 25 patients
in two different states, rest and postexercise states, were carried out. The performance is
shown in Figure 10b. The results shows the better computational efficiency of the proposed
algorithm with average 96.6% sensitivity and 99.6% precision for the AO point detection.

(a) (b)

1K_NB 1K_SVM 1K_LR 2K_NB 2K_SVM 2K_LR 3K_NB 3K_SVM 3K_LR

Precision 85 92 95 84 90 94 83 89 93

Sensitivity 96 95 94 98 95 93 88 90 92
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Figure 10. Precision and sensitivity values of (a) Experiment 5, (b) Experiment 6.

Recently, a framework for delineation of SCG signals was proposed in [70]. The method
was analyzed on eight male patients in two different breathing patterns: i.e., normal and
stopped breathing. The performance of the proposed delineation framework was analyzed
corresponding to IM, AO, IC, AC, and MO points. The results are shown in Figure 11.
The results show that the proposed method achieves the average precision and sensitivity
score of 97.8% and 97.16%, respectively, on the normal breathing database, while 95.33%
and 93.5%, respectively, on the stopped breathing database. This higher sensitivity and
precision score indicates better performance for the detection of AO peak.
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(a) (b)

Figure 11. Precision and sensitivity values of (a) Experiment 7 (normal breathing state), (b) Experiment 7 (stopped
breathing state).

In [83], an AO-peak annotation technique based on machine learning binary classifiers
was proposed. A total of six patients accounting for 1800 cardiac cycles were analyzed.
The results corresponding to each classifier are shown in Figure 12a. The results shows that
GNB outperforms the other classifiers for AO-peak detection. In [84], a binary classifier-
based methodology was described for the annotation of IM and AC points of SCG signals.
A total of three patients accounting for 948 cardiac cycles were analyzed. The reported
results corresponding to each classifier are shown in Figure 12b. The results show that the
overall performance of RF is better in comparison to that of other classifiers.

(a) (b)

Figure 12. Precision and sensitivity values of (a) Experiment 8, (b) Experiment 9.

The overall details corresponding to the number of patients considered (#Sub), number
of cardiac cycles (#CC) and data points analyzed (#DP), identified feature points (FP),
and mean precision (Mean_Prec) and mean sensitivity (Mean_Sens) values of the above
discussed experimental analysis are shown in Table 4. The comparative analysis of all the
experiments in terms of mean precision and mean sensitivity values are also shown in
Figure 13. Experiment E6 delivered better results for feature point detection. This is because
in this experiment, the SCG signal was together with the GCG signal for recording purpose,
which records the angular cardiac vibrations in addition to normal vibrations, which helps
in achieving better results. Furthermore, the overall performance of experiments E3, E6,
and E8 are better in comparison to that of other experiments. This shows that it is easier to
detect or identify the AO peak of the SCG signal, which is the most prominent peak.
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Table 4. Details of conducted experiments.

Experiment #Sub #CC and #DP FP Mean_Prec Mean_Sens

Experiment 1 [30] 5 CC: 100, DP: 35609 AS, MC, IM, AO, IC, RE, AC, MO, RF 63.8 82.8

Experiment 2 [33] 5 CC: 3243, DP: 30102 AS, MC, IM, AO, IC, RE, AC, MO, RF 87.6 93.4

Experiment 3 [50] 20 CC: 20, DP: 4585 AO 90.1 93.8

Experiment 4 [81] 15 CC: 3375, DP: – MC, IM, AO, AC, MO 88.7 98.8

Experiment 5 [54] 20 CC: 9000, DP: – AS, MC, IM, AO, IC, RE, AC, MO, RF 89.4 93.4

Experiment 6 [82] 25 CC: 50, DP: 23984 AO 99.4 95.8

Experiment 7 [70] 8 CC: 16, DP: 6854 IM, AO, IC, AC, MO 96.0 94.9

Experiment 8 [83] 6 CC: 1800, DP: 3985 AO 93.5 92.0

Experiment 9 [84] 3 CC: 948, DP: 5678 IM, AC 74.4 67.8

E1 E2 E3 E4 E5 E6 E7 E8 E9

Mean_Precision 63.8 87.6 90.1 88.7 89.4 99.4 96 93.5 74.4

Mean_Sensitivity 82.8 93.4 93.8 98.8 93.4 95.8 94.9 92 67.8
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Figure 13. Mean precision and mean sensitivity values of all experiments.

7. Applications

Seismocardiography provides the potential for regular monitoring of cardiac activities,
both in the clinic and home [85]. SCG facilitates the measurement of time devoted by
heart during different cardiac activities and phases that provide significant insight into
different cardiovascular functioning. These times are primarily known as CTI. SCG finds
its application in monitoring cardiac health and the detection of different cardiac diseases
using the extracted timing information.
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7.1. Extraction of CTI for Cardiac Health Monitoring

CTIs are defined for both the systolic and diastolic phases of the cardiac cycle. The ex-
traction of different cardiac timing intervals based on these phases is discussed in subse-
quent sections. The overall comparison of the different extracted intervals is presented
in Table 5.

Table 5. Comparison of extracted CTIs.

Cardiac Phase Parameter Extracted Physiological Event Interval/Ratio Methodologies Used for Extraction

S1S2 First and second heart sound MC − AC
QS2 Total systole interval Q − AC
Q−I Interval from onset of QRS to S1 Q − MC (i) Comparison and combined analysis

Systolic PEP Pre-ejection period Q − AO of different cardiac parameters and
LVET Left ventricular ejection time AO − AC signals such as ECG, PCG, ICG, etc.
IVCT Isovolumetric contraction time MC − AO [86–91].
PEP/LVET Contractility coefficient (Q − AO)/(AO − AC) (ii) Regression model [92–94].

(iii) Tissue doppler imaging
method [95].

LVFT Left-ventricular filling time MO − MC
Diastolic RVFT Rapid ventricular filling time MO − RF

IVRT Isovolumetric relaxation time AC − MO

Global MPI Myocardial performance index (IVCT + IVRT)/LVET

7.1.1. Extraction of Systolic Time Interval

The term systole time interval (STI) was first used almost 145 years ago. In [96], it
was discussed that the interval length between commencement of the ventricular systole
and the closure of the AV does not change when the pulse-rate is constant. In a study
published in [97], the diastolic part of the cardiac cycle was shown to shorten faster than
systolic with increasing pulse-rate, but the systole is always shorter than diastole. Later
in [98], it was contradicted and shown that the diastole is shorter than systole when the
pulse rate exceeds 135 per minute.

In [86], the potential usefulness of STI was studied by measuring the systole interval
of LV using simultaneous recording of the ECG, PCG, and the carotid arterial pulse tracing.
The intervals identified were QS2, LVET, S1S2, PEP, IVCT, and Q-I as shown in Table 5.
In [87], an algorithm based on heart sound and ECG was proposed for automatically
extracting PEP and LVET. Heart sound was used to accurately measure the opening and
closing moments of the AV valve. The Bayesian approach was used for estimating PEP and,
since AV closure corresponds to the second heart sound, its onset was used for estimating
LVET. In [88], a novel method was proposed for measuring PEP and LVET based on the
combined analysis of ECG, ICG, and SCG in head-to-foot direction, in place of dorso-
ventral direction. Additionally, the effect of postural variations was examined on the
correlation of estimated values of PEP and LVET from SCG and ICG.

In [89], a comparative study regarding the investigation of the accuracies of extracting
CTIs based on PCG, ICG, and SCG w.r.t. multimodal echocardiography technique was
contributed. ECHO used doppler, tissue doppler imaging, and m-mode methods as clinical
standards. The study showed that, in comparison to ECHO, the accuracies of the estimation
of PEP were 43%, 43%, and 86% for PCG, ICG, and SCG, respectively. Corresponding
to the estimation of QS2 it was 80%, 43%, and 90% for PCG, ICG, and SCG respectively.
In summary, SCG outperformed the other compared techniques.

In [92], a regression model was adopted for accurately estimating the SCG based
PEP. Initially, the set of timing features was extracted by placing SCG sensors at different
locations, and later a regression model was proposed for combining all the extracted
features. The model was trained on the extracted features from ensemble averages and
their corresponding PEP. Next, the trained model is used to estimate the PEP value.
In [93], another regression model was introduced for estimating PEP. The individual data
of accelerometer-based SCG and gyroscope based SCG was combined and a regression



Mathematics 2021, 9, 2243 20 of 29

model was trained. The trained model was then used for the estimation of PEP. Gyroscopes,
in combination with accelerometers, were found to provide a better estimation of PEP.

7.1.2. Extraction of Diastolic Time Information

In [90], CTIs were calculated for patients suffering from myocardial infarction with
ischemia. The calculation was carried out during an exercise tolerance test concerning
ECG. Different systolic, diastolic, and global parameters were identified and accordingly
presented in Table 5. In [91], an SCG-based methodology was proposed for predicting the
diastolic time vibration. AC and MC points of SCG were selected as they do not change
significantly from one cardiac cycle to another. The ECG Q-wave was used as a reference.
The average of QAC interval was used for predicting the start of diastole and the average of
Q-MC interval was used to predict the end of diastole. In [95], the tissue doppler imaging
method was used for determining diastolic time features for the assessment of LV function.
CTI was calculated based on a comparison of the onset time of the early diastolic velocity
of the mitral annulus and the onset time of mitral inflow.

7.2. Atrial Fibrillation

In [99], an in-home application-based monitoring tool was contributed for automati-
cally detecting the Atrial fibrillation (AFib) using BCG signals. The same tool can be used
with SCG signals. Machine learning-based classification algorithms were used. Seven
different algorithms were evaluated and ranked using a 10-fold cross-validation method.
Random forest achieved the best result with mean specificity and mean sensitivity of 0.982
and 0.938, respectively. In [100], an SCG-based technique was proposed for detecting the
AFib. Linear least-squares classifier was proposed with logarithmic heart rate variability
index and spectral entropy as the input. The leave-one-out cross-validation method was
used which achieved 99.9 % and 96.4 % average true positive rate and average true negative
rate, respectively, for detecting AFib.

In [101], an in-built accelerometer and gyroscope of a smartphone were used for
detecting the AFib. Three different machine learning classifiers were used: support vector
machine (SVM), kernel SVM, and random forest. The leave-one-person-out cross-validation
method was used for evaluation. Kernel SVM classifier achieved the best result with 100%
specificity and 93.8% sensitivity in the case of majority voting. Without majority voting, the
specificity was 98.7% and sensitivity was 84.7%. The same approach was comprehensively
analyzed in [102] with more features. Additionally, the latter approach was evaluated using
both cross-validation (CV) and cross-database (CD) data. Results showed specificity and
sensitivity of approximately 95% and 99%, respectively, for the CV data, and 97% and 93%
for the CD data, respectively. In [103], population based approach for modeling AFib was
presented. In [104], pulmonary vein activity was studied to determine the AFib recurrence.

7.3. Cardiac Computing Tomography Gating Based on Quiescence Prediction

In [105], SCG was used in addition to ECG for strengthening the cardiac computed
tomography angiography (CTA) process. It is crucial to accurately predict the quiescent
phases for gating CTA. SCG was found to be a good predictor of quiescence, but whenever
there is an increase in the heart rate, ECG-based prediction performs well. Thus, it was
concluded that by combining SCG and ECG the performance of real-time gating for cardiac
CTA can be improved significantly. In [106], a three-layer artificial neural network (ANN)
model was proposed for combining the ECG and SCG based quiescence predictions for
gating CTA. The combined ECG-SCG ANN model achieved 47% more cardiac quiescence
prediction on average in comparison to that of ECG-alone. In [107], SCG was used with
electrocardiogram for detecting the cardiac quiescent phases, which were used for gating
CTA. Thus, the relationship between electrical and mechanical activities of the heart was
characterized. AV closure and its corresponding time position on electrocardiogram were
used for visualizing the cardiac quiescent phases with respect to heart rate.
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In [108], two different methods were presented for addressing the problem of cardiac
quiescent period detection. First, the real-time quiescence period was detected using
beat-by-beat analysis of SCG. This approach was affected by both the sensor noise and
the movement of the patient. Second, the other method used the velocity magnitude of
the chest wall movement extracted from SCG signals using Kalman filter. For healthy
patients, the average systolic and diastolic quiescent periods were centered at 29% and 76%,
respectively; for unhealthy patients, it was 33% and 79%, respectively. In [94], low-velocity
components of cardiac cycles were identified for segmenting different cardiac quiescent
phases. The study was based on the synchronous assessment of both SCG and ECG.

7.4. Heart Rate and Heart Rate Variability Index

In [109], a method based on Hilbert transform was proposed for monitoring the
heart rate (HR) using SCG signals. Heartbeat timings and inter-beat time intervals were
measured from SCG signals in supine, left, and right recumbent positions. In [110], a
hidden Markov model-based approach was described for processing the SCG signals and
the expectation-maximization algorithm was used to learn its morphology. The processed
signal was used for obtaining the Viterbi sequence using the Viterbi algorithm. The Viterbi
sequence was finally used for estimating HR. In [111], an approach for estimating the HR
during high- and low-lung volume phases was proposed. The lung volume information
was extracted using the respiratory flow rate from SCG signals. The extracted low- and
high-lung volume SCG events were used for estimating the HR. Patients with high-lung
volume had higher HR.

In [112], the combination of both the six-axis accelerometer and the gyroscope SCG
signals were used for estimating the HR. The signals were standardized and combined
using ensemble averaging. Finally, only the dominant frequencies were used for HR
estimation. In [113], HRV indices obtained from SCG and ECG signals were compared and
the influence of the heartbeat detector on SCG signals was determined. The signals were
obtained from the combined measurement of ECG, breathing, and SCG (CEBS) database.
Another comparison of HRV indices obtained from ECG, SCG, PCG, photo-plethysmo-
cardiography, and piezo-plethysmo-cardiography was done in [114]. In [82], a real-time
HR monitoring system was proposed based on combined SCG and GCG. The windowed
approach was used and the waveforms were analyzed in three different phases within each
window. Finally, the weighted mean was used to combine the results of all the windows
and one final HR per time step was calculated.

Recently, in [66] a completely unsupervised automated process for HR monitoring
based on SCG signals was introduced. The process was divided into two subtasks: first, can-
didate beats were identified and validated, and next, timing annotation was done. In [115],
a Convolutional Variational AutoEncoder based unsupervised method was proposed for
extracting the heartbeat complexes and the associated morphological informations. In [116],
a SCG-based approach was proposed using wavelet decomposition, Fourier-based enve-
lope detection, and time-averaged power spectral density for the estimation of HR. Finally,
a SCG-based approach was contributed in [117] for the analysis of HRV. The heartbeats in
SCG were detected as the peak within 100ms window from the occurrence of ECG-R wave.

7.5. Myocardial Ischemia

In [21], LV function was monitored through SCG analysis for myocardial ischemia
diagnosis. In [118], changes in cardiac muscle contractility due to exercise was studied
using SCG analysis. The findings were used for the diagnosis of ischemia in patients with
coronary artery disease. Further, the results were compared with the electrocardiographic
exercise test, and using the SCG-based diagnosis was found to be more sensitive and
accurate. In [119], a Fast Fourier Transformation-based real-time analysis of SCG was
carried out on pigs. Discrimination was found between different intra- and postoperative
causes of myocardial ischemia. In [21], changes in LV function of a patient suffering from
ischemia were monitored. The amplitude of MC, RE, RF, and AS points of SCG was
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measured, and three different ratios with respect to RE point were calculated. The AS/RE,
MC/RE, and RF/RE ratios considerably helped in monitoring the LV function during
myocardial ischemia. Lastly, three different CTIs, PEP, LVET, and QS2 were used in [120]
for determining the LV performance during ischemia.

7.6. Myocardial Contractility

In [121], myocardial contractility was monitored during hyperbaric exposure using
SCG. The approach was able to record, amplify, and transfer the signal to an outside system
with an acceptable signal-to-noise ratio. SCG was found to be an easy-to-use, noninvasive
method for surveillance of myocardial contractility. In [122], two features, i.e., LV pressure
and stroke volume, were extracted from SCG for monitoring myocardial contractility.
The correlation of these two features with SCG was found based on the study carried over
three pigs. The study presented a patient-specific solution for estimating the stroke volume,
which was used for monitoring the myocardial contractility.

7.7. Pulse Transit Time (PTT)

In [123], the AO point on SCG was used for measuring the PTT and finding its cor-
relation with pulse pressure. In [124], the acoustic sensor was used together with SCG
for measuring the PTT. Firstly, AO peaks were located on SCG and the corresponding
acoustic peak was located within the 200 ms window after the AO peak. Next, PTT was
calculated by taking the difference between AO and acoustic peak. The same approach was
further enhanced in [41] by taking into account the comparison of SCG and photplethys-
mogram recordings. The results obtained could be useful for the development of a BP
monitoring system.

7.8. Respiratory Information

In [125], an algorithm was proposed to extract the respiratory information from SCG
signals. Three features were extracted, namely, intensity modulation, timing interval
changes (within each heartbeat), and timing interval changes (between successive heart-
beats). A respiration belt was also used to measure the respiratory information, and it was
close to SCG-based information. In [126], cardiac vibrations were used to find cardiopul-
monary health. Respiration effect was investigated on the frequency domain of the SCG
signal. The frequency domain of the SCG analysis outperformed the time-domain analysis.
In [127], a machine learning-based algorithm was developed to analyze SCG signals for
identifying the respiratory phases. The SVM model was used instead, and it successfully
identified 88% of the phases.

7.9. Fetal Surveillance

In [128], gyrocardiogram and SCG recordings were collected from abdominal inertial
sensors for detecting the fetal HR. In [129], a novel application of fetal surveillance was
proposed based on noninvasive fetal ECG (NIFECG) technique, which can further be
extended for SCG.

7.10. Cardiac Stress Monitoring

In [130], an ultra-short HRV index was used to detect the changes during cardiac stress.
In [131], SCG was used as an alternative to ECG for cardiac stress monitoring during MRI.

7.11. Cardiac Hemorrhage

A portable and cost-effective solution for detecting the mild cardiac hemorrhage based
on the measurement of PEP and LVET was proposed in [132].

7.12. Other Applications

In [133], an SCG-based approach was introduced to identify the abnormality in the
aortic flow. In [134], a Deep Convolutional Neural Network (D-CNN)-based approach
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was proposed for robustly monitoring the cardiac activity from SCG signals. In [135], SCG
was considered for monitoring the left ventricular function of the cancer patients using the
assessment of cardiotoxicity. In [136], mathematical model for human heart left-ventricle
was presented. In [137], role of ionic modeling on cardiac arrhythmias was presented for
both healthy and diseased heart.

8. Summary and Open Issues for Future Research

The recent advancements in the SCG field have strong potential to address the cardiac
health of individuals, especially outside the clinic. This review showed that the SCG
technique was extensively applied for the diagnosis of different cardiac anomalies. Never-
theless, several open issues need to be addressed in the field of SCG, which can improve
understanding of the technique and its clinical applicability in the near future. Some of
these key challenges are in regards to the field of computer-aided healthcare diagnosis [138].
Additionally, we identified the following issues and future scope in the existing studies:

• Few studies focused on using a robust documentation of the relationship between
feature points and their physiological sources. It would be useful to investigate the
relationship between SCG waves and cardiac activities.

• SCG variability is affected by several factors including respiratory phases, gender, age,
sensor location, health conditions, cardiac contractility, heart rhythm, and postural po-
sitions. A deeper study of these factors will the enhance understanding of SCG signals
and can guide to achieve better groupings of similar SCG events to reduce variability
and noise. It may also lead to a more accurate definition of SCG features points.

• Existing data acquisition is mostly based on contact sensors attached to the skin, which
is irritable and produces skin coupling. Therefore, efficient contactless SCG detection
techniques would be needed.

• Continuous monitoring might help in the early detection of serious cardiac conditions
and potentially reduce cardiac health care costs. Currently, very few systems are avail-
able for at-home and continuous monitoring. An efficient at-home data acquisition
system could be developed for regular monitoring.

• Assessment of day-to-day cardiac mechanical variability may help in the development
of a robust SCG analysis system.

• Studies show that the SCG signal is mostly contaminated by motion-artifacts. Tech-
niques for removing noises in ambulatory settings need to be developed.

• Several machine learning approaches were applied for determining feature points.
Nevertheless, it may be applied for other different purposes in SCG studies, including
classification into different phases of the respiratory cycle, calculation of cardiac time
intervals, and classification of patients into high-, low-, and normal-risk.

• Fetal surveillance is a new area where SCG can be applied for monitoring HR and
respiratory phases.

• SCG can be applied for monitoring the cardiac health of patients with epilepsy.

In summary, robust signal processing techniques and physiological understanding of
the SCG signal could assist with the development of a powerful at-home monitoring tool
and promote clinical applicability for cardiac health.

9. Conclusions

In the existing literature, few studies focused on the relationship between feature
points and their physiological sources. In this comprehensive review, Table 2 summarized
all the feature points in the field together with their corresponding physiological events
and referential identifiers. Moreover, the acquisition techniques were not summarized or
categorized until now. Table 1 summarized different acquisition techniques proposed in the
SoTA. Additionally, the annotation techniques present in the SoTA were not summarized
or categorized either; Table 3 summarized different annotation techniques by proper cate-
gorization to improve understanding. Finally, few studies were focused on performing a
detailed study of the areas of application of SCG; Section 7 introduced a detailed discussion
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about various areas of application to be addressed in the future. This work ends with the
proposal of several alternatives for tackling many of the open issues introduced here.
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