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Abstract: Intelligent manufacturing is the trend of the steel industry. A cyber-physical system
oriented steel production scheduling system framework is proposed. To make up for the difficulty
of dynamic scheduling of steel production in a complex environment and provide an idea for
developing steel production to intelligent manufacturing. The dynamic steel production scheduling
model characteristics are studied, and an ontology-based steel cyber-physical system production
scheduling knowledge model and its ontology attribute knowledge representation method are
proposed. For the dynamic scheduling, the heuristic scheduling rules were established. With the
method, a hyper-heuristic algorithm based on genetic programming is presented. The learning-based
high-level selection strategy method was adopted to manage the low-level heuristic. An automatic
scheduling rule generation framework based on genetic programming is designed to manage and
generate excellent heuristic rules and solve scheduling problems based on different production
disturbances. Finally, the performance of the algorithm is verified by a simulation case.

Keywords: steel production scheduling; cyber-physical system; hyper-heuristic algorithm; genetic
programming; heuristic scheduling rule

1. Introduction

The steel industry is one of the most important primary industries. With the inten-
sification of market competition and the increasing environmental pressure of carbon
emission reduction, the market environment faced by the modern steel industry is gradu-
ally changing in the direction of diversified market demand, personalized customization,
green manufacturing process, and intelligent manufacturing plan. Therefore, the intelli-
gent production and scheduling mode of steel is rising based on the new generation of
information technology (cloud computing, Internet of things, big data, mobile Internet,
artificial intelligence). The dynamic scheduling problem of steel production for intelligent
manufacturing has gradually be focused. Some new issues in dynamic scheduling for
smart steel production manufacturing also arise in the new manufacturing mode [1,2].

On the one hand, as the scale of steel production scheduling increases, it becomes more
challenging to solve a typical NP-Hard problem. On the other hand, the unpredictable
dynamic disturbance factors in the intelligent manufacturing workshop of steel production
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will reduce the robustness of the scheduling plan, resulting in a prolonged production
cycle and unreasonable resource allocation. This kind of problem can only be solved by
modeling an intelligent optimization algorithm for a long time, but in actual production,
the established scheduling model can not quickly adapt to the complex and changeable
market demand and needs to be continuously improved and optimized [3]. Furthermore,
for the increasingly developing manufacturing mode of steel workshops, the role of the
intelligent optimization algorithm is becoming weaker.

With the rapid development of information technology, the cyber-physical system
(cyber-physical system, CPS) concept has been widely used, which provides a new solution
for steel production scheduling. CPS is an intelligent system integrating computing, com-
munication, and control to realize deep integration and interactive feedback between the
physical world and the information world. The combination of CPS and steel production
scheduling systems makes up for the difficulty of dynamic scheduling of steel production
in a complex environment and provides the possibility of developing steel production to
intelligent manufacturing. Therefore, a scheduling model for steel CPS orientation was pro-
posed. For steel CPS’s complex dynamic scheduling scenario, modeling alone is not enough
to solve the problem. Therefore, a universal genetic programming-based hyper-heuristic
algorithm (genetic programming-based hyper-heuristic, GP-HH) was proposed. Finally,
the performance of the algorithm is verified by rescheduling cases based on equipment
disturbance. The whole work conducted in the paper is shown in Figure 1.

Figure 1. The whole work in the paper.

The rest of this paper is organized as follows. Section 2 is related work about CPS,
steel scheduling, and hyper-heuristic algorithms. Section 3 established the construction
of a steel CPS production scheduling model based on ontology. Section 4 describes the
design of a hyper-heuristic algorithm based on genetic programming. Section 5 shows the
simulation results of GP-HH, and Section 6 provides the conclusions and future works.
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2. Related Work
2.1. CPS

In recent years, CPS has been widely used in aerospace, rail transit, power grid, wa-
ter resource scheduling, industrial advanced manufacturing and automation, emerging
smart home, smart agriculture, and other fields [4–6]. CPS is widely regarded as a stan-
dard technology closely combining industrial automation and information technology.
It is a controllable, credible, and scalable networked physical equipment and software
integrated interactive system based on environmental perception and deeply integrating
computing, communication, and control [7]. It can be applied in the embedded field or
composed of superimposed systems or components through an integrated application,
communication, the cloud platform, and big data from the CPS architecture [8]. It can be
seen that CPS is a multi-dimensional complex system of an integrated computing system,
network system, and physical system. Its core is the deep integration and close cooperation
of high-performance computing, real-time communication, and accurately controllable
capabilities, which also meets the needs of efficient, reliable, and accurate management
and collaboration of physical entities. Through literature review, analysis, induction, and
integration of similar studies [9,10], the paper summarizes the classical architecture of CPS,
mainly including the perceptual control layer, communication layer, and decision layer (as
shown in Figure 2).

Figure 2. CPS architecture.

The perceptual control layer is the interface between the CPS’s information system
and the physical system. It senses the state and events of physical devices in the system
by the sensor, realizes the information perception of physical entities, and then executes
control instructions through actuators to change the state of physical entities [11].

The communication layer is the channel for information and command transmission in
the CPS, including various gateways, nodes, wireless networks. Through the information
communication between nodes and gateways, the interaction and cooperation of CPS
modules and subsystems are realized [12].

The decision layer includes the computing system, communication system, data sys-
tem, and simulation control center. The virtual entity of the simulation control center stores
the digital geometric model, behavior state model, and information model of physical enti-
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ties and then realizes the interconnection, control, and decision-making between physical
entities through the theoretical data [13].

A summary of the published works is provided in Appendix A with a detailed review.
Form Appendix A, different from the traditional information system modeling method,
CPS contains massive information physical interaction examples involving the flow of
energy and information. According to the specific application, the modeling methods
are also different. How to truly reflect the operation mode of a real system is the key to
modeling. Considering the complexity of the steel production scheduling system (physical
system), CPS is a dynamic system to realize mutual connection and coordination of iron
and steel production. There are many studies on steel production scheduling, but there are
few reports on the combination of steel production scheduling and CPS.

2.2. Knowledge-Based of Steel Production Scheduling

The traditional research on steel production scheduling problems focuses on steel
production scheduling modeling and algorithm design. Theoretically, on the one hand,
the model can be built very complex and meet certain conditions or assumptions [14].
On the other hand, the algorithm design can obtain sufficient convergence speed and
accuracy, and the solution set of scheduling problems can also be obtained. However,
for different problems, the model is relatively single, and the scene adaptability is not
strong. In the implementation, for this complex scheduling problem, even if the model
is optimized in theory, it is still difficult to be effectively applied to optimize the steel
production schedule because of the lack of corresponding technical means. With the rapid
development of knowledge engineering, cloud computing, big data, digital twin, and
CPS, it is possible to study the production schedule based on knowledge engineering and
realize the informatization, integration, knowledge, and intelligence of steel production
scheduling system.

The knowledgeable manufacturing system is an in-depth, intelligent manufacturing
system with the main characteristics of self-adaptation, self-learning, self-evolution, self-
reconstruction, self-training, and self-maintenance, emphasizing the mining, processing,
and utilization of the production knowledge contained in the manufacturing system [15–17].
Knowledge-based production scheduling has gradually become the focus of research. Jiang
GZ et al. studied the steel production scheduling knowledge network system and estab-
lished the steel mixed process knowledge base system and knowledgeable encapsulation
method [18,19]. Xu BZ et al. formally described the energy consumption elements in
the knowledge network by using the knowledge network theory and multi granularity
modular ontology technology and proposed the knowledge network energy consump-
tion model of discrete manufacturing systems [20]. However, there are still barriers to
knowledge acquisition in knowledge-based scheduling, which brings great difficulties to
knowledge-based production scheduling.

A summary of the published works is provided in Appendix B with a detailed review.
From Appendix B, most of the existing steel production scheduling involves scheduling
for specific problems, and the models and algorithms are not universal and reusable.
Without establishing steel production scheduling based on the combination of knowledge
engineering and CPS, it is impossible to effectively identify and manage the similarities and
differences between the scheduling model knowledge. The massive production data of CPS
contains rich scheduling knowledge. After mining, valuable laws can be obtained, which
is helpful to knowledge management and decision optimization in the field of production
scheduling. In this way, the production scheduling knowledge representation of the steel
CPS-oriented model based on ontology is significant.

2.3. Hyper-Heuristic Algorithm

The hyper-heuristic algorithm is a new optimization method. It is an automatic
method for selecting or generating heuristics to solve computational search problems.
It can solve cross problem areas [21]. It is widely used in vehicle routing [22], nurse
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scheduling [23], reinforcement learning [24], production scheduling [25,26] and has great
application potential.

In complex production scheduling, a single heuristic algorithm or heuristic rule is
challenging to consider accurately and quickly solve the dynamic scheduling problem
of steel production. It is necessary to design an algorithm with strong universality and
quickly solve the production scheduling problem in different scenarios. Hyper-heuristic
has a good performance in this field [27]. It manages a series of low-level heuristics (low-
level heuristics, LLH) through different high-level strategies to select and generate new
heuristic operators to search the solution space. Facing various steel production scheduling
problems, the hyper-heuristic can find appropriate combination rules through efficient
search strategy and quickly solve the dynamic scheduling problems in different scenarios.
A summary of the published works is provided in Appendix C with a detailed review.

2.4. Inspiration

From the literature, the research on steel production scheduling mainly focuses on
modeling and scheduling algorithm design, as shown in Table 1. There is less research
on the production scheduling theory and application of steel CPS based on knowledge
engineering, especially the research on knowledge modeling of steel CPS production
scheduling model.

Table 1. The research gap of related work.

Reference
Number/Publication

Year

CPS Modeling
and Verification

Scheduling
Algorithm

Knowledge
Scheduling Hyper-Heuristic

Knowledge-Based Steel CPS
Production Scheduling and

Algorithm

[6]/2019 X
[7]/2019 X
[8]/2018 X
[9]/2019 X

[10]/2018 X
[14]/2021 X
[15]/2016 X
[16]/2016 X X
[18]/2018 X
[19]/2020 X
[20]/2017 X
[21]/2019 X
[22]/2020 X X
[23]/2016 X X
[24]/2018 X
[25]/2015 X X
[26]/2020 X X

The steel industry is a typical process industry. As the main body of the whole process,
blast charge, converter, refining charge, ladle, continuous casting billet, hot rolled piece,
and cold rolled piece are “black boxes,” that is, the outside cannot obtain the internal
information of each reactor. Even if the big data control platform is established, it can
still not accurately grasp the physical and chemical changes in the “black box.” The
digital sensing technology based on CPS can describe the “black box” changes and make
intelligent decisions and control. Therefore, a scheduling model for steel CPS orientation
was proposed the first time. In the steel CPS, the steel industry will use the information
technologies such as the Internet of things, big data, and cloud computing to establish
an integrated management and control platform. For the complex dynamic scheduling
scenario of steel CPS, modeling alone is not enough to solve the problem. Therefore, a
universal GP-HH algorithm was proposed to solve the production scheduling model under
multiple disturbances. In this way, the steel industry will overcome the isolated and single
process solution in the past and achieve “in-depth perception of information, network
interconnection, accurate, coordinated control, and optimized intelligent decision-making.”
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3. Ontology-Based Steel CPS-Oriented Production Scheduling Knowledge Model
3.1. Framework of Steel CPS-Oriented Production Scheduling System

In addition to the typical characteristics of the traditional steel production scheduling
system, the steel CPS-oriented production scheduling system also has the features of
CPS. Under the unique perception environment of CPS, it should consider the production
scheduling problem of the steel production scheduling system (physical system) and
perceive the dynamic disturbance events in steel production scheduling. The mapping of
scheduling events in steel production scheduling system (information system) to study
the production scheduling problem of steel CPS under the combination of information
world and physical world. As shown in Figure 3, it is the architecture of steel production
scheduling system for CPS-oriented, divided into application decision layer, network
communication layer, and data perception acquisition layer.

Figure 3. Framework of steel CPS-oriented production scheduling system.

(1) Data Perception Acquisition Layer
This layer is the interface between the physical system and the information system

in CPS. It mainly realizes the information perception and accurate control in the steel pro-
duction scheduling. Information perception has the characteristics of ubiquitous sensing,
fine-grained sensing content, wide sensing area. The ubiquity of sensing means that its
sensing terminals distribute many sensing monitoring units, including sensors, wireless
handheld terminals, RFID (radio frequency identification), processors for information
integration, and data storage. It can sense the equipment status and process of the steel
production process through sensors and control rules. Perceived content granularity refers
to the fine-grained definition of each process information content. The wide sensing
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area means that its sensing terminals are distributed in all links of steel production and
include the process control information feedback by the control execution unit in the com-
puting system to optimize the main parameters of each process and accurately control
the production.

(2) Network Communication Layer
This layer realizes the efficient transmission, storage, and processing of information in

the steel production scheduling. It includes various base stations, wireless networks, wired
networks, handheld terminals, bridges, and RFID antennas. The embedded computer,
embedded software, and the feedback loop of nodes and networks are formed to monitor
and control equipment status in the physical system and allocate production tasks. At
the same time, the production status and process status of the underlying equipment are
feedback to the database and information processing server. The information processing
server will perform data cleaning, classification, filtering, fusion, secondary processing,
and other operations on heterogeneous information, convert it into a unified data mode,
and transmit it to the application decision-making layer through industrial ethernet and
wireless sensor network.

(3) Application Decision Layer
This layer includes a computing system, decision control unit, and simulation control

center, which mainly realizes the intelligent decision-making of steel production schedul-
ing and the scheme optimization. The computing system is the brain of the steel CPS
production system. The data sensing acquisition layer can obtain the workshop’s bottom
equipment, personnel, and production progress in real-time, respond to the scheduling re-
quest, calculate, and make intelligent decisions. The simulation control center is the model
repository of the steel CPS production system, responsible for storing real-time scheduling
data and generating an initial scheduling scheme. The decision control unit integrates
and optimizes the initial scheduling scheme by calculating the predefined scheduling
rules in the system to realize the information perception and control decision of steel
production scheduling.

3.2. Definition of Domain Ontology of Steel CPS Production Scheduling Knowledge Model

The construction of the steel CPS production scheduling ontology model is reflected in
the extraction of ontology concepts in related fields and the inheritance of relationships. The
extracted concepts should contain enough as much information as possible and simplify
the ontology [28–30]. According to the modeling method proposed in references [31,32],
combined with the essence and concept description of steel production scheduling process
in CPS environment, the core ontology concepts are abstracted, which mainly include six
categories: Task M, Goal I, Constraint C, disturbance event ES, resource R and scheduling
scheme T. The attributes between conceptual ontologies include decomposition, satisfac-
tion, guidance, adjustment, scheduling, and execution. Other relationships include kind of
(K means inheritance), part of (P means partial), attribute of (A means attribute), function
of (F means function), and instance of (I means instance).

The domain ontology of the SPSCPS (steel production scheduling of CPS, SPSCPS)
problem can be defined with a five-tuple, as shown in Equation (1).

SPSCPS_Ontology = {C, A, R, H, Y} (1)

In the equation, C is the concept set, A is the attribute set, R is the relationship set, H is
the dependency set of the concept, and Y is the axiom set.

The above-selected concepts and defined attributes can describe the domain ontology
of the steel production scheduling model in the CPS environment. As shown in Figure 4,
it is a four-level domain ontology model of steel CPS production scheduling, including
domain layer, concept layer, attribute layer, and instance layer. The domain layer represents
the top-level concepts in the field. The concepts with inheritance and partial relationship
are represented on the concept layer. The concepts, related attribute information, and
methods play the role of description at the attribute layer. The instance generated by the
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combination of method and attribute is in the instance layer. The relationship between
these concepts is that the task guides the steel production scheduling problem. Task (R) is
decomposed into multiple subtasks and activities characterized by goal (I). When constraint
(C) is satisfied, a guidance scheme (T) is generated to realize multi-objective optimization.
Then according to the disturbance event (ES) adjust the scheduling scheme(T) and optimize
the resource (R) allocation to make the production go smoothly.

Figure 4. Conceptual ontology of steel CPS production scheduling model and its relationship.

3.3. Attribute Representation of Steel CPS Production Scheduling Knowledge Model

The ontology relation graph can directly represent the scheduling ontology model,
but to study the properties of scheduling domain knowledge ontology is necessary. It can
define various core concepts, basic attributes, and attribute relationships. The domain
ontology of the steel CPS scheduling problem can be conceptualized as Equation (2).

SPSCPS_ConceptOntology = {MConceptSet, RConceptSet} (2)

MConceptSet is the set of conceptual ontologies in steel CPS scheduling, including
multiple conceptual ontologies. RConceptSet is the set of relationships between concept
ontologies. The concept ontology set can be further refined into Equation (3).

MConceptSet = {NConcept, PConcept} (3)

NConcept is the name of the concept ontology. PConcept is the attribute of the concept
ontology. According to the above, the conceptual ontology of the scheduling task(M) can
be described as Equation (4).

M =
{

MIn f o, MAttribute, MRelSet, subM1, subM2, . . . , subMN

}
(4)
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In the equation, M is the task. MIn f o is the task information. MAttribute is task prop-
erties. MRelSet represents the time sequence, constraint, or decomposition relationship
between subtasks. subMN is the subtask.

Scheduling goal(I) is an evaluation measure of indicators, including time indicators,
production cost indicators, quality indicators, equipment OEE. The goal ontology and its
attribute concept can be defined as Equation (5).

I = {ISet, IAttribute, IRelSet} (5)

ISet is the set of each indicator type. IAttribute is indicator attributes, including weight
coefficient, inclusion, conflict, and other attributes. IRelSet is the relationship between
multiple objectives.

Scheduling constraint(C) is the condition to ensure smooth production and on-time
delivery. Its attribute concept can be defined as Equation (6).

C = {CSet, CAttribute, CRelSet} (6)

CSet is a set of constraint types, including process constraints, time constraints, se-
quence constraints. CAttribute is the attribute of constraints. CRelSet is the relationship
between constraints, such as inclusion, combination, mutual exclusion.

The disturbance is an unpredictable event that affects the scheduling scheme. The
disturbance event is regarded as a domain ontology in steel CPS production scheduling,
and its conceptual ontology can be defined as Equation (7).

ES =
{

ES In f o, ES Attribute, ESRelSet

}
(7)

ES In f o is the description information of ES, ES Attribute is the attribute of ES, ESRelSet is
the attribute relationship of ES.

Scheduling resource guarantees time and cost index in steel production scheduling,
and its attribute concept ontology is Equation (8).

R =
{

RIn f o, RAttribute, RRelSet

}
(8)

RIn f o is the description information of R, RAttribute is the attribute of R, RRelSet is the
relationship between resources, including attribute relationship, attribute relationship,
hierarchical relationship, instance relationship.

The scheduling scheme (T) is a solution to allocate resources under meeting constraints
and indicators to optimize objectives, including the re-optimization of disturbance events,
which has a specific mapping relationship with other domains ontologies. It can be
formalized as Equation (9).

T = fi(M, I, C, ES, R) =


MIn f o, MAttribute, MRelSet, subM1, subM2, . . . , subMN

ISet, IAttribute, IRelSet
CSet, CAttribute, CRelSet

ES In f o, ES Attribute, ESRelSet
RIn f o, RAttribute, RRelSet



T

(9)

4. Hyper-Heuristic Algorithm Based on Genetic Programming for Steel CPS

4.1. Target Mathematical Model

There are taking the equipment disturbance of steel production as an example. In the
steelmaking and continuous casting (steelmaking and continuous casting, SCC) scheduling
problem based on equipment disturbance, the processing equipment and a start time of each
charge after disturbance is variables to be solved, all operating equipment and time form an
optional value range, and the process requirements to be followed in the converter, refining,
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and continuous casting process form a set of constraints. The following assumptions
are made for the equipment disturbance problem: (1) The initial scheduling scheme has
been implemented before the equipment fails. (2) The interrupted charge can continue
processing on other parallel equipment. (3) Adjust the casting speed of the continuous
caster or the operation time of the converter and refining to repair the conflict between
time and resources. (4) The repair time of faulty equipment is known. (5) Equipment
disturbance occurs only in the converter or refining stage. The SCC scheduling model
based on the disturbance of converter or refining equipment is as follows.

min f = ∑
i∈N

∑
j∈M

(ω1 × Aij + ω2 × Bij) (10)

Aij =
∣∣∣Tij − T′ij

∣∣∣/max
{∣∣∣Tij, T′ij

∣∣∣} (11)

Bij = min
{

max
{∣∣∣mij −m′ij

∣∣∣, 0
}

, 1
}

(12)

Equation (10) is the objective function, representing the degree of the difference
caused by minimizing equipment failure after equipment disturbance. Equations (11)
and (12) are differential coefficient equations. i = {1, 2, . . . , N}, is the charge number. j
= {1,2,3}, corresponding to steelmaking, refining, and continuous casting stages. Aij and
Bij is the indicates difference of start-up time and equipment assignment. ω1, ω2 is the
coefficient of Aij and Bij. mij and m′ij is the processing equipment of charge before and after
rescheduling. Tij and T′ij is the start-up time of charge before and after rescheduling.

s.t. T′i,j+1 ≥ T′ij + TS′ij (13)

Equation (13) represents the conflict constraint that each charge operation cannot be
processed in multiple stages simultaneously. TS′ij is the processing time of charge after
rescheduling.

∑
Mj
h=1 Sijh = 1 (14)

TO′ij = T′ij + TS′ij (15)

Equations (14) and (15) represent charge Lij can only be processed by a piece of
equipment at a stage and is not interrupted. Sijh is the processing status. Mj is the set of
parallel machines in stage j. TO′ij is the end-up time of charge after rescheduling.

T′i+1,j = TO′ij, J = 3 (16)

T′i,j+1 − TO′ij ≤ TP′ij (17)

Equation (16) represents the continuous casting constraint of the adjacent charge.
Equation (17) indicates an upper limit constraint on the transportation time of the charge
between each process. TP′ij is the maximum transportation time of charge from stage
j to j + 1. (

TO′ij − T′ij
)
−
(
TOij − Tij

)
≤ TZ′ij, J = 3 (18)

Iq1 ∩ Iq2 = ∅ (19)(
m′ijh 6= mb

ijh

)
∨
(

T′ij ≥ Tb

)
(20)

Equation (18) indicates that the casting time before and after charge rescheduling
cannot exceed the caster’s upper limit of casting speed adjustment. Equation (19) indicates
that one charge can only be processed in one casting. Equation (20) indicates that the
charge interrupted by equipment failure is transferred to other parallel equipment for
processing. TOij and TO′ij is the end-up time of charge before and after rescheduling. Iq
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is the set of charge of the q-th casting. mb
ijh indicates charge i is processing at the failed

equipment mij in stage j. Tb is the fault start time.

4.2. Hyper-Heuristic Algorithm Framework Based on Genetic Programming

In this paper, genetic programming (genetic programming, GP) based hyper-heuristic
(GP-based hyper-heuristic, GP-HH) is proposed to solve the disturbance-based steel pro-
duction scheduling problem. Simple rules generally consider a single factor of the furnace,
equipment, or transportation tool and do not consider disturbance. Therefore, the problem
model proposed in this paper is more complex. The furnace, equipment, and disturbance at
each time have multiple different attributes, so to make full use of multi-factor information
of furnace, equipment, and disturbances make the rules containing this information pro-
duce excellent scheduling rules. GP-HH uses GP to generate some excellent heuristic rules
to form a heuristic scheduling rule set. The process of GP generating rules can be calculated
offline. Using the GP-HH, you only need to search and select the heuristic rule set. On
the one hand, it can make the convergence speed faster and reduce the operation time of
the algorithm; on the other hand, the global search ability of the algorithm becomes more
robust, which makes up for the deficiency that the rule-based heuristic can only obtain the
suboptimal solution. Figure 5 shows the hyper-heuristic algorithm framework of genetic
programming, divided into two parts: the upper control and lower problem domains.

Figure 5. Hyper-heuristic algorithm framework based on GP.

The high-level strategy is designed to select the low-level heuristic (low-level heuristic,
LLH) in the upper control domain. The LLH is represented and generated by GP. The
information is transmitted through the preset interface in the domain barrier so that the
high-level strategy and the LLH are independent of each other. On the one hand, the high-
level strategy transfers scheduling strategy and other information through the low-level
operator and indirectly calls the LLH for the solution; on the other hand, in the process of
solving, the LLH returns the quality of the solution and the operator execution time to the
high-level strategy to guide the generation of operator scheduling strategy.
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4.3. High-Level Strategy

The high-level strategy of the hyper-heuristic algorithm manages the LLH operators.
Selecting an appropriate high-level strategy is very important to solve the scheduling model.
This paper adopts the learning-based high-level selection strategy, and the pseudo-code
is shown in Figure 6. The heuristics selected in Lines 8–25 and 27–28 are applied to solve
the rescheduling model. At first, each heuristic gets a score of 1, making the probability of
each heuristic being selected equally. The first hyper-heuristic always maintains the best
solution, expressed as Sbest (Lines 10–12) and keep track of each improved solution. The
move acceptance component (Lines 10–21) is a critical value controlled by parameters ε.
All improved changes are acceptable only when the performance of a solution is better
than that of the optimal solution (Line 18) (1 + ε) the performance, the scheme will be
accepted. When the optimal solution is no longer optimized in a limited time,ε will be
improved (Line 24).

f (x) = ([log(x)] + rand(1, [log(x)]))/x (21)

Figure 6. Pseudo code of competitive bidding selection strategy based on dominating solution.

X = f (Sbest) is the target value of the optimal solution, its threshold is [lb, ub], and
returns a random integer [lb, ub]. If f (Sbest) is 0, the algorithm terminates. This case is not
considered to be updated in the threshold.

When the second hyper-heuristic starts operation (Lines 26–29), the quality of time-
limited Solution 2 is not improved (Lines 26). It means the heuristic algorithm pool (LLH)
from the underlying heuristic to all solution sets (expressed as LLHall) will be used in
the next stage, the idea of dominance-based heuristic selection will be introduced, and
the score of each underlying heuristic will be dynamically adjusted. First, ε in the first
hyper-heuristic algorithm is updated in the same way and remains unchanged. Then,
according to a certain number, a greedy strategy is used to drive all bottom heuristic
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operators to fix the number. Next, this hyper-heuristic constructs solutions corresponding
to each production bottom heuristic operator, reflecting the relationship between the goal
realization and the number of bottom heuristics in each step. At the end of this phase, the
non-dominated solution is used from the whole solution set to obtain a Pareto frontier.
If more than one low-level heuristic finally produces the same target value at the Pareto
front, they will all be selected into the algorithm pool. The number of occurrences of each
underlying heuristic is assigned as its score and used for the first hyper-heuristic.

At each step, at a fixed time τ, each underlying heuristic is cycled as the same input
when considering the threshold change acceptance method (threshold move acceptance
method). Some LLH may take more time than others. Therefore, we use the circular
method to treat all LLH equally. In each LLHsmall , LLHmedium, LLH large heuristic, τ is
assigned 5 n/q, n/q respectively and performs one iteration, n represents the number of
activities, and q represents the number of projects. If the LLH generates the same solution
as the input, the call is ignored. Otherwise, the new solution and the target are recorded,
and the LLH generates the solution scheme. If all heuristics cannot produce new solutions,
they will be reconsidered together. Once all heuristics are used as input and processed at
this stage, the optimal solution scheme will be propagated as the input of the following
greedy strategy. If the total given limit time (Time-Limit1) times out, all steps are completed
with the relevant solution set before the termination of the second layer hyper-heuristic.

4.4. Heuristic Scheduling Rules and LLH

Taking SCC as an example, there are four common disturbances: time disturbance,
equipment disturbance, process disturbance, and task disturbance. For these disturbance
events, different rules are used to adjust the production scheduling plan.

(1) Minimum of conflict time R1
Set Xijk, Yijk is the start time and finish time of mijk, X′ijk, Y′ijk is the start time and

finish time of m′ijk. mijk is the k-th process of the j-th charge in the i-th casting in equipment

m, m is the equipment number, m = 1, 2, . . . , M∗.Tm1
m is the waiting time from m to m1. Pijk

is the processing time.
Xijk = Xij,k+1 − Tm1

m − Pijk (22)

The ∆T is the conflict time between mijk and m′ijk.

∆T = min
{

Y′ijk, Yijk

}
−max

{
X′ijk, Xijk

}
(23)

When ∆T ≤ 0, mijk and m′ijk have no time conflicts on the equipment m, operation
mij,k+1 waiting time wijk on equipment is 0. When ∆T > 0, operation mij,k+1 have job time
conflict on the equipment m, operation mij,k+1 waiting time wij,k+1 as Equation (24)

wij,k+1 = Xij,k+1 − Tm1
m − X′ijk (24)

Because Xij,k+1 = Xijk + Tm1
m + Pijk, so

wij,k+1 = Xijk + Tm1
m + Pijk − Tm1

m − X′ijk
= Xijk + Pijk − X′ijk = ∆T

(25)

When mijk and m′ijk have a time conflict on the equipment m, operation mij,k+1 watting
time is wij,k+1, it is conflict value ∆T. Therefore, in the process of equipment assignment,
selecting the equipment that minimizes the conflict value of operation time between
operations from multiple optional pieces of equipment that can process charge operation
as the processing equipment can ensure that the waiting time for an operation on the
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equipment is minimized as far as possible. Thus, the waiting time of operation and
processing between adjacent equipment in the same charge is minimized as far as possible.

mijk = 1, m = argmin
{

∆Tm1

∣∣∣m1 ∈ M∗mijk

}
(26)

(2) Shortest transportation time R2

Xij,k+1 = Xijk + Tm1
m + Pijk (27)

When Tm1
m is shorter, the operation mijk is bigger for the start time. There is a slight

possibility of job conflict between other operations and mijk. When the operation time
conflict value between operations is smaller, the waiting time generated by the charge
on the equipment will be minimized to minimize the operation and processing waiting
time between adjacent equipment. The assignment method based on the rule of shortest
transportation time between equipment is from M∗mijk

among the optional equipment. The
processing equipment with the shortest transportation time between it and its subsequent
process equipment is selected as the operating equipment.

mijk = 1, m = argmin
{

Tm1,m2

∣∣∣m1 ∈ M∗mijk

}
(28)

(3) Minimum total equipment conflict time R3
Assume Pm is the set of operations on equipment m, Pm =

{
p1

m, p2
m, . . . , pl

m, . . . , pbm
m

}
,

pl
m is the l-th operation on equipment m. bm is the total number of operations on the device.

∆Tm is the sum of operation time conflict values of all the charges on equipment m.

∆Tm =
bm−1

∑
l1

bm

∑
l2=l1+1

max
{

0, min
(

x
p

l1
m
+ P

p
l1
m

, x
pl2

m
+ P

pl2
m

)
−max

(
x

p
l1
m

, x
pl2

m

)}
(29)

The minimum rule of total conflict time of equipment refers to the operation mijk
assigns equipment, it starts from the M∗mijk

capable of machining operation to select the
equipment with the shortest total conflict time as the operation mijk processing equipment.

mijk = 1, m = argmin
{

Qm1

∣∣∣m1 ∈ M∗mijk

}
(30)

(4) Random selection R4
The random selection rule refers to the operation mijk assigns a piece of equipment, it

randomly selects equipment from multiple machines as mijk’s processing equipment.

mijk = 1, m = random
{

m1

∣∣∣m1 ∈ M∗mijk

}
(31)

According to the rules, the following heuristic scheduling rules based on rule priority
are established.

(1) SR1: Minimum of conflict time R1, shortest transportation time R2, random selec-
tion R4.

(2) SR2: Shortest transportation time R2, minimum total equipment conflict time R3,
random selection R4.

(3) SR3: Minimum of conflict time R1, minimum total equipment conflict time R3,
random selection R4.

(4) SR4: Minimum total equipment conflict time R3, random selection R4.
The charge operation is the minimum unit. Scheduling is to determine the order of

these operations. Because the continuous caster, casting start time, and operation time are
already located, reverse the charge’s pre-start time on the other stage process. Therefore,
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the scheduling of two charge sequences is designed according to the pre-start time of the
charge.

(1) Sq1: According to the pre-start time of the charge on the continuous caster, select a
single charge one by one for scheduling according to the ascending order.

(2) Sq2: According to the pre-start time of the charge on the continuous caster, select a
single charge one by one for scheduling according to the reverse order.

According to the scheduling order and heuristic rules, a heuristic scheduling method
is obtained in Table 2.

Table 2. Heuristic scheduling method.

Number Sequence Rules Heuristic Method

1 Sq1 SR1 LLH11
2 Sq1 SR2 LLH12
3 Sq1 SR3 LLH13
4 Sq1 SR4 LLH14
5 Sq2 SR1 LLH21
6 Sq2 SR2 LLH22
7 Sq2 SR3 LLH23
8 Sq2 SR4 LLH24

4.5. GP Based Heuristic Scheduling Rule Automatic Design Framework

The scheduling plan can be adjusted through different scheduling rules for different
disturbance events in steel production, including task disturbance, equipment disturbance,
process disturbance, and time disturbance. Figure 7 shows the automatic generation frame-
work of heuristic scheduling rules based on GP. After the disturbance event occurs, the
system will generate an initial scheduling problem. For different scheduling problems and
scheduling models, different heuristic scheduling rules and constraints will be generated.
These scheduling rules and their constraints are connected and expressed by endpoint sets
and function sets. After the model is generated, the population is initialized by GP, binary
tree coding, the number of iterations is set, and the heuristic scheduling rules are decoded.
After the decoding is completed, the optimal solution of the scheduling problem is gener-
ated by selecting, crossover, and mutation operations among the scheduling rules [33,34].
If the conditions are not met, continue to execute the loop program until the termination
conditions are met, and the optimal rule is output.

Figure 7. GP based heuristic scheduling rule automatic generation framework.
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In terms of fitness selection for GP, this paper adopts two different fitness methods:
the least square fitness method, which is used to eliminate the difference between the
output of the evolutionary target system and the output of the individual model. The other
is structural fitness, which is used to limit the structural complexity of iterative individuals.
The calculation of structural fitness requires repeated gene iterative operation, which is
easy to produce a large number of individuals with a very complex structure, and the
structural fitness needs to be optimized again. The fitness of the least square method
represents the output error of the individual model, and the same input parameters are
set for the individual evolutionary model and the optimization goal. Let the output of the
individual evolutionary model be yindividual(t), the output of the system is yindividual(i),
then the least-squares fitness is as shown in Equation (32).

fLS = ∑M
i=0(yindividual(t)− yindividual(i))

2 (32)

During the algorithm’s operation, each individual is sorted into the form of the
simplest difference polynomial. If Nt is the number of items contained in the simplest
polynomial and Ni is the maximum allowable number of items, the structural fitness is
defined as Equation (33).

fa =

{
1.00 . . . . . . Nt ≤ Ni
10.0 . . . . . . Nt ≥ Ni

(33)

It can be seen that when the number of items of the simplest polynomial of the
structural fitness function is less than or equal to the allowable number of items of its own
polynomial, the structural fitness is similar to the least-squares fitness of the output error of
the individual evolutionary model. When the number of items of the simplest polynomial
of the structural fitness function is greater than the allowable number of polynomial items,
the structural fitness is 10 times the least-squares fitness. At this time, the error is amplified
by 10 times. Ensure that the size of individual evolutionary structure does not exceed
the maximum range so that individuals within the range can evolve preferentially and
eliminate evolutionary individuals beyond the maximum scope.

fT = fLS × fa (34)

The combination of least squares fitness and structural fitness is an effective improve-
ment of standard genetic programming algorithms. Combining the two fitness limits the
unlimited reproduction of individual structures in the evolution process, reduces memory
computing resources, solves the problem of time complexity, and effectively improves the
operation efficiency of the algorithm.

The evaluation steps of the GP fitness function are as follows.
Step 1: Express the heuristic scheduling rules based on GP coding.
Step 2: Traverse the individual binary tree to obtain the general expression of heuristic

scheduling rules.
Step 3: Through case matching, multiple disturbance rules are matched with the

scheduling model to automatically generate the scheduling rules with the highest priority
that meet different disturbance characteristics.

Step 4: Evaluate the fitness function of the obtained optimal scheduling rule. If it
meets the performance requirements, it will be terminated. Otherwise, it will return to
the genetic programming program and regenerate the scheduling rule that meets the
conditions through genetic operation until the termination conditions are met.

4.6. The Solution Process Based on GP-HH

The algorithm process is shown in Figure 8. When the disturbance event occurs, the
system automatically generates a production scheduling problem and judges whether to
reschedule according to the scheduling problem. In rescheduling, a series of parameters
of the scheduling model corresponding to the disturbance problem is set, and the initial
solution is encoded. The LLH operator is applied to the feasible solution space. When
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the termination conditions are not met, and all heuristics cannot produce new solutions,
based on traversing all LLH, the optimal scheduling rules are generated through GP-
based automatic generation rules (selection, crossover, and mutation), which are recorded
and used by high-level strategies. When the algorithm satisfies the iteration termination
condition, the objective function value and Gantt chart are output.

Figure 8. The process of GP-HH.

5. Case Study
5.1. Original Steel Production Plan

The actual production data from a steel plant are used for simulation verification to
verify the algorithm’s effectiveness. The workshop includes the converter (LD) stage, RH
parallel, LF serial double refining, and continuous casting. The specific equipment required
is two converters (LD), two refining charges (RH), two LF charges, and two continuous
casters (CC). The processing cases of three castings and fifteen charges are analyzed. The
processing data of the charge at each stage are shown in Table 3.

The molten steel of fifteen charges is scheduled on the eight equipment and corre-
sponding process constraints to generate a set of feasible actual production scheduling,
including the processing time, start time, and end time of each charge in each equipment.
The initial schedule is shown in Table 4. The initial Gantt chart is shown in Figure 9.
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Table 3. Processing time of charge at each stage.

Casting Charge
Processing Time

LD1 LD2 RH1 RH2 LF1 LF2 CC1 CC2

1 5 40 45 50 55 15 15 53 61
2 5 40 50 55 50 15 15 57 64
3 5 40 45 50 55 15 15 54 63

LD: Linz Donawitz; RH: Ruhrstahl Hereaeus; LF:ladle furnace; CC: continuous casting.

Table 4. Initial schedule plan.

LD1 LD2 RH1 RH2 LF1 LF2 CC1 CC2

1–1 [0,40] [40,90] [90,105] [105,120] [125,173]
1–2 [43,88] [88,143] [143,158] [158,173] [173,226]
1–3 [106,146] [146,196] [196,211] [211,226] [226,279]
1–4 [149,194] [194,249] [249,264] [264,279] [279,332]
1–5 [212,252] [252,302] [302,317] [317,332] [332,385]
2–6 [217,267] [267,317] [317,332] [332,347] [347,411]
2–7 [286,326] [326,381] [381,396] [396,411] [411,475]
2–8 [345,395] [395,445] [445,460] [460,475] [475,539]
2–8 [414,454] [454,509] [509,524] [524,539] [539,603]
2–10 [474,524] [524,574] [574,588] [588,603] [603,667]
3–11 [295,340] [340,395] [396,445] [445,460] [460,514]
3–12 [364,404] [404,454] [460,499] [499,514] [514,568]
3–13 [423,468] [468,523] [524,553] [553,568] [568,622]
3–14 [498,538] [538,588] [588,607] [607,622] [622,676]
3–15 [546,591] [591,646] [646,661] [661,676] [676,730]

Figure 9. Initial Gantt chart.

5.2. Case Analysis

In case of equipment disturbance in SCC, the equipment failure will change processing
time and directly affect the quality of products. Therefore, the objective function in this
paper considers the shift in processing time when the total completion time and equipment
assignment change, takes the difference of processing time before and after rescheduling
as a critical reference index and takes the difference of equipment as an essential index. Set
ω1 = 0.6, ω2 = 0.4, min f = ω1× Aij + ω2× Bij. The maximum number of iterations is 350.
The equipment disturbance parameter setting is shown in Table 5. The failure equipment
is LD1. The failure time starts at 150 min, end up in 270 min.
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Table 5. Equipment disturbance parameter setting.

Equipment Disturbance Start
Time/Min

End
Time/Min Failure Time/Min

LD1 Equipment failure 150 270 120

This experiment is programmed with Visual Studio C++ 2010. The running envi-
ronment is Windows10, and the memory is 8 GB and CPU 2.6 GHz. Each case is run 10
times, and the results are averaged. Enable the scheduling model based on equipment
disturbance and use GP–HH to solve the rescheduling plan. The rescheduling schedule
plan is shown in Table 6. The rescheduling Gantt chart is shown in Figure 10.

Table 6. Rescheduling schedule plan.

LD1 LD2 RH1 RH2 LF1 LF2 CC1 CC2

1–1 [0,40] [40,90] [90,105] [105,120] [125,173]
1–2 [43,88] [88,143] [143,158] [158,173] [173,226]
1–3 [106,146] [146,196] [196,211] [211,226] [226,279]
1–4 [149,194] [194,249] [249,264] [264,279] [279,332]
1–5 [212,252] [252,302] [302,317] [317,332] [332,385]
2–6 [252,302] [302,352] [352,367] [367,382] [382,446]
2–7 [272,312] [312,367] [367,431] [431,446] [446,510]
2–8 [380,430] [430,480] [480,495] [495,510] [510,574]
2–9 [449,489] [489,544] [544,579] [559,574] [574,638]
2–10 [508,558] [558,608] [608,623] [623,638] [638,702]
3–11 [533,573] [573,623] [623,638] [638,653] [653,707]
3–12 [577,622] [622,677] [677,692] [692,707] [707,761]
3–13 [641,731] [681,731] [731,746] [746,761] [761,815]
3–14 [690,730] [730,785] [785,800] [800,815] [815,869]
3–15 [749,789] [789,839] [839,854] [854,869] [869,923]

Figure 10. Rescheduling Gantt chart.

To further verify the algorithm’s performance, according to the actual production data
of field investigation, the fault equipment is set as LD1 in the steelmaking stage, the start
time is 150 min, the end time is 270 min, and the duration is 120 min. The equipment
disturbance rescheduling problems of different scales are solved respectively and shown in
Table 7.

To verify the algorithm’s convergence, 13 castings and 57 charges were chosen as an
example. The equipment failure time is still 150 min to 270 min, and LD1 is not available.
As shown in Figure 11, in the iterative process of the objective function, the fitness function
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rapidly decreases to a lower level and then gradually converges, reflecting the advantages
of the solution.

To further illustrate the effectiveness of GP-HH in solving the target model, the
solution results are compared with the heuristic scheduling method [35]. The CPU running
time is used as a reference to compare the performance of the algorithm comprehensively.
The experimental results are shown in Table 8. GP-HH is more time-efficient than the
heuristic scheduling method. In calculating small samples, GP cannot obtain enough
samples for genetic operations such as crossover and mutation, and cannot obtain enough
excellent heuristic scheduling rules, so GP-HH does not perform as well as the heuristic
scheduling method in the optimal solution. However, in the comparative experiments
of several cases, with the increase of the number of samples, the performance of GP-HH
is gradually better than the heuristic scheduling method, and a better solution can be
obtained in the effective time, which shows that GP-HH is effective to solve the steel
production scheduling problem.

Table 7. Experimental results at different scales.

Case Casting Charge
GP-HH

Optimal Solution Mean Value

1 3 15 3.693 3.696
2 8 26 6.153 6.158
3 13 57 7.238 7.239
4 18 68 7.605 7.606
5 22 83 7.884 7.885
6 28 120 7.849 7.851
7 35 147 7.953 7.955
8 46 212 7.962 7.965
9 55 282 7.863 7.866

Figure 11. Convergence graph of the solution.

Table 8. Comparison between GP-HH and heuristic scheduling methods.

Case Casting Charge

Heuristic Scheduling Method GP-HH

Optimal
Solution

Mean
Value

CUP
Time/s

Optimal
Solution

Mean
Value

CUP
Time/s

1 3 15 3.672 3.677 2.8 3.693 3.696 9.1
2 8 26 6.132 6.136 5.1 6.153 6.158 14.6
3 18 68 7.605 7.611 6.4 7.605 7.606 16.8
4 22 83 7.891 7.897 6.9 7.884 7.885 17.2
5 28 120 7.893 7.899 7.1 7.849 7.851 17.9
6 46 212 7.985 7.990 7.2 7.962 7.965 18.7
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6. Conclusions

This paper proposes a steel production scheduling system architecture for CPS-
oriented and studies a GP-HH algorithm to deal with different disturbance scenarios.
Which can make up for the difficulty of dynamic scheduling in a complex environment
and help steel production scheduling realize intelligent manufacturing. The main work is
summarized as follows.

(1) A complete three-layer framework of steel production scheduling system for
CPS-oriented is proposed, the differences between CPS and steel production scheduling
system are analyzed, the characteristics, structure, and functions of steel CPS-oriented are
redefined to integrate CPS with steel production scheduling system deeply is researched.

(2) Based on ontology, the concept and its core attributes of the production schedul-
ing model of steel CPS are defined. The concept ontology of the steel CPS production
scheduling model and the relationship framework between its attributes are proposed. The
attributes represent the concept of the steel CPS scheduling model, and the relationship
between core concepts is revealed, which lays a foundation for subsequent knowledge
mining and knowledge scheduling.

(3) A hyper-heuristic algorithm of GP-HH is proposed. The framework of the algo-
rithm and the composition of the heuristic scheduling method are described. A greedy
strategy is used in the high-level domain to drive all bottom heuristic operators to fix the
number. An automatic generation framework of heuristic scheduling rules based on GP
is proposed to deal with different disturbance scenarios in the steel production schedul-
ing environment. Finally, through a case study, the universality and effectiveness of the
algorithm are verified.

However, these studies still need to be improved. Mining the association relationship
between attributes of steel CPS production scheduling ontology model is still hard work.
In addition, designing algorithms with better performance and more robustness is still the
critical problem in the subsequent research.
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Appendix A

Table A1. Literature Summary of CPS.

Reference
Number

Year of Publication
and Domain Main Contribution

Enhancement
Require-

ment/Disadvantage

Similarity with
Proposed Work

Possible Research
Gap

[6] 2019/Engineering

Exposes a spectrum
of existing CPS
definitions and

models.

The application of
double loop learning
in CPS proposed in

this paper is not
deep enough.

The architecture of
CPS.

Architecture of CPS
and its application in
engineering practice.

[8] 2018/Computer
Science

Study the effect on
the quality of Pareto

fronts when a
biological

mathematical model
was incorporated
into the CPS for a

multi objective
optimization.

The complexity of
the CPS may affect

the utility of
incorporating

biological models.
Further research in

these areas is
suggested.

Research and
development of CPS

in system
performance.

Application of CPS
in different fields.

[9] 2019/Computer
Science

Presented
BPMN4CPS: a

preliminary
extension of BPMN

2.0 modelling
Language to handle
CPS process features.

Apply a dynamic (at
run time) verification

to analyse the
temporal consistency

still a challenge.

Cyber-physical
systems are

characterized by a
multitude of
physical and

software.

BPMN4CPS is not
widely used, and its
specific performance
needs to be further

verified.

[11] 2016/Computer
Science

Introduced
ModelPlex, a

method ensuring
that verification

results about models
apply to CPS

implementations.

The ModelPlex can
be extending, so the

synthesize
prediction monitors

from differential
equations without

polynomial
solutions.

Formal method of
CPS modeling.

The mapping
between virtual
model and real

model of CPS is not
accurate enough.

[12] 2016/Computer
Science

Presents a
methodology to

design and verify
CPS using

multi-objective
evolutionary

optimization and
software tools.

Improve the
performance of

verification methods
is important.

Optimization of CPS.

Extensions to
probabilistic model

checking and
verifying distributed

CPS are difficult.

[13] 2014/Computer
Science

The paper propose a
co-simulation

framework that can
facilitate

time-triggered
automotive CPS

design.

The three CPS
design layers of

Virtual prototyping
of automotive

control system are
simplified.

The architecture of
CPS.

The complex
network physical
interaction makes

the security
maintenance of the

system more
important.



Mathematics 2021, 9, 2256 23 of 25

Appendix B

Table A2. Literature Summary of Knowledge-Based Steel Production Scheduling.

Reference
Number

Year of Publication
and Domain Main Contribution Enhancement Require-

ment/Disadvantage
Similarity with
Proposed Work Possible Research Gap

[16] 2016/Engineering

Propose a
self-evolutionary

scheduling algorithm
for knowledgeable

manufacturing
System for flow shop

scheduling.

For small-scale
scheduling problems,

the applicability of the
algorithm is not strong
and the training time is

too long.

Knowledge based
scheduling.

How to improve the
evolutionary ability of
the proposed algorithm

is the research gap.

[19] 2020/Computer
Science

A new knowledgeable
encapsulation method

of steel production
scheduling model.

Knowledge mapping
needs to be studied in

the future.
Knowledge scheduling

Research on the
large-scale dynamic

scheduling algorithm.

[20] 2017/
Physics

Ontology-based
modular

multi-granularity
hierarchical model was
built based on modular

ontology technology.

The method and
application of ontology
based modeling are not

deep enough.

Ontology based
modeling.

The problems of
real-time updating of
knowledge, automatic

generation of new
knowledge and

knowledge push still
need to be solved.

Appendix C

Table A3. Literature Summary of Hyper-Heuristic Algorithm.

Reference
Number

Year of Publication and
Domain Main Contribution Enhancement Require-

ment/Disadvantage
Similarity with Proposed

Work Possible Research Gap

[21] 2019/Computer Science

This overview proposes a
unified framework for the
algorithmic techniques at
the confluence between

evolutionary computation
and reinforcement

learning.

There is no performance
comparison experiment of

the algorithm.

Discussion on the
generality of the

algorithm.

More algorithms are
waiting to be discussed

and verified.

[22] 2020/Logistics Managem

Hyper-heuristic algorithm
based on tabu search for

time-dependent
simultaneous pick-up and
delivery vehicle routing

problem.

The relationship between
vehicle travel speed and

customer satisfaction,
distribution cost, energy

consumption and driving
path under variable
vehicle speed can be
further optimized.

Hyper heuristic algorithm
study.

There are still some
improvements in the

combination of
hyper-heuristic

algorithm and other
strategies.

[24] 2018/Computer Science

This paper proposes a
method to automatically

design the high-level
heuristic of a

hyper-heuristic model by
utilizing a reinforcement

learning technique.

It is necessary to consider
the combination of
Q-learning based

hyper-heuristic and
multi-point search

strategy to improve the
performance of the

algorithm.

Hyper heuristic algorithm
design.

How to choose single
point strategy or

multi-point strategy to
improve the ability of

algorithm is a challenge.

[26] 2020/Computer Science

A genetic programming
hyper-heuristic algorithm

was proposed for the
multi-skill resource
constrained project

scheduling problem.

To extend the multi-skill
resource constrained

project scheduling
problem to model the
realistic environment.

Genetic programming
hyper heuristic algorithm.

The fitness landscape
analysis will be the

promising technique
which can be employed
to guide the design of
some problem-specific
low-level heuristics in

the hyper-heuristic
scheme.

[35] 2014/Computer Science

Different hyper-heuristics
combining different
selection and move

acceptance methods are
implemented as search
methodologies to solve

the constraint magic
square problem.

The performance of RP’s
hyper heuristic algorithm

is compared with other
heuristic algorithms.

Hyper heuristic algorithm
design.

Choosing different
mobile strategies and

receiving criteria has a
great impact on the

performance of super
heuristic algorithm.
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