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Abstract: Rough set philosophy is a significant methodology in the knowledge discovery of databases.
In the present paper, we suggest new sorts of rough set approximations using a multi-knowledge base;
that is, a family of the finite number of general binary relations via different methods. The proposed
methods depend basically on a new neighborhood (called basic-neighborhood). Generalized rough
approximations (so-called, basic-approximations) represent a generalization to Pawlak’s rough sets
and some of their extensions as confirming in the present paper. We prove that the accuracy of
the suggested approximations is the best. Many comparisons between these approaches and the
previous methods are introduced. The main goal of the suggested techniques was to study the
multi-information systems in order to extend the application field of rough set models. Thus, two
important real-life applications are discussed to illustrate the importance of these methods. We
applied the introduced approximations in a set-valued ordered information system in order to be
accurate tools for decision-making. To illustrate our methods, we applied them to find the key
foods that are healthy in nutrition modeling, as well as in the medical field to make a good decision
regarding the heart attacks problem.

Keywords: basic-neighborhoods; rough sets; multi-information systems; nutrition modeling; heart
attacks problem

1. Introduction

Rough set theory, proposed by Pawlak [1,2], has been conceived as a tool to conceptu-
alize and analyze various kinds of data. It can be used in attribute value representation
models to describe the dependencies among attributes, evaluate the significance of at-
tributes and derive decision rules. The theory presents important applications to intelligent
decision-making and cognitive sciences, as a tool for dealing with vagueness and uncer-
tainty of information [3–11]. Originally, the rough set theory was based on an assumption
that every object in the universe of discourse is associated with some information. Objects
which are characterized by the same information are indiscernible. The indiscernibility
relation generated in this way shapes the mathematical basis for the theory of rough sets.
The set of all indiscernible objects is called an elementary set or equivalent class. Any set
of objects, being a union of some elementary sets, is referred to as a crisp set; otherwise
it is called a rough set. A rough set can be described by a pair of crisp sets, called the
lower and upper approximations. However, this relation represents the basic block in this
methodology which is an equivalence relation. But the constraints of this relation restrict
the application fields.

By relaxing indiscernibility in relation to more general binary relation, the classical
rough set can be extended to a more general model. Slowinski and Vanderpooten [12],
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Abo Khadra and El-Bably [13], Abo-Tabl [14], and Dai et al. [15] have discussed rough
approximation based on the similarity relation. Based on pre-order relation, Kin et al. [16]
proposed generalized approximations. Kondo [17] used a reflexive binary relation to
suggest generalized definition of rough approximations and compared it with other defi-
nitions. Yao [18], Abo Khadra et al. [19], Allam et al. [20], and Ali et al. [21] have studied
the approximation operators defined by general binary relation. Rough set models were
generalized using topological approaches [3,4,22–27] and coverings [28–30]. On the other
hand, there are some proposals to generalize and extend the application fields of this
theory such as [31–36]. In the recent paper, we introduced the opposite definition of the
new neighborhood (initial-neighborhood), which was presented by El-Sayed et al. [8].
In addition, we studied and examined the relationships among them and provided the
common relationship between them and the concept of (core-neighborhood [36]).

The basic motivations of the present research were:

(1) To initiate a novel neighborhood (so-called basic-neighborhood) construct from any
general binary relation and study its properties;

(2) To propose new generalized rough approximations and investigate their properties
based on this neighborhood;

(3) To solve some problems in set-valued ordered information systems concerning finding
the key foods suitable in order to be healthy.

Consequently, the main goals of our approaches were to extend the application fields
of rough sets by applying the proposed techniques in decision-making problems such
as finding the key foods that are healthy in nutrition modeling, and also in the medical
diagnosis of the heart attacks problem. Besides, introducing and studying a novel approach
to generalize rough sets of multi-information systems based on a finite number of binary
relations. In other words, the main objectives of the present work are to use an arbitrary
binary relation to generalize the equivalence relation in the element-based definition from a
neighborhood’s point of view. Neighborhood systems are a pivotal technique to reduce the
boundary region and to improve the accuracy measure. Thus, we suggested the new notion
“basic-neighborhood” which is induced via a general binary relation to investigate this aim.
On the other hand, the concept of a neighborhood generated by relations represents a vital
bridge between the rough set theory and the other important models such as graph theory,
which has many different applications in real-life problems. In simple directed graphs, the
rough set theory is used to study nano-topology. Adjacent vertices in digraphs are only
used to define their neighborhoods. Therefore, we can use the basic-neighborhoods to
introduce new types of vertices neighborhood systems that are dependent on both adjacent
vertices and associated edges. Furthermore, the generalization of some concepts presented
by Pawlak and Lellis Thivagar, as well as some of their properties, are investigated. Lellis
Thivagar has introduced the concept of “nano-topology” based on Pawlak’s rough sets
which depend basically on an equivalence relation. Accordingly, their methods restrict the
application fields of real-life problems. Thus, we can extend the application fields of graph
theory such as “present a new model of the human heart’s blood circulation system based
on blood paths and introduce a modern model to smart city which makes a restructuring
for the factors which build smart cities in terms of a connected graph”.

The remainder of the paper is organized as follows: The next section provides the basic
concepts and results that are used in the paper. Section 3 is devoted to defining the new
neighborhood (basic-neighborhood) and to study its properties. Further, we examined the
relationships of this neighborhood with other neighborhoods. The main goal of Section 4
was to suggest two different methods to generalize Pawlak rough sets. The first method de-
pends basically on the basic-neighborhood that is induced from any general binary relation
and hence we proved that the proposed approximations are generalizations to the Pawlak
approach and their generalizations included [12–34]. In the second method, we presented
an improvement to Marei’s method [31]. We introduced a novel method for generalized
rough approximations based on a finite number of binary relations. This method solved
the problems in multi-information systems which depend on many attributes and hence,
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this method extends the application fields of rough set theory. Comparisons between
the proposed methods and the other techniques mentioned in the introduction section
were investigated. Finally, in the last section, we introduced two real-life applications,
the first of which was in nutrition modeling for our methods. This application shows the
significance of our approaches in decision-making. The second was in medical applications;
we illustrated the importance of the suggested methods in decision making regarding the
heart attacks problem.

2. Pawlak Rough Sets and Some of Its Generalizations

This section provides the basic concepts and results Pawlak’s rough sets, as well
as some of their generalizations (namely, Yao [18], Allam et al. [19], Dai et al. [15], and
Marei [31]) that are used in the paper.

2.1. Pawlak Rough Set Theory

Definition 1 ([37]). A binary relation R between the two sets M and N (or from M to N )
is a subset of the Cartesian productM×N , which is a set of ordered pairs (m,n) ∈ R where
m ∈ M and n ∈ N .

Note that: If R is a binary relation from a set M to itself, then it is said to be a
binary relation onM. Moreover, if (m,n) ∈ R, then we write mRn to express that m
is R-related to n. On the other hand, the class mR = {x ∈ M : mRx} (resp. Rm =
{x ∈ M : xRm}) is called the after set (resp. fore set) of m ∈ M. In the other words,
mR (resp. Rm) is interpreted as the right-neighborhood (resp. left-neighborhood) [18].

Definition 2 ([1]). Suppose that Req represents an equivalence relation on the finite non-empty
set S , called the universe; thus, the pair P =

(
S ,Req

)
is said to be the Pawlak approximation

space. In addition, the Pawlak-lower (resp. Pawlak-upper) approximation of a subsetM⊆ S is:
P∗(M) =

{
x ∈ S : [x]Req

⊆M
}

(resp. P∗(M) =
{
x ∈ S : [x]Req

∩M 6= Φ
}

),
where [x]Req

represents an equivalence class of x ∈ S . The boundary and accuracy of Pawlak
approximations are defined, respectively, by:

BndReq(M) = P∗(M)− P∗(M) and ΘReq(M) = |P∗(M)|
|P∗(M)| , where P∗(M) 6= Φ.

Remark 1. Pawlak in [1], stated that:

(i) The subset M is called an exact set if P∗(M) = P∗(M) and we refer to the pair
(P∗(M), P∗(M)) by rough sets with respect toReq . Otherwise,M is called a rough set;

(ii) If M is exact, then BndReq(M) = Φ and ΘReq(M) = 1. On the other hand, if M is
rough, then BndReq(M) 6= Φ and ΘReq(M) 6= 1.

For more details about Pawlak’s rough sets, see [1,2].

2.2. Yao’s Rough Sets

Definition 3 ([18]). If R is a binary relation on the universe S , then for each x ∈ S , we propose
its “right neighborhood” by nr(x) = {y ∈ S : xRy}.

Definition 4 ([18]). If R is a binary relation on the universe S , then the right-lower and right-
upper approximations of M⊆ S are proposed, respectively, by:

Lr(M) = {x ∈ S : nr(x) ⊆M} and Ur(M) = {x ∈ S : nr(x) ∩M 6= Φ}.

The right-boundary and the right-accuracy of approximations of a subsetM⊆ S are defined,
respectively, by:

Bndr(M) = Ur(M)−Lr(M) and Θr(M) =
|Lr(M)|∣∣Ur(M)

∣∣
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where Ur(M) 6= Φ.

Note that: The above approximations satisfied some properties of Pawlak’s basic
properties in a general case and the remainders of the properties are achieved only if the
relation is a preorder relation.

2.3. Allam et al.’s Rough Sets

Definition 5 ([19]). Consider that R represents an arbitrary binary relation on the universe S .
The minimal neighborhood (briefly, f-neighborhood) of x ∈ S , is given by:

nf(x) =

{
∩

x∈yR
yR if ∃ y ∈ V s.t. x ∈ yR,

Φ Otherwise.

Definition 6 ([19]). Consider that R represents an arbitrary binary relation on the universe S .
Then the minimal-lower (resp. minimal-upper) approximations are:

Lf(M) = {x ∈ S : nf(x) ⊆M} and Uf(M) = {x ∈ S : nf(x) ∩M 6= Φ}.

The boundary and the accuracy of minimal-approximations of a subsetM ⊆ S are given,
respectively, by:

Bndf(M) = Uf(M)−Lf(M) and Θf(M) =
|Lf(M)|∣∣Uf(M)

∣∣ , where Uf(M) 6= Φ.

Note that: The above approximations satisfied some properties of Pawlak’s basic
properties in a general case and the remainders of the properties are achieved only if the
relation is a reflexive relation.

2.4. Dai et al.’s Rough Sets

Definition 7 ([15]). Consider that R represents an arbitrary binary relation on the universe S .
The maximal neighborhood (briefly, g-neighborhood) of x ∈ S , is given by:

ng(x) =

{
∪

x∈yR
yR if ∃ y ∈ V s.t. x ∈ yR,

Φ Otherwise.

Definition 8 ([15]). Consider that R represents an arbitrary binary relation on the universe S .
Then, the maximal-lower (resp. maximal-upper) approximation of M⊆ V is given by:

Lg(M) = {x ∈ S : ng(x) ⊆M}
(
resp. Ug(M) = {x ∈ S : ng(x) ∩M 6= Φ}

)
.

The boundary and the accuracy of maximal-approximations of a subsetM ⊆ V are given,
respectively, by:

Bndg(M) = Ug(M)−Lg(M) and Θg(M) =
|Lg(M)|∣∣Ug(M)

∣∣ , where Ug(M) 6= Φ.

Note that: The above approximations satisfied some properties of Pawlak’s basic
properties in a general case and the remainders of the properties are achieved only if the
relation is a similarity relation.
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2.5. Marei’s Rough Sets

Marei (2007), in [31], proposed a framework for generalizing Pawlak’s rough sets
based on a finite number of reflexive relations as shown in the following definitions.

Definition 9 ([31]). Consider {Ri : i = 1, 2, 3, . . . , n} to be a family of binary relations on S .
Then:

(i) The first kind of n-lower (resp. n-upper) approximation of M⊆ S is given by:

n
1R(M) = {x ∈ S : (∩n

i=1xRi) ⊆M}
(

resp. n
1R(M) = {x ∈ S : (∩n

i=1xRi) ∩M 6= Φ}
)

;

(ii) The first kind of n-lower (resp. n-upper) approximation of M⊆ S is given by:

n
2R(M) = ∪n

i=1Ri(M)
(

resp. n
2R(M) = ∩n

i=1Ri(M)
)

whereRi(M) = {x ∈ S : xRi ⊆M} andRi(M) = {x ∈ S : xRi ∩M 6= Φ}.
The boundary region and the accuracy of n-approximations of M⊆ S are given, respectively,

by: n
kBnd(M) = n

kR(M)− n
kR(M) and n

k Θ(M) =
|M∩n

kR(M)|
|M∪n

kR(M)| .

where n
kR(M) 6= Φ and k ∈ {1, 2}.

Note that: The above approximations satisfied some properties of Pawlak’s basic
properties in a general case and the remainders of the properties are achieved only if the
relation is a reflexive relation.

3. New Types of Generalized Neighborhoods

This section introduces and studies a novel kind of neighborhood (called basic-
neighborhood) which is induced from a binary relation. In fact, this neighborhood repre-
sents the reverse definition for the neighborhood “initial-neighborhood” [8]. Moreover,
these two neighborhoods represent an extension of the concept of “core-neighborhood” [37].
Comparisons between the suggested neighborhood and the other types are superimposed.

First, let us remember the definition of “initial-neighborhood” and “core-neighborhood”:

Definition 10 ([8]). Consider that R is an arbitrary binary relation on the universe S . The
initial-neighborhood of x ∈ S is:

ni(x) = {y ∈ S : xR ⊆ yR} = {y ∈ S : nr(x) ⊆ nr(y)}

Definition 11 ([37]). Consider that R is an arbitrary binary relation on the universe S . The
core-neighborhood of x ∈ S is given by:

nc(x) = {y ∈ S : xR = yR} = {y ∈ S : nr(x) = nr(y)}.

The following definition introduces the new notion of a neighborhood of an ele-
ment induced by a binary relation which represents the opposite concept of the “initial-
neighborhood”.

Definition 12. Consider that R is an arbitrary binary relation on the universe S . The basic-
neighborhood of x (in briefly, b-neighborhood) of x ∈ S , is given by:

nb(y) = {y ∈ S : yR ⊆ xR} = {y ∈ S : nr(y) ⊆ nr(x)}.
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The main goal of the following results was to introduce the basic properties of b-
neighborhoods. Further, we illustrate the relationships among different types of neighbor-
hoods.

Lemma 1. If R is an arbitrary binary relation on S , then:

(a) For each x ∈ S , x ∈ nb(x);
(b) For each x, y ∈ S , y ∈ nb(x) if and only if nb(y) ⊆ nb(x);

Proof.

(a) By using Definition 10, the proof is obvious;
(b) By using Definition 10, if y ∈ nb(x). Then nr(y) ⊆ nr(x) . . . (1)

Now, let z ∈ nb(y). Then nr(z) ⊆ nr(y). Therefore, by (1), nr(z) ⊆ nr(x), and
hence z ∈ nb(x). Accordingly, nb(y) ⊆ nb(x);

Conversely, let nb(y) ⊆ nb(x). However, by (a), y ∈ nb(y). Hence, y ∈ nb(x). �

Remark 2. The following example illustrates that:

(a) The inclusion sign in (a) of Lemma 1 need not be equal, in general;
(b) The “basic-neighborhood” and “initial-neighborhood” are independent (non-comparable);
(c) The neighborhoods nr(x), nf(x), ng(x), and nb(x), for each x ∈ S , are independent

(i.e., non-comparable) in general.

Example 1. Consider that S = {ℊ,k, `,m} and R = {(ℊ,ℊ), (k,ℊ), (ℊ,m), (`,k)} is a
binary relation on S . Then, we attained the following:

nr(ℊ) = {ℊ,m}
nr(k) = {ℊ}
nr(`) = {k}
nr(m) = Φ

⇒


nf(ℊ) = {ℊ}
nf (k) = {k}
nf(`) = Φ

nf(m) = {ℊ,m}

,


ng(ℊ) = {ℊ,m}
ng (k) = {k}
ng(`) = Φ

ng(m) = {ℊ,m}

,


ni(ℊ) = {ℊ}

ni (k) = {ℊ,k}
ni(`) = {`}
ni(m) = S

and


nb(ℊ) = {ℊ,k,m}
nb(k) = {k,m}
nb(`) = {`,m}
nb(m) = {m}

The following result proves that these two neighborhoods are generalization to “core-neighborhood”.

Lemma 2. If R is a binary relation on S . Then, for each x ∈ S :

(a) nb(x) ∩ni(x) = nc(x).
(b) nb(x) ⊆ nc(x) and ni(x) ⊆ nc(x).

Proof. We proved (a) and (b) in a similar way.
y ∈ nb(x) ∩ni(x) if and only if y ∈ nb(x) and y ∈ ni(x) if and only if nr(y) ⊆

nr(x) and nr(x) ⊆ nr(y). Therefore, y ∈ nb(x) ∩ni(x) if and only if nr(x) = nr(y)
if and only if y ∈ nc(x). �

Lemma 3. If R is a reflexive relation on S , then, for each x ∈ S :

(a) nb(x) ⊆ nr(x) ⊆ ng(x);
(b) and nf(x) ⊆ nr(x) ⊆ ng(x).

Proof. We proved (a) and in a similar way it is easy to demonstrate (b).
Let y ∈ nb(x), then nr(y) ⊆ nr(x) . . . (1)
Since R is a reflexive relation on S , then y ∈ yR and y ∈ nr(y), and thus, by (1),

y ∈ nr(x) and hence nb(x) ⊆ nr(x). Similarly, we can prove nr(x) ⊆ ng(x). �

Remark 3. The next example shows that:

(a) The opposite of Lemma 3 is not true in general;
(b) The neighborhoods nb(x) and nf(x) are independent in the case of a reflexive relation.
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Example 2. Consider S = {ℊ,k, `,m} and R = {(ℊ,ℊ), (ℊ,k), (ℊ, `), (k,k), (k, `),
(k,m), (`, `), (m,m)} is a reflexive relation on S . Then, we attain the following:

nr(ℊ) = {ℊ,k, `}
nr(k) = {k, `,m}

nr(`) = {`}
nr(m) = {m}

⇒


nf(ℊ) = {ℊ,k, `}
nf (k) = {k, `}
nf(`) = {`}

nf(m) = {m}

,


ng(ℊ) = {ℊ,k, `}
ng (k) = {S}
ng(`) = {S}

ng(m) = {k, `,m}

and


nb(ℊ) = {ℊ, `}.

nb (k) = {k, `,m}.
nb(`) = {`}.

nb(m) = {m}.

Remark 4. Let S be a finite set and R be a symmetric relation to S . Then, for each x ∈ S ,
neighborhoods nr(x), nf(x), ng(x), and nb(x), for each x ∈ S , are independent (i.e., non-
comparable) as demonstrated in the subsequent example.

Example 3. Consider S = {ℊ,k, `,m} and a relation R = {(ℊ,k), (k,ℊ), (k, `), (`,k),
(`,m), (m, `)} is a symmetric relation on S . Hence, we attain the following:

nr(ℊ) = {k}
nr(k) = {ℊ, `}
nr(`) = {k,m}
nr(m) = {`}

⇒


nf(ℊ) = {ℊ, `}
nf (k) = {k}
nf(`) = {`}

nf(m) = {k,m}

,


ng(ℊ) = {ℊ, `}
ng (k) = {k,m}
ng(`) = {ℊ, `}

ng(m) = {k,m}

and


nb(ℊ) = {ℊ}.

nb(k) = {k,m}.
nb(`) = {ℊ, `}.
nb(m) = {m}.

Corollary 1. If a similarity relation on S . Then, for each x ∈ S :

(a) nb(x) ⊆ nr(x) ⊆ ng(x);
(b) and nf(x) ⊆ nr(x) ⊆ ng(x).

Note that: The inverse of the above result is not correct generally.

Lemma 4. If R is a transitive relation on S , then nr(x) ⊆ nb(x), for each x ∈ S .

Proof. Firstly let y ∈ nr(x), then xRy . . . (1)
Now, we need to prove that nr(y) ⊆ nr(x) as follows:
Let z ∈ nr(y), then yRz. However, R is a transitive relation and by using (1), we

obtain xRz and z ∈ nr(x). Therefore, nr(y) ⊆ nr(x) and then y ∈ nb(x). Hence,
nr(x) ⊆ nb(x). �

Remark 5. The next example shows that:

(a) The converse of Lemma 4 is not true in general;
(b) The neighborhoods nb(x) and nf(x) are independent in the case of a transitive relation;
(c) The neighborhoods nb(x) and ng(x) are independent in the case of a transitive relation.

Example 4. Consider S = {ℊ,k, `,m} andR = {(ℊ,ℊ), (ℊ,k), (k,m), (`, `), (ℊ,m)} is a
transitive relation on S . Then we attain the following:

nr(ℊ) = {ℊ,k,m}
nr(k) = {m}
nr(`) = {`}
nr(m) = Φ

⇒


nf(ℊ) = {ℊ,k,m}
nf (k) = {ℊ,k,m}

nf(`) = {`}
nf(m) = {m}

,


ng(ℊ) = {ℊ,k,m}
ng (k) = {ℊ,k,m}

ng(`) = {`}
ng(m) = {ℊ,k,m}

and


nb(ℊ) = {ℊ,k,m}.
nb(k) = {k,m}.
nb(c) = {`,m}.
nb(m) = {m}.

Lemma 5. If R is a preorder relation on S , then ∀x ∈ S , nr(x) = nf(x) = nb(x).

Proof. Firstly, by using Lemmas 3 and 4, we obtain nr(x) = nb(x).
Now, let y ∈ nf(x). Then y belongs to every after set that contains x. Therefore,

y ∈ xR (since, x ∈ xR, by the reflexivity ofR) and then xRy . . . (1)
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Therefore, we need to prove nr(y) ⊆ nr(x) as follows:
Let z ∈ nr(y), then yRz and by (1), we obtain xRz (sinceR is transitive). Therefore,

z ∈ nr(x) and this implies nr(y) ⊆ nr(x). Accordingly, y ∈ nb(x) and then nf(x) ⊆
nb(x).

Conversely, let y ∈ nb(x). Then nr(y) ⊆ nr(x) . . . (2)
Thus, we need to prove that y belongs to every after set that contains x as follows:
Let ∃z ∈ S such that x ∈ zR and y /∈ zR. Then, zRx and by (2), y ∈ xR (by

reflexivity ofR) which tends to zRx and xRy such that y /∈ zR which is a contradiction
toR is a transitive relation. Thus, y ∈ zR and this implies y must be belonging to every
after set containing x. Therefore, y ∈ nf(x) and hence nb(x) ⊆ nf(x). �

Corollary 2. If R is an equivalence relation on S , then nb(x) = nf(x) = ng(x) = [x]R,
∀x ∈ S .

Remark 6. If R is a preorder relation on S , then ∀x ∈ S , ng(x) 6= nb(x) as demonstrated by
the next example.

Example 5. Consider S = {ℊ,k, `,m} and R = {(ℊ,ℊ), (k,k), (`, `), (m,m), (ℊ,k),
(k,m), (ℊ,m)} is a preorder relation on S . Then we attain the following:

nr(ℊ) = {ℊ,k,m}
nr(k) = {k,m}
nr(`) = {`}

nr(m) = {m}

⇒


ng(ℊ) = {ℊ,k,m}
ng (k) = {ℊ,k,m}

ng(`) = {`}
ng(m) = {ℊ,k,m}

, and


nb(ℊ) = {ℊ,k,m}.
nb(k) = {k,m}.

nb(c) = {`}.
nb(m) = {m}.

4. Two Different Views for Generalized Rough Sets via Basic Neighborhoods

In the present section, we suggest and study two different methods to generalize
and improve Pawlak’s rough set models. The second method is very important for multi-
information systems and hence, it can be useful in multi attributes decision making. Many
comparisons between the proposed approaches and the previous methods (namely, Yao [18],
Allam et al. [19], Dai et al. [15], and Marei [31]) are investigated.

4.1. The First Method to Generalization Based on a One Binary Relation

Based on the neighborhood (basic-neighborhood), new rough approximations are
presented and their properties are studied. We proved that these approaches are stronger
than the other methods.

Definition 13. Consider R is any arbitrary binary relation on S . The basic-lower (resp. basic-
upper) approximation of M⊆ S is given by:

Lb(M) = {x ∈ S : nb(x) ⊆M}
(
resp. Ub(M) = {x ∈ S : nb(x) ∩M 6= Φ}

)
.

The boundary and the accuracy of maximal-approximations of a subsetM ⊆ S are given,
respectively, by:

Bndb(M) = Ub(M)−Lb(M) and Θb(M) =
|Lb(M)|∣∣Ub(M)

∣∣ , where Ub(M) 6= Φ.

Obviously, 0 ≤ Θb(M) ≤ 1 and if Θb(M) = 1 , then M is a basic-exact set (briefly,
b-exact). Otherwise, it is a basic-rough set (briefly, b-rough).

The following proposition provides the main properties of the “basic-approximations”.

Theorem 1. If R is an arbitrary binary relation on S , and M,N ⊆ S . Then, the following
axioms are held:
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(L1) Lb(M) ⊆M
(L2) Lb(Φ) = Φ

(L3) Lb(S) = S
(L4) IfM⊆ N , then Lb(M) ⊆ Lb(N )
(L5) Lb(M∩N ) = Lb(M) ∩ Lb(N )
(L6) Lb(M) ∪ Lb(N ) ⊆ Lb(M∪N )
(L7) Lb(Mc) = (Ub(M))

c

(L8) Lb(Lb(M)) = Lb(M)(LU) Lb(M) ⊆ Ub(M)

(U1)M⊆ Ub(M)
(U2) Ub(Φ) = Φ

(U3) Ub(S) = S
(U4) IfM⊆ N , then Ub(M) ⊆ Ub(N )
(U5) Ub(M∪N ) = Ub(M) ∪ Ub(N )
(U6) Ub(M) ∩ Ub(N ) ⊇ Ub(M∩N )
(U7) Ub(Mc) = (Lb(M))c

(U8) Ub
(
Ub(M)

)
= Ub(M)

Proof. The properties (L1–L3, LU) and (U1–U3) are straightforward.
Thus, we prove the remaining properties as follows:
(L4) LetM⊆ N , then Lb(M) = {x ∈ S : nb(x) ⊆M} ⊆ {x ∈ S : nb(x) ⊆ N} =

Lb(N );
(L5) First, by (L4), we have Lb(M∩N ) ⊆ Lb(M)∩Lb(N ) (sinceM∩N ⊆M and

M∩N ⊆ N );
Now, let x ∈ [Lb(M) ∩ Lb(N )]. Then x ∈ Lb(M) and x ∈ Lb(N ) which implies

nb(x) ⊆M and nb(x) ⊆ N . Thus, nb(x) ⊆ (M∩N ) and x ∈ Lb(M∩N ). Therefore,
Lb(M) ∩ Lb(N ) ⊆ Lb(M∩N ) and then Lb(M∩N ) = Lb(M) ∩ Lb(N );

(L6) SinceM ⊆ (M∪N ) and N ⊆ (M∪N ). Then, by (L4), Lb(M) ∪ Lb(N ) ⊆
Lb(M∪N );

(L7) (Ub(M))
c
= ({x ∈ S : nb(x) ∩M 6= Φ})c = { x ∈ S : nb(x) ∩M = Φ}

= { x ∈ S : nb(x) ⊆Mc} = Lb(Mc);
(L8) First, Lb(Lb(M)) ⊆ Lb(M), by using (L1);
Now, let x ∈ Lb(M), then nb(x) ⊆M. We need to prove that nb(x) ⊆ Lb(M) as

follows:
Let y ∈ nb(x), then nb(y) ⊆ nb(x) and thus nb(y) ⊆ M. Accordingly, y ∈

Lb(M) and this implies nb(x) ⊆ Lb(M) and x ∈ Lb(Lb(M)). Therefore, Lb(M) ⊆
Lb(Lb(M)).

In similar way, we can prove the properties (U4) and (U8). �

Remark 7. The reverse relations in the properties (L6) and (U6) of Theorem 1 do not hold in general
as Example 6 illustrates.

Example 6. (Continued to Example 3), letM = {ℊ,k} and N = {m}. Then we attain:
M∩N = Φ andM∪N = {ℊ,k,m}. Thus, their basic-approximations are Lb(M) =

{ℊ}, Lb(N ) = {m}, and Lb(M∪N ) = {ℊ,k,m}. In addition, Ub(M) = {ℊ,k, `},
Ub(N ) = {k,m} and Ub(M∩N ) = Φ.

Obviously, Lb(M∪N ) 6= Lb(M) ∪ Lb(N ) and Ub(M∩N ) 6= Ub(M) ∩ Ub(N ).

By using Corollary 2, we can easily prove the following result. Thus, the proof was
omitted.

Theorem 2. If R is an equivalence relation on S , andM⊆ S , then the following is held:

(L9) Lb
(
Ub(M)

)
= Ub(M). (U9) Ub(Lb(M)) = Lb(M).

Remark 8. The above results (Theorems 1 and 2) proved that the suggested approximations (basic-
approximations) represent the natural generalization to Pawlak’s rough set methodology and its
generalizations. Since our methods satisfy all properties of Pawlak’s models without any constraints,
and thus these extend the application field of this interesting theory in many real-life problems and
sciences.

4.2. The Second Method to Generalization Based on a Finite Number of Binary Relations

This subsection is devoted to suggesting generalized rough sets based on a finite
number of binary relations. In fact, we extend Marei’s [31] definition to any binary relation
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and provide some modifications and improvements for his approaches. Moreover, our
approaches solve some problems in Marei’s definition.

Definition 14. Consider {Ri : i = 1, 2, 3, . . . , n} to be a family of binary relations on S . Then:

(i) The first kind of n-basic lower (resp. n-basic upper) approximation of M⊆ S is given by:

n
1Rb(M) =

{
x ∈ S :

(
∩n

i=1nbi(x)
)
⊆M

} (
resp. n

1Rb(M) =
{
x ∈ S :

(
∩n

i=1nbi(x)
)
∩M 6= Φ

}
),

where nbi(x) = {y ∈ S : yRi ⊆ xRi};

(ii) The second kind of n-basic lower (resp. n-basic upper) approximation of M⊆ S is given by:

n
2Rb(M) = ∪n

i=1Lbi
(M)

(
resp. n

2Rb(M) = ∩n
i=1Ubi (M)

)
where Lbi

(M) = {x ∈ S : nbi(x) ⊆M} and Ubi (M) = {x ∈ S : nbi(x) ∩M 6= Φ}.

The boundary and the accuracy of n-basic approximations of a subsetM ⊆ S are
given, respectively, by:

n
kBndb(M) = n

kRb(M)− n
kRb(M) and n

k Θb(M) =

∣∣n
kRb(M)

∣∣∣∣∣nkRb(M)
∣∣∣ , where n

kRb(M) 6= Φ and k ∈ {1, 2}.

If n
k Θb(M) = 1 , then n

kBndb(M) = Φ andM is called n-basic exact set. Otherwise,
it is n-basic rough.

It is easy to prove the next results using Theorem 1, so we omitted the proof.

Theorem 3. Let {Ri : i = 1, 2, 3, . . . , n} be a family of binary relations on S . Then, the n-basic
approximations satisfy the properties of Pawlak’s rough sets (L1–L8) and (U1–U8) in the general
case without any conditions on the relationsRi .

Note that: The previous result (Theorem 3) represents the first differences between
our approaches and Marei’s approaches. Moreover, it demonstrates that the suggested
approximations in Definition 14 represent a generalization to Pawlak’s rough sets and
some of its generalizations.

Theorem 4. Let{Ri : i = 1, 2, 3, . . . , n} be a family of equivalence relations onS . Then, then-
basic approximations satisfy the properties of Pawlak’s rough sets (L1–L10) and (U1–U10).

The elementary objective of the following result is to explain the relationship between
the first and second kinds of n-basic approximations.

Theorem 5. Let{Ri : i = 1, 2, 3, . . . , n} be a family of binary relations onS . Then, the follow-
ing axioms are true:

(i) n
2Rb(M) ⊆ n

1Rb(M) and n
1Rb(M) ⊆ n

2Rb(M);
(ii) n

1Bndb(M) ⊆ n
2Bndb(M) and n

2Θb(M) ≤ n
1Θb(M);

(iii) If M is of second kind n-basic exact, then it is of first kind n-basic exact.

Proof. We shall prove (i) only, and the other statements directly by (i).
Let x ∈ n

2Rb(M), then x ∈ ∪n
i=1Lbi (M) and this implies ∃i0 ∈ I such that x ∈

Lbi0
(M). Therefore, nbi0(x) ⊆M, but

(
∩n

i=1nbi(x)
)
⊆ nbi0(x) and hence,

(
∩n

i=1nbi(x)
)

⊆M. Thus, x ∈ n
1Rb(M). Accordingly, n

2Rb(M) ⊆ n
1Rb(M).

Similarly, we can prove that n
1Rb(M) ⊆ n

2Rb(M). �

Note that: The opposite statements in the above result need not be true, in general, as
illustrated in the following example.
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Example 7. Suppose that R1 = {(ℊ,ℊ), (ℊ,k), (k,k), (k, `), (`,k), (m,ℊ), (m,k)} and
R2 = {((ℊ,ℊ), (k,k), (`,ℊ), (`,k), (m,ℊ)} are two binary relations on S = {ℊ,k, `,m}.
Hence, we attain the following:

nb1(ℊ) = {ℊ, `,m}
nb1(k) = {k, `}
nb1(`) = {`}

nb1(m) = {ℊ, `,m}
nb2(ℊ) = {ℊ,m}
nb2(k) = {k}

nb2(`) = {ℊ,k, `}
nb2(m) = {ℊ,m}


⇒



2
∩

i=1
nbi (ℊ) = {ℊ,m}.
2
∩

i=1
nbi (k) = {k}.

2
∩

i=1
nbi (`) = {`}.

2
∩

i=1
nbi (m) = {m}.

Now, let M = {k, `,m}. Then, Lb1
(M) = {k, `} and Lb2

(M) = {k}. Therefore,
2
2Rb(M) = {k, `}, but 2

1Rb(M) = {k, `,m}. Clearly, 2
2Rb(M) ( 2

1Rb(M). More-
over, 2

2Rb(M) = S and 2
1Rb(M) = {k, `,m}. Thus, 2

1Rb(M) ( 2
2Rb(M). Accordingly,

2
1Bndb(M) = Φ and 2

1Θb(M) = 1, but 2
2Bndb(M) = {ℊ,m} and 2

2Θb(M) = 1
2 . Thus,M

is first kind 2-basic exact although it is a second kind 2-basic rough set.

4.3. Comparisons between the Suggested Approaches and the Other Methods

The following results demonstrate the relationships among the suggested approxi-
mations (b-approximations) and some of the other approaches (existing methods in the
literature).

Case (1): General binary relation.
Firstly, the different approximations (Yao [18], Allam [19], Dai [15], and current ap-

proaches) are independent. Further, the previous methods failed in satisfying the basic
properties of Pawlak’s methodology. On the other hand, our approaches satisfy all Pawlak’s
exact criteria for rough sets in general case without any restrictions. The following example
shows these facts.

Example 8. (Continued with Example 3), we attained:

nr(ℊ) = {ℊ,m}
nr(k) = {ℊ}
nr(`) = {k}
nr(m) = Φ

⇒


nf(ℊ) = {ℊ}
nf (k) = {k}
nf(`) = Φ

nf(m) = {ℊ,m}

,


ng(ℊ) = {ℊ,m}
ng (k) = {k}
ng(`) = Φ

ng(m) = {ℊ,m}

, and


nb(ℊ) = {ℊ,k,m}
nb(k) = {k,m}
nb(`) = {`,m}
nb(m) = {m}

Thus, we shall compute the approximations for all subsets of S using the suggested
method (in Definition 13) and Allam et al.’s method (in Definition 4) as shown in Table 1.

Table 1. Comparison between Yao [18], Allam [19], Dai [15] approaches and the suggested method in the general case.

M
Yao’s Method Allam’s Method Dai’s Method Current Method

Lr(M) U r(M) Lfff(M) Ufff(M) Lggg(M) Uggg(M) Lb(M) Ub(M)

{ℊ}{ℊ}{ℊ} {k,m} {ℊ,k} {ℊ, `} {ℊ,m} {`} {ℊ,m} Φ {ℊ}
{h}{h}{h} {`,m} {`} {k, `} {k} {k, `} {k} Φ {ℊ,k}
{`}{`}{`} {m} Φ {`} Φ {`} Φ Φ {`}
{m}{m}{m} {m} {ℊ} {`} {m} {`} {ℊ,m} {m} S
{ℊ,h}{ℊ,h}{ℊ,h} {k, `,m} {ℊ,k, `} {ℊ,k, `} {ℊ,k,m} {k, `} {ℊ,k,m} Φ {ℊ,k}
{ℊ, `}{ℊ, `}{ℊ, `} {k,m} {ℊ,k} {ℊ, `} {ℊ,m} {`} {ℊ,m} Φ {ℊ, `}
{ℊ,m}{ℊ,m}{ℊ,m} {ℊ,k,m} {ℊ,k} {ℊ, `,m} {ℊ,m} {ℊ, `,m} {ℊ,m} {m} S
{h, `}{h, `}{h, `} {`,m} {`} {k, `} {k} {k, `} {k} Φ {ℊ,k, `}
{h,m}{h,m}{h,m} {`,m} {ℊ, `} {k, `} {k,m} {k, `} {ℊ,k,m} {k,m} S
{`,m}{`,m}{`,m} {m} {ℊ} {`} {m} {`} {ℊ,m} {`,m} S
{ℊ,h, `}{ℊ,h, `}{ℊ,h, `} {k, `,m} {ℊ,k, `} {ℊ,k, `} {ℊ,k,m} {k, `} {ℊ,k,m} Φ {ℊ,k, `}
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Table 1. Cont.

M
Yao’s Method Allam’s Method Dai’s Method Current Method

Lr(M) U r(M) Lfff(M) Ufff(M) Lggg(M) Uggg(M) Lb(M) Ub(M)

{ℊ,h,m}{ℊ,h,m}{ℊ,h,m} S {ℊ,k, `} S {ℊ,k,m} S {ℊ,k,m} {ℊ,k,m} S
{ℊ, `,m}{ℊ, `,m}{ℊ, `,m} {ℊ,k,m} {ℊ,k} {ℊ, `,m} {ℊ,m} {ℊ, `,m} {ℊ,m} {`,m} S
{h, `,m}{h, `,m}{h, `,m} {`,m} {ℊ, `} {k, `} {k,m} {k, `} {ℊ,k,m} {k, `,m} S

S S {ℊ,k, `} S {ℊ,k,m} S {ℊ,k,m} S S
Φ {m} Φ {`} Φ {`} Φ Φ Φ

Remark 9. From Table 1, we can notice the following:

(i) The Yao, Allam, and Dai methods are not suitable to approximate the rough sets in the
general case, since they could not be applied for any relation (since the main properties of the
approximations did not hold), and thus these methods restrict the applications of rough set
theory, for instance:

a. Lk(M) *M * U k(M), ∀M ⊆ S , k ∈ {r, f, g}.
b. U k(S) 6= S and Lk(Φ) 6= Φ.

For example, see the highlighted cells in Table 1. Accordingly, these methods make some
contradictions to the rough set theory. Further, all subsets were rough according to these methods
and this represents vagueness for data;

(ii) On the other hand, our methods in the present paper were the best methods for approximating
the sets in the general case, since these approximations satisfied all properties of Pawlak’s
rough sets without any conditions or restrictions. Therefore, the suggested method can help in
discovering the vagueness in the data.

Case (2): Special cases of a binary relation.
Now, the different approximations (Yao [18], Allam [19], Dai [15], and current ap-

proaches) are independent. The following theorem demonstrates this fact.

Theorem 6. If R is a reflexive relation on S , then for eachM⊆ S :

(a) Lg(M) ⊆ Lr(M) ⊆ Lb(M) ⊆M ⊆ Ub(M) ⊆ Ur(M) ⊆ Ug(M);
(b) Lg(M) ⊆ Lr(M) ⊆ Lf(M) ⊆M ⊆ Uf(M) ⊆ Ur(M) ⊆ Ug(M).

Proof. According to Lemma 2, the proof is obvious. �

Corollary 3. If R is a reflexive relation on S , then for eachM⊆ S :

(a) Bndb(M) ⊆ Bndr(M) ⊆ Bndg(M);
(b) Bndf(M) ⊆ Bndr(M) ⊆ Bndg(M);
(c) Θg(M) ≤ Θr(M) ≤ Θb(M);
(d) Θg(M) ≤ Θr(M) ≤ Θf(M);
(e) If M is g-exact ⇒M is r-exact ⇒M is b-exact. If M is g-exact ⇒M is r-exact

⇒M is f-exact.

Note that: The opposite of the previous results is not true in general as shown in the
next example.

Example 9. Consider Example 5 if M = {m}. Then, Lg(M) = Φ and Ug(M) = {k, `,m}
which implies Bndg(M) = {k, `,m} and Θg(M) = 0. However, Lb(M) = Ub(M) =M
which tends to Bndb(M) = Φ and Θb(M). Therefore, Lg(M) ( Lb(M), Ub(M) (
Ug(M), Bndb(M) ( Bndg(M) , and Θg(M) < Θb(M). In addition, M is b-exact
although it is a g-rough set.
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According to Lemma 4, we can easily prove the following theorem. Thus, the proof
was omitted.

Theorem 7. If R is a preorder relation on S , then for eachM⊆ S :

(a) Lg(M) ⊆ Lr(M) = Lf(M) = Lb(M) and Ur(M) = Uf(M) = Ub(M) ⊆
Ug(M);

(b) Bndr(M) = Bndf(M) = Bndb(M) ⊆ Bndg(M) and Θg(M) ≤ Θr(M) =
Θf(M) = Θb(M).

Figure 1 summarizes the relationships between the suggested approach and the other
methods (namely, Yao, Dai, and Allam) in the case of the reflexivity of the relation (where
each arrow represents ⊆).
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The core objective of the next result is to prove that our methods represent a general-
ization to Marei’s approaches.

Theorem 8. If {Ri : i = 1, 2, 3, . . . , n} is a family of reflexive relations on S , then, for each
M⊆ S :

(i) n
kR(M) ⊆ n

kRb(M) ⊆M ⊆ n
kRb(M) ⊆ n

kR(M), for each k ∈ {1, 2} ;
(ii) n

kBndb(M) ⊆ n
kBnd(M) and n

k Θ(M) ≤ n
k Θb(M), for each k ∈ {1, 2} ;

(iii) If M is n-exact, then it is n-basic exact.

Proof. We shall verify (i) only in the case of k = 1, and the others similarly.
Let x ∈ n

1R(M), then
(
∩n

i=1xRi
)
⊆M. However, by using Lemma 2, nb(x) ⊆ xR,

for each x ∈ S . Hence,
(
∩n

i=1nbi(x)
)
⊆
(
∩n

i=1xRi
)
⊆ M and then x ∈ n

1Rb(M).
Therefore, n

1R(M) ⊆ n
1Rb(M).

Similarly, we can prove that: n
1Rb(M) ⊆ n

1R(M). �

Note that: The next example demonstrated that the inverse of Theorem 8 was not
correct generally.

Example 10. Suppose thatR1 = {(x,x), (y,y), (y,z), (z,x), (z,z)} andR2 = {(x,x),
(x,y), (y,y), (y,z), (z,y), (z,z)} are two reflexive relations on S = {x,y,z}. Hence, we
attain the following:

2
∩
i=1

xRi = {x}.
2
∩
i=1

yRi = {y,z}.
2
∩
i=1

zRi = {z}.


and



2
∩
i=1

nbi(x) = {x}.
2
∩
i=1

nbi(y) = {y}.
2
∩
i=1

nbi(z) = {z}.

Now, letM = {x,y}. Thus, we obtain:
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According to Marei’s approach, 2
1R(M) = {x} and 2

1R(M) = {x,y}, i.e.,M is rough.
According to our approach (Definition 14 (i)), n

1Rb(M) = n
1Rb(M) =M, i.e.,M is

an exact set.
Furthermore, it is clear that n

1R(M) ( n
1Rb(M) and n

1Rb(M) ( n
1R(M).

Note that: We present the following example to show that the relationship between
Marei’s techniques and our approaches in the general case. Besides, this example illustrates
that the suggested methods improve and solve the errors in the last methods (Marei’s
methods).

Example 11. Suppose thatR1 = {(x,y), (y,z)} andR2 = {(x,z), (y,z)} are two binary
relations on S = {x,y,z}. Hence, we attain the following:

2
∩
i=1

xRi = Φ.
2
∩
i=1

yRi = {z}.
2
∩
i=1

zRi = Φ.


and



2
∩
i=1

nbi(x) = {x,z}.
2
∩
i=1

nbi(y) = {y,z}.
2
∩
i=1

nbi(z) = {z}.

Now, letM = {z}. Thus, we obtain:
According to Marei’s approach, 2

1R(M) = {x,y,z} = S *M and 2
1R(M) = {y} +

M; i.e., M is rough. Moreover, 2
1R(Φ) = {x,z} 6= Φ and 2

1R(S) = {y} 6= S which is a
contradiction to the main properties of Pawlak’s rough methodology.

According to our approach (Definition 14 (i)), n
1Rb(M) = n

1Rb(M) =M, i.e.,M is
an exact set. Moreover, 2

1Rb(Φ) = 2
1Rb(Φ) = Φ and

2
1Rb(S) = 2

1Rb(S) = S . Besides, for eachM⊆ S ,

n
1Rb(M) ⊆M ⊆ n

1Rb(M).

5. Applications

Here, we present two real-life applications to illustrate the importance of the suggested
techniques.

5.1. Set-Valued Information Systems

Set-valued information systems represent generalized models of single-valued in-
formation systems. Firstly, in this subsection, we provide some fundamental concepts of
set-valued information systems.

Definition 15 [10]. Suppose that S represents a finite set of objects, called the universe of
discourse, At be a finite set of attributes such that, for each attribute a ∈ At, associated with a
set of its values Va, and the map F : S ×At→ V is a total function such that F (x,a) ⊆ Va
for every a ∈ At, x ∈ S , and V = ∪a∈AtVa called an information function. The quadruple
(S ,At,V ,F ) is called a single-valued information system if each attribute has a unique attribute
value; if a system is not a single-valued information system, it is called a multi-valued information
system (or set-valued information system).

Note that: If the set of attributes At is divided into condition C and decision d
attributes, then this information system is called a set-valued decision information system and
denoted by DIS = (S , C ∪ {d},V ,F ), where At = C ∪ {d}, C is a finite set of condition
attributes, and d is a decision attribute with C ∩d = Φ. If the domain (scale) of a condition
attribute is ordered according to a decreasing or increasing preference, then the attribute is
a criterion.

Definition 16 [10]. In any set-valued information system (S ,At,V ,F ), if the domain of a
condition attribute is ordered according to a decreasing or increasing preference, then the attribute
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is a criterion. If every condition attribute is a criterion, then it is said to be a set-valued ordered
information system.

Definition 17 [10]. If the values of some objects in S under a condition attribute can be ordered
according to an inclusion increasing or decreasing preference, then the attribute is an inclusion
criterion.

5.2. Decision-Making of Multi-Information System of Nutrition Modeling via B-Rough
Approximations

Each nutrient performs one or more of the general functions listed below. Heat, energy,
and power are provided by carbohydrates and fats. Proteins, minerals, and vitamins help
to build and promote growth, as well as renew and regulate body tissues and processes.
For practical purposes, the recommended daily dietary allowances are divided into the
following basic food groups, which are represented by a table.

Consider Table 2, which contains information about eight adolescents’ eating habits.

Table 2. Multi-information system of eight adolescents’ eating habits.

Students Group I (A1) Group II (A2) Group III (A3) Group IV (A4) Group V (A5) Decision (D)

ℊ1 {V ,M} {P ,F} {P} {C,M} {P ,F} Unhealthy
ℊ2 {C,V ,M} {C,P} {P ,F} {C,P ,M} {P ,F} Healthy
ℊ3 {C,M} {C,P ,F} {F} {C,P ,M} {F} Healthy
ℊ4 {C,V ,M} {C,F} {P ,F} {P ,M} {P ,F} Unhealthy
ℊ5 {C,V} {C,P ,F} {P ,F} {C,M} {P ,F} Healthy
ℊ6 {V ,M} {C,P ,F} {P ,F} {C,P ,M} {F} Healthy
ℊ7 {V ,M} {C,F} {P ,F} {C,P} {P} Unhealthy
ℊ8 {V ,M} {C,P ,F} {P ,F} {C,P ,M} {P ,M} Healthy

Accordingly, Table 2 represents a set valued ordered information system, where
S = {ℊ1,ℊ2,ℊ3, . . . , ℊ8} is a finite set of students and At = {A1, A2, A3, A4, A5} is a
finite set of attributes of the basic food groups and D is the decision attribute. The set of
attribute values is given by VAt = {C,P ,F ,V ,M}, where C,P ,F ,V and M interpret,
respectively, as carbohydrate, protein, fat, vitamins, and minerals.

From Table 2: f (ℊ1, A1) = {V ,M} and f (ℊ2, A1) = {C,V ,M}. Therefore, we attain
f (ℊ1, A1) ( f (ℊ2, A1) and hence, the intake of fruits and vegetables by ℊ2 is much better
than that by ℊ1.

Thus, Table 2 represents a multi-valued information system with general binary
relations:

ℊiRAkℊ| ⇔ f (ℊi , Ak) ( f (ℊi , Ak) , where i, | ∈ {1, 2, 3, . . . , 8} & k = 1, 2, 3, 4, 5.

The above relations are transitive. Thus, Pawlak’s approach and some of its general-
izations (such as Allam, Yao, Dai, and Marei methods) did not apply here and hence they
could not deal with this problem, as illustrated in the following application.

Therefore, we use the approximations in Definition 14 to make an accurate decision
for the nutrition system in Table 2.
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Accordingly, Tables 3 and 4 provide the right and b-neighborhoods of Table 2. Thus,
by using Definition 14 we attain:

5
∩

k=1
ℊ1RAk = Φ.

5
∩

k=1
ℊ2RAk = Φ.

5
∩

k=1
ℊ3RAk = Φ.

5
∩

k=1
ℊ4RAk = Φ.

5
∩

k=1
ℊ5RAk = Φ.

5
∩

k=1
ℊ6RAk = Φ.

5
∩

k=1
ℊ7RAk = Φ.

5
∩

k=1
ℊ8RAk = Φ.



and

5
∩

k=1
nbk (ℊ1) = {ℊ1,ℊ2,ℊ4,ℊ5,ℊ8}.

5
∩

k=1
nbk (ℊ2) = {ℊ2}.

5
∩

k=1
nbk (ℊ3) = {ℊ3,ℊ6,ℊ8}.
5
∩

k=1
nbk (ℊ4) = {ℊ2,ℊ4}.

5
∩

k=1
nbk (ℊ5) = {ℊ5,ℊ8}.

5
∩

k=1
nbk (ℊ6) = {ℊ5,ℊ6,ℊ8}.

5
∩

k=1
nbk (ℊ7) = {ℊ2,ℊ4,ℊ5,ℊ6,ℊ7,ℊ8}.

5
∩

k=1
nbk (ℊ8) = {ℊ8}.

Table 3. Right neighborhoods of Table 2.

Students ℊiRA1
ℊiRA1
ℊiRA1

ℊℊℊiiiRA2
ℊiRA3
ℊiRA3ℊiRA3 ℊiRA4

ℊiRA4ℊiRA4 ℊiRA5
ℊiRA5ℊiRA5

ℊ1 {ℊ2,ℊ4} {ℊ3,ℊ5,ℊ6,ℊ8} {ℊ2, ℊ4,ℊ5,ℊ6,ℊ7,ℊ8} {ℊ2,ℊ3,ℊ6,ℊ8} Φ
ℊ2 Φ {ℊ3,ℊ5,ℊ6,ℊ8} Φ Φ Φ
ℊ3 {ℊ2,ℊ4} Φ {ℊ2, ℊ4,ℊ5,ℊ6,ℊ7,ℊ8} Φ {ℊ1,ℊ2,ℊ4,ℊ5,ℊ8}
ℊ4 Φ {ℊ3,ℊ5,ℊ6,ℊ8} Φ {ℊ2,ℊ3,ℊ6,ℊ8} Φ
ℊ5 {ℊ2,ℊ4} Φ Φ {ℊ2,ℊ3,ℊ6,ℊ8} Φ
ℊ6 {ℊ2,ℊ4} Φ Φ Φ {ℊ1,ℊ2,ℊ4,ℊ5,ℊ8}
ℊ7 {ℊ2,ℊ4} {ℊ3,ℊ5,ℊ6,ℊ8} Φ {ℊ2,ℊ3,ℊ6,ℊ8} {ℊ1,ℊ2,ℊ4,ℊ5,ℊ8}
ℊ8 {ℊ2,ℊ4} Φ Φ Φ Φ

Table 4. b-neighborhoods of Table 2.

Students nbbbA1(ℊℊℊiii) nbbbA2 (ℊℊℊiii) nbbbA3 (ℊℊℊiii) nbbbA4 (ℊℊℊiii) nbbbA5 (ℊℊℊiii)

ℊ1 S S S S {ℊ1,ℊ2,ℊ4,ℊ5,ℊ8}
ℊ2 {ℊ2,ℊ4} S {ℊ2,ℊ4,ℊ5,ℊ6,ℊ7,ℊ8} {ℊ2,ℊ3,ℊ6,ℊ8} {ℊ1,ℊ2,ℊ4,ℊ5,ℊ8}
ℊ3 S {ℊ3,ℊ5,ℊ6,ℊ8} S {ℊ2,ℊ3,ℊ6,ℊ8} S
ℊ4 {ℊ2,ℊ4} S {ℊ2,ℊ4,ℊ5,ℊ6,ℊ7,ℊ8} S {ℊ1,ℊ2,ℊ4,ℊ5,ℊ8}
ℊ5 S {ℊ3,ℊ5,ℊ6,ℊ8} {ℊ2,ℊ4,ℊ5,ℊ6,ℊ7,ℊ8} S {ℊ1,ℊ2,ℊ4,ℊ5,ℊ8}
ℊ6 S {ℊ3,ℊ5,ℊ6,ℊ8} {ℊ2,ℊ4,ℊ5,ℊ6,ℊ7,ℊ8} S S
ℊ7 S S {ℊ2,ℊ4,ℊ5,ℊ6,ℊ7,ℊ8} S S
ℊ8 S {ℊ3,ℊ5,ℊ6,ℊ8} {ℊ2,ℊ4,ℊ5,ℊ6,ℊ7,ℊ8} {ℊ2,ℊ3,ℊ6,ℊ8} {ℊ1,ℊ2,ℊ4,ℊ5,ℊ8}

We computed the approximations, the boundary region, and the accuracy of the
approximations of only two decision sets (healthy set and unhealthy set) using the proposed
method in Definition 14 and the other previous methods. Thus, we explain the importance
of the suggested techniques in approximating the sets for helping in decision-making.
From Table 2: The set of healthy food wasH = {ℊ2,ℊ3, ℊ5,ℊ6,ℊ8}.

According to Marei’s approach:
5
1R(H) = S and 5

1R(H) = Φ. This means that H is totally rough set according to
Marei’s technique. Therefore, we were unable to decide whether the healthy or unhealthy
food. On the other hand, there were some contradictions to Pawlak’s axioms [1], namely
5
1R(H) * H * 5

1R(H).
According to our approach (Definition 14 (i)):
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5
1Rb(H) = H and 5

1Rb(H) = S . This means that the set {ℊ2,ℊ3, ℊ5,ℊ6,ℊ8} only
represented the healthy food, which coincided with the decision system Table 2. Moreover,
5
1Rb(H) ⊆ H ⊆ 5

1Rb(H).
Observation: From the above comparisons, we noticed the following:

(1) We could not use Pawlak’s rough set model in the previous application because of its
transitivity as we applied Pawlak’s rough set model only in the case of equivalence
relation. Moreover, these methods were applied easily without restrictions, so this
may expand the field of the application of Pawlak’s rough sets;

(2) Using Marei’s methods was not suitable for obtaining an accurate decision, since
they produced some contradictions and vagueness. Consequently, we were unable to
decide the suitable healthy food;

(3) On the other hand, by using the suggested approximations, we confirmed between the
experimental data and its mathematical analysis. The mathematical study depends
on the classification of data by using the b-neighborhoods. Hence, we minimized
the vagueness in the data and also obtained a higher accuracy measure. Accordingly,
we can say that the suggested approximations were more accurate than the previous
methods for extracting the information and helping to eliminate the ambiguity of
the data in the real-life problems, especially in the medical diagnosis which needed
accurate decisions.

5.3. A Medical Application in Decision-Making of the Heart Attacks Problem

Since medical diagnosis always needs accurate tools to make decisions, we then
applied the proposed methods in decision making to heart attacks. The data set in Table 5
shows the outcomes of five symptoms for twelve patients. The research was carried out
at Al-Azhar University’s cardiology department [38] (Hospital of Sayed Glal University-
Cairo, Egypt). The study included twelve patients who presented to this hospital with
different symptoms, as well as a detailed history, physical examination, full labs, a resting
ECG, and a conventional echo assessment. In the end, the diagnosis of heart attacks was
confirmed or ruled out. In other words, the columns represent the symptoms. Thus, the set
of attributes was At = {A1, A2, A3, A4, A5}, where A1 represents the breathlessness, A2
represents the orthopnea, A3 represents the paroxysmal nocturnal dyspnea, A4 represents
reduced exercise tolerance, and A5 represents ankle swelling. Attribute D is the decision
of heart attacks. On the other hand, the rows in Table 5 represent the patients, where
b = {p1, p2, · · · , p12}. In the present application, we used a general binary relation
to illustrate the significance of the suggested technique in decision-making. Therefore,
the other methods (such as Pawlak [1,2], Yao [18], Allam [19], and Dai [15]) could not be
applied here and hence we could say that our technique extended the application field of
rough sets. Accordingly, we demonstrated that the suggested tools were more accurate
than the other methods.

Note that: The patients p3 and p7 had the same values, the patients p9 and p11 also
had the same values, and the patients p5 and p12 had the same values. Thus, we omitted
the patients p7, p11, and p12 and hence b = {p1,p2,p3, p4,p5,p6,p8,p9,p10}.

To determine the symptoms of every patient, we defined a map V : b → P(b) such
that a symptom belonged to V(pi), ∀i = 1, 2, . . . , 12 if the patient pi had this symptom.

Therefore, from Table 5, we obtained the symptoms of every patient as follows:
V(p1) = {A1, A2, A3, A4}, V(p2) = V(p10) = {A4, A5}, V(p3) = {A1, A2, A3, A4, A5},
V(p4) = V(p6) = {A4}, V(p5) = {A1, A4, A5}, V(p8) = {A1, A2, A4, A5}, and V(p9) =
{A1, A3, A4}.

Thus, we could generate a binary relation between the patients depending on the map
V as follows: piRp| ⇔ V(pi) ( V

(
p|
)

, for each i, | ∈ {1, 2, . . . 12}.
Note that: The relation was identified according to the viewpoint of the system’s

experts.
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Table 5. The information’s decisions data set [38].

bbb A1 A2 A3 A4 A5 D

p1 yes yes yes yes no yes
p2 no no no yes yes no
p3 yes yes yes yes yes yes
p4 no no no yes no no
p5 yes no no yes yes no
p6 no no no yes no no
p7 yes yes yes yes yes yes
p8 yes yes no yes yes yes
p9 yes no yes yes no yes
p10 no no no yes yes no
p11 yes no yes yes no yes
p12 yes no no yes yes no

Here, “yes” interpreted the patient had symptoms and “no” interpreted the patient had no symptoms.

Thus, we attained the following:

R = {(p1,p3), (p2,p3), (p2,p5), (p2,p8), (p4,p1), (p4,p2), (p4,p3), (p4,p5), (p4,p8),
(p4,p9), (p4,p9), (p4,p10), (p5,p3), (p5,p8), (p6,p1), (p6,p2), (p6,p3), (p6,p5),
(p6,p8), (p6,p9), (p6,p10), (p8,p3), (p9,p1), (p9,p3), (p10,p3), (p10,p5), (p10,p8), }

Thus, the right neighborhoods of each element in b of this relation were:

p1R = p8R = {p3}, p2R = p10R = {p3,p5,p8}, p3R = Φ, p4R = p6R =
{p1,p2,p3,p5, p8,p9,p10}, p5R = {p3,p8}, and p9R = {p1,p3}.

Accordingly, the maximal-neighborhoods were:

ng(p1) = ng( p2) = ng( p3) = ng(p5) = ng(p8) = ng(p9) = ng(p10) = {p1,p2,
p3,p5,p8,p9,p10}, and ng(p4) = ng( p6) = Φ.

In addition, the b-neighborhoods were:

nb(p1) = nb(p8) = {p1,p3,p8}, nb( p2) = nb(p10) = {p1,p2,p3, p5,p8,p10},
nb( p3) = {p3}, nb(p4) = nb(p6) = b, nb(p5) = {p1,p3,p5,p8}, and nb(p9) =
{p1,p3,p5,p8,p9}.

Thus, Table 5 represents a decision system and thus the patients with confirmed heart
attacks were surely H = {p1,p3,p8,p9}. Thus, we computed the approximations, the
boundary, and the accuracy measure ofH using the suggested method and the previous
approach [15] to explain the significance of the suggested techniques in decision-making.

Dai et al.’s approach [15]:
By calculating, we obtained Lg(H) = {p4,p6} 6= H, and Ug(H) = {p1,p2,p3, p5,

p8,p9,p10}. This meant that the boundary region was Bndg(H) = {p1,p2,p3, p5,
p8,p9,p10}, and the accuracy measure was Θg(H) = 2/7, which meant that H was a
rough set according to the Dai technique. Further, the patients p4 and p6 experienced
heart attacks, which contradicted the decision system in Table 5. Therefore, we were unable
to decide whether the patient was experiencing heart attacks.

Current approach:
By calculating, we obtained Lb(H) = {p1,p3,p8}, and Ub(H) = b. This meant that

the boundary region was Bndb(H) = {p2,p4,p5,p6,p9,p10} and the accuracy measure
was Θb(H) = 4/9 = 44.4%, which meant that the patients {p1,p3,p8} surely experienced
heart attacks according to the proposed technique. On the other hand, the patient p9 may
may or may not have experienced heart attacks.

Concluding remark: From the above comparison, we noticed the following:

(1) Pawlak’s rough set model cannot be used in the above application because the used
relation was transitive. Pawlak’s rough set model was applied only when the relation
was an equivalence relation. On the other hand, the suggested 664 methods were
applied and hence, this extended the application fields of Pawlak’s rough sets;
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(2) Using Dai et al.’s methods was not suitable for obtaining an accurate decision, since
the boundary region was Bndg(H) = {p2,p4,p5,p6,p9,p10}, and the accuracy
measure was Θg(H) = 2/7, which meant that all patients in bmay have been infected,
although the infected patients were surely specified with the setH = {p1,p3,p8,p9}.
Consequently, we were unable to decide whether the patient was infected with heart
attacks, and this produced vagueness in decision making regarding the medical
diagnosis;

(3) On the other hand, using the suggested approximations, we attained the boundary
Bndb(H) = {p2,p4,p5,p6,p9,p10}, and the accuracy measure was Θb(H) = 4

9 .
Hence, we minimized the vagueness in the data and also obtained a higher accuracy
measure. Accordingly, we can say that the suggested approximations were more
accurate than the previous methods for extracting the information and helping to
eliminate the ambiguity of the data in real-life problems, especially in the medical
diagnosis which needed accurate decisions.

6. Conclusions

The philosophy of rough sets is characteristically considered a creation based on the
idea of an approximation space and the constructed lower and upper approximations of
subsets of a universe. In the original rough set theory, the constraint of the equivalence
relation has excessively restricted those energies against the application’s fields of this
theory. Thus, in the present paper, we introduced two different methods to generalize
this theory. These methods were based on a novel neighborhood that was induced from a
general binary relation. The first method depended on one binary relation to define the
approximations which were compared with the previous approaches. Theorems 1, 2, 6
and 7 and Corollary 3 proved that the suggested methods represented a generalization
to Pawlak’s models and their generalizations. Furthermore, the generalization of some
concepts which were presented by Pawlak and Lellis Thivagar, as well as some of their
properties, can be investigated using the basic-rough sets. Since Lellis Thivagar intro-
duced the concept of “nano-topology” based on Pawlak’s rough sets, which are basically
dependent on an equivalence relation, their methods restricted the application fields of
real-life problems. Thus, we extended the application fields of graph theory. Moreover,
these results illustrate that our approaches were more accurate and stronger than the other
methods, such as Yao [18], Allam [19], Dai [15], and Marei [31]. In the second method,
we succeeded in presenting improvements to Marei’s methods. Consequently, the second
method was to propose new methods for generalizing rough sets by a finite number of
binary relations which were induced in multi-information systems, and hence we extended
the application field of rough set theory in order to solve many problems of multi-attribute
decision-making (MADM).

Finally, to illustrate the significance of the suggested methods, two different appli-
cations were investigated. First, we applied the proposed method in multi-information
systems of nutrition modeling, and hence we succeeded in identifying the best feeding
systems that were healthy. In medicine, the medical diagnosis always needs accurate
tools to make the decision, so we applied the proposed methods in decision-making to
the issue of heart attacks. We used a data set of five symptoms for twelve patients. The
research was carried out at Al-Azhar University’s cardiology department [38] and hence,
we proved that the suggested methods were more accurate than the other methods (namely,
Yao [18], Allam [19], Dai [15], and Marei [31]). In fact, we set an establishment between the
experimental data and its mathematical analysis.

Overall, this work supplies a readable framework to the respective areas with inter-
esting applications such as COVID-19, MADM, and graph theory. Generalized rough sets
based solely on binary relations may not support MADM, so in our future work, we will
study the suggested approaches in MADM as a starting point for future research. Further,
we will use the proposed methods in extending the theory of fuzzy soft sets.
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