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Abstract: Computer network security is an important aspect of computer science. Many researchers
are trying to increase security using different methods, technologies, or tools. One of the most
common practices is the deployment of an Intrusion Detection System (IDS). The current state of IDS
brings only passive protection from network intrusions, i.e., IDS can only detect possible intrusions.
Due to that, the manual intervention of an administrator is needed. In our paper, we present a logical
model of an active IDS based on category theory, coalgebras, linear logic, and Belief–Desire–Intention
(BDI) logic. Such an IDS can not only detect intrusions but also autonomously react to them according
to a defined security policy. We demonstrate our approach on a motivating example with real network
intrusions.

Keywords: BDI logic; linear logic; IDS; category theory; coalgebra

1. Introduction

In today’s information society, computer security is undoubtedly a very important
area of research. The rapid technological development has brought the advent of personal
computers, laptops, smart devices, the Internet of Things (IoT), etc., which means comput-
ers are already involved in every aspect of human life. Therefore, various sensitive and
confidential information flows evermore through the network. This brings the necessity to
secure that information from falling into malicious hands.

1.1. Motivation

One of the most common practices to increase the security of computer networks is
the use of Intrusion Detection Systems (IDSs). Generally, an IDS is a device or software
application that monitors a computer system or a network [1] for malicious activities. Our
work is dedicated to network-based intrusion detection systems where the detection of
intrusions is based on the patterns of known intrusions. The advantages of such an IDS
are that, after the implementation, the system is immediately ready to detect intrusions,
and it is reliable in the detection of known intrusions. On the other hand, a disadvantage
is the inability to detect new intrusions [2]. IDSs are based on observing the usage of
a computer network and the statistics learned so that intrusions can be detected. Their
advantage is the ability to detect new intrusions, but the disadvantages are, e.g., the need
for long-term observation of the computer network before a representative sample of
statistics can be created. It can also miss old but well-known simple intrusions because
these do not greatly disturb the traffic. However, these intrusion detection systems provide
only passive protection from attackers. When an intrusion is detected, only the respective
logging of the intrusion is performed, without any reaction to it. Therefore, after intrusion
detection, a computer network requires the intervention of an administrator.

Another disadvantage of the current state of intrusion detection is that there is no exact
formal description or verifiable model of IDSs [3]. Compared with other (more common)
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approaches of software engineering, which require testing a system after any change in
its model, an exact mathematical model can be useful to prove the correctness and to
minimize the undesirable behavior of a system in the design phase, before its physical
implementation.

We published a first attempt in this field in [4], but the proposed logical model dealt
only with passive IDSs; therefore, it was only able to gain objective knowledge from a
rational belief about an intrusion. An objective of this paper is to extend our work by
designing a formal verifiable logical model for an IDS, which allows us to obtain not only
a belief about an intrusion but also an active reaction to it. Such an IDS would not only
autonomously react to a detected intrusion but also create countermeasures against it, and
it would prevent future occurrences of similar types of intrusions.

1.2. Work Plan

For the passive part of our model [4], we used a coalgebra for a polynomial endofunc-
tor (formally defined in Section 2.2.2) as an appropriate method to model a state-based
system and to observe its internal state, and we used the expressive power and dynamics
of linear logic (formally defined in Section 2.3.1). In this paper, we extend our logic to
the linear BDI logic, mainly with the resource-oriented casual nature of linear connec-
tives. This brings a new and stronger expressive power, allowing for the description of
real-world properties.

BDI logic (formally defined in Section 2.3.2) is a logic of three modalities, belief, desire,
and intention, about certain properties. This allows us to formulate the desired state of an
environment, which has to be in symbiosis with its beliefs and can be altered by intentions,
i.e., plans. BDI logic was originally developed for reasoning about BDI agents. There is no
exact definition of a BDI agent. A common informal definition is that a BDI agent is some
abstract autonomous unit with the following characteristic abilities:

• Able to perceive an environment in some way (through some perception devices,
sensors, actuators, etc.);

• Able to process the received information and to make decisions based on it;
• Able to influence an environment.

The active part of our model consists of three units, which represent the mental
attitude of a BDI agent as follows:

• Belief —represents obtaining a belief about an intrusion;
• Desire—represents the logically formulated security policy of a network;
• Intention—represents a database of plans for reactions to a breach in security policy in

gaining a belief about an intrusion.

We demonstrate this model on the specific examples of three intrusions. This is
described in Section 4.1.

1.3. Structure of the Paper

In Section 2, we present the basic notions used in the formal methods and our notation.
In Section 3, we present our first contribution: the introduction of a linear belief–desire–
intention logical system (linear BDI), its syntax, and its semantics. Then, we continue with
our main result (Section 4), which is the design of linear BDI model for an active IDS. First,
we convert the real IDS’s network intrusion detection signatures to many-type signatures.
We construct a network stream of packets as the state-based category of packets, and we
model its behavior as a coalgebra for a polynomial endofunctor (a passive IDS). As the
last step, we present the proposed model of the active IDS based on our defined linear
BDI logic.
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1.4. Related Works and Our Proposition

The logical model for an active IDS presented in this paper is based on linear logic
and a BDI model. There are several works and ideas on how to use a BDI model in
computer science.

Mazal et al. presented the formalism of Object-Oriented Petri Nets in their publi-
cation [5] by modeling BDI agents using their PNagent framework. They showed that
Object-Oriented Petri Nets provide a user-friendly and intuitive graphical method for
modeling beliefs, desires, and intentions using the agent interpreter.

The other possible usages of a BDI model in software engineering are numerous,
e.g., in Nunes’s publication [6], he proposed a model-driven approach to develop BDI
agents able to select plans based on soft goals and preferences. Braubach et al. presented
the JADEX system [7], which combines the advantages of an agent middleware with a
reasoning engine. The modular approach was introduced by Dastani and Steunebrink
in [8], where they presented their ideas to design and integrate modules in BDI-based agent
programming languages.

Interesting ideas for the use of a BDI model in IoT, specifically in the area of smart
houses, were presented by Qingquan Sun et al. in their publication [9]. They presented a
multi-agent design framework for controlling smart house features and the automation
of home applications. They proposed various techniques on how to develop distributed
multi-agent sensor/actuator networks. They designed a BDI model for the individual
behavior of an agent and a method for regulation policy. For a system evaluation, they
also used a Petri Net-based method. Sangulagi et al. [10] presented an application of a BDI
model to solve a problem with an information fusion in a wireless sensor network.

The application of a BDI model in computer security or networks is not widely
proposed. A few approaches have been published, e.g., Boudaoud et al. presented a
multi-agent system-based model for network security management in their paper [11].
They described a model of security policy management. Their approach is dedicated to the
practical implementation of certain schemas of actions within select security policies. As
an interesting idea, Lin et al. used a BDI model approach to eliminate human errors within
a computer security policy in their publication [12].

Our approach presented in this paper introduces a new usage of a BDI model with a
single agent system combined with a new logical system for increasing computer network
security using the automated reaction of IDSs to malicious activities.

1.5. Contributions

A logical model presented in this paper is raised from our long-term effort to design
an exact, formal verifiable model for an active intrusion detection system [3]. Our first
contribution is the formulation of a linear BDI logical system. We define its syntax and
express its semantics using Kripke’s possible worlds method [13]. For that, we use a linear
logic [14], a coalgebraic logic [15], and a BDI logic [16]. Our first works were in regard to
an active IDS, published in our papers [17,18], where we defined a fragment of our logic,
modified well-known IRMA architecture [19], and logically modeled the behavior of the
proposed architecture on network intrusions.

Furthermore, in this paper, we turn to a formal specification of a passive IDS. Using
a category theory approach, we modeled its behavior as a state-based transition system
using a coalgebra for a polynomial endofunctor. Our main result is the design of an active
IDS logical model based on the Belief–Desire–Intention agent philosophy. Based on that,
we proposed a formal linear BDI logical model for an active IDS.

In terms of IDSs, it is possible to use BDI logic with the following cycle of the agent:

1. An IDS (a coalgebra-formalized IDS) observes a packet stream;
2. Knowledge about a possible intrusion could be obtained (if not, a coalgebra continues

to check the next packet);
3. Based on that, an agent can gain a belief about it;
4. The agent confronts a belief based on their desires:
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• If a gained believe is not against the agent’s desires, the coalgebra continues to
check the next packet, and

• If it is against their desires, an agent realizes actions through intentions (plans)
to restore their desired state.

The principle of our goal is depicted in the Figure 1.

Figure 1. An agent’s cycle.

2. Overview of the Methods Used

The methods used. such as category theory, linear logic, and BDI logic, are strict, exact,
and mathematically proven. Linear logic and the proposed extensions presuppose the
design of an appropriate deduction system that allows for logical reasoning and proves all
of the designed properties. This guarantees the correctness and reliability of our IDS logical
model before its implementation. In this section, we briefly present the necessary basic
notions from methods used in our work from category theory and non-classical logical
systems such as linear logic and BDI logic.

2.1. Many-Typed Signature

Many-typed signature is a well-known and important notion in the theory of algebraic
specifications [20]. It is meant to declare the structure of a data type. To formally specify
the structure of a packet, we formulate a signature Σ = (T, F) for it. The class T contains
the names of types in the algebraic specification, and class F encloses the function symbols
(or operation specifications) over the types in T. Those operations can be constructors,
deconstructors, and selectors. For our approach based on constructing the coalgebras, most
of the selectors are important, as we use them to observe internal states of a state-based
system in detail.

2.2. Category Theory

We focus on constructing the semantic model of IDS behavior as a category. This is
because categories are mathematical structures that allow for expressing an environment
of states. We consider particular states as category objects, and the dynamic of internal
processes of IDS is modeled by category morphisms that allow for expressing particular
changes of states.

There are several interesting ways of defining a category (structure and graph), see
e.g., [21–23]. Here, we give the following definition:

A category C consists of the following:
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1. (Objects) A class of objects denoted Cobj (possibly Obj(C), as well). Its elements are
called the objects. Sometimes, it is customary to write X ∈ C instead of X ∈ Cobj.

2. (Morphisms) For each pair of objects X, Y ∈ C, a set Hom(X, Y) is called the hom-set
for the pair of objects (X, Y). The elements of hom-set Hom(X, Y) are called morphisms
(or equivalently arrows) from X to Y. If f ∈ Hom(X, Y), we also write

f : X → Y.

The class of all morphisms of a category C is denoted by Cmorph (possibly Morph(C)
or Ar(C), as well).

3. (Identity morphism) For each object X ∈ C, there is a morphism idX ∈ Hom(X, X)
(sometimes denoted also as 1X), called the identity morphism for an object X, with the
property that, if f ∈ Hom(X, Y), then

idX ◦ f = f and f ◦ idX = f .

4. (Composition) For two morphisms f , g, where f ∈ Hom(X, Y) and g ∈ Hom(Y, Z),
there is a new morphism g ◦ f ∈ Hom(X, Z), called the composition of g with f .
Moreover, a composition must meet the condition of associativity:

f ◦ (g ◦ h) = ( f ◦ g) ◦ h,

whenever the composition is defined.

2.2.1. Polynomial (Endo)Functors

A category provides an environment (or a context) where we can talk about composi-
tion such that properties such as associativity and identity hold. A connection of (category)
environments is represented by structure-preserving mapping. The mapping that respects
the categorical structure is called a functor.

A functor F : C → D between categories is a pair of functions (for both, we use the
same symbol F):

• The object part of the functor:
F : Cobj → Dobj,

which sends objects in C to objects in D, and
• The morphism (arrow) part of the functor:

F : Cmorph → Dmorph,

which maps morphisms in C to morphisms in D.

These assignments are required to satisfy the following functoriality axioms:

• For any composable pair of morphisms in C,

Fg ◦ F f = F(g ◦ f );

• For each object X ∈ C,
F(idX) = idFX .

Coalgebras play a special role as a polynomial endofunctor [24]. When we model
a state space as a category, a polynomial endofunctor over this category characterizes
(describes) the change of states. The notion “polynomial” comes from its shape: it is similar
to polynomials because it can be constructed using the constants, products, coproducts,
and exponentials as follows:

T(X) =
n

∑
i,j=0

Ai × XBj ,
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where X stands for a state space, Ai are sets of observable values, and Bj are some fixed
sets for i, j ∈ N.

The signature selector determines the polynomial endofunctor [25]. Each polynomial
endofunctor characterizes one specific type of system, e.g., streams, finite lists, deterministic
automaton, non-deterministic or transition systems, etc. In our approach, we work with
deterministic systems.

2.2.2. Coalgebra for a Polynomial Endofunctor

Let us consider a base category C and a polynomial endofunctor T over category C.
Kurz formally defined a coalgebra for a polynomial endofunctor as an ordered pair in his
work [26]

(X, ω),

where

• X is the objects of category C and
• ω is a morphism of category C such as ω : X → T(X).

Objects X ∈ C form the state space of a category, and the morphism ω ∈ C is called
the coalgebraic transition structure (or coalgebra dynamics); in the general case, it is an
n−tuple of the selectors.

2.3. Logical Systems

Our logical model is based on linear logic and BDI logic; therefore, in this section, we
present their necessary basic notions.

2.3.1. Linear Logic

Traditional logical systems such as propositional or predicate logic are not sufficient
for a description of the exact behavior of complex program systems. Therefore, we chose
a linear logic formulated in [27] as a main logical system. The linear logic has many
advantages compared with other logical systems, such as a stronger expressive power
achieved by introducing new logical connectives, which allows for expressing resource-
based treatment of formulae, or a time-spatial theory called Ludics [28]. Each formula
represents an action/reaction or an available/consumed resource.

We denote the elementary formulae by the Latin lowercase letters a, b, c, etc. and the
formulae by the Greek lowercase letters ϕ, ψ, ϑ,, etc. Below, we present the possible forms
of the formulae in linear logic given by the Backus–Naur form:

ϕ ::= a | 1 | ⊥ | 0 | > | ϕ ⊗ ϕ | ϕ N ϕ | ϕ ⊕ ϕ | ϕ O ϕ | ϕ ( ϕ | ϕ⊥ | !ϕ | ?ϕ. (1)

The elements of BNF (1) represent the following: a stands for an atomic formula; ⊗
represents parallelism; N/⊕ represent an outer/inner nondeterminism, respectively; O
represents an exclusive disjunction; ( represents the dynamics when consuming resources;
()⊥ represents a consumed resource or a reaction; and !/? represents an unlimited or a
potentially unlimited resource, respectively. The particular constants 1,⊥, 0, and > stand
for the neutral element of a logic for their corresponding operations: ⊗, O, N, and ⊕,
respectively. In [14], all connectives were described in detail.

2.3.2. BDI Logic

A BDI logic is a modal logical system. Originally introduced by Rao and Georgeff
in their publication [29] as a model for reasoning about intelligent BDI agents, its origins
are based on the BDI philosophical theory of Bratman [19]. Its syntax consists of logical
operators from classical propositional logic, and it is extended with the three modal
operators of belief, desires, and intentions. A BDI agent can be considered an autonomous
entity that observes an environment through its “sensors”, and it can act within in it.
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The syntax of BDI logic language can be expressed by following BNF:

ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ⇒ ϕ | ¬ϕ | BELa ϕ | DESa ϕ | INTa ϕ. (2)

The modal formulae of belief, desire, and intention,

BELa ϕ, DESa ϕ, INTa ϕ, (3)

express the beliefs, desires, and intentions of an BDI agent, respectively, and the relations
between them, where a represents an agent’s name.

3. Linear BDI Logic

In the first step, we start with the definition of an appropriate logical system for our
model of an active intrusion detection system. We use linear logic [27] and a classical
propositional BDI logical system [29]. We extend the language of linear logic with modal
operators of belief, desire, and intention [18]. Such language increases the expressive power
of original logical systems, which creates possibilities to express necessary processes, to
define an optimal state of an environment, and to act upon events. In our approach, we
define the semantics of linear BDI logic using the Kripke semantic method of possible
worlds.

3.1. Syntax of Linear BDI Logic

We define our language as follows.

• Logical connectives are linear logic’s connectives:

(.)⊥, N,⊗,(, O,⊕. (4)

• We extend the syntax with the modal operator of objective knowledge Ki(ϕ).
• We leave the definition of modal operators BELi, DESi, and INTi as is.

Formally, the linear BDI logic syntax of our language can be expressed by follow-
ing BNF:

ϕ ::= a | 1 | ⊥ | 0 | > | ϕ ⊗ ϕ | ϕ N ϕ | ϕ ⊕ ϕ | ϕ O ϕ | ϕ ( ϕ | ϕ⊥

| Ki(ϕ) | BELi(ϕ) | DESi(ϕ) | INTi(ϕ),
(5)

where the set of all formulae is denoted as BDI f orm. The logical connectives of our
language have the following meanings:

• An informal description of the linear logic connectives is listed in Section 2.3.1.
• Ki(ϕ) states that agent i knows ϕ;
• BELi(ϕ) states that agent i believes in ϕ,
• DESi(ϕ) states that ϕ is desire of agent i,
• INTi(ϕ) states that ϕ is the intention of agent i.

3.2. Semantics of Linear BDI Logic

We defined the semantics of our logic using the Kripke model. Our definition for the
Kripke model is an ordered tuple:

MBDI = (W,5, |=, x), (6)

where

• W is not an empty set of possible worlds W = {x0, x1, x2, ...};
• 5 is the binary relation of accessibility between worlds5 W ×W;
• |= is the satisfaction relation, defined as follows:

|=: W ×BDI f orm, (7)



Mathematics 2021, 9, 2290 8 of 17

where xn |= a means that an elementary formula a is valid in the world xn; and
• x denotes a designated world x ∈W.

Now, we define the satisfaction relation for each element of the production rule (5) for
linear BDI logic.

MBDI, x |= a iff a ∈ A(x)
MBDI, x |= 1
MBDI, x |=⊥
MBDI, x |= 0
MBDI, x |= >
MBDI, x |= ϕ⊥ iff MBDI, x 2 ϕ
MBDI, x |= ϕ⊗ ψ iff MBDI, x |= ϕ and MBDI, x |= ψ
MBDI, x |= ϕ⊕ ψ iff MBDI, x |= ϕ and MBDI, x |= ψ

or MBDI, x |= ϕ or MBDI, x |= ψ
MBDI, x |= ϕ O ψ iff MBDI, x |= ϕ xor MBDI, x |= ψ
MBDI, x |= ϕ & ψ iff MBDI, x |= ϕ or MBDI, x |= ψ
MBDI, x |= ϕ ( ψ iff (∀xn)x ≤ xn if MBDI, xn |= ϕ

then MBDI, xn |= ψ
MBDI, x |= Ki(ϕ) iff (∀xn)x ≤ xn : MBDI, x |= ϕ
MBDI, x |= BELi(ϕ) iff (∀xn)x ≤ xn : MBDI, x |= ϕ
MBDI, x |= DESi(ϕ) iff (∀xn)x ≤ xn : MBDI, x |= ϕ
MBDI, x |= INTi(ϕ) iff (∀xn)x ≤ xn : MBDI, x |= ϕ

(8)

where A(x) denotes a set of all atomic formulae that are valid in the world x in the model M.

4. Logical Model for Active IDS

The main goal of this paper is the formulation of a logical model for an active network-
based intrusion detection system (IDS). We chose a system that detects network intrusions
based on known patterns as a basis for our model. For the construction of a model, we
use category theory and we define a new logical system based on BDI logic and linear
logic. In the previous section, we formulated its semantics using the Kripke model of
possible worlds.

The new logical system allows for the possibility to gain knowledge and beliefs about
network intrusion, which is then confronted by the network security policy. If the detected
event violates the system security policy, appropriate countermeasures/actions are selected
to restore the system to the desired state. By formulating such a model, we also propose the
extension of a standard IDS functionality using autonomous reactions to detect intrusions.

Our logical model for active IDS is formally depicted in Figure 2 (the formulae are
explained in the next sections). We divide it into two layers.

1. On the first layer, we define a coalgebra for a polynomial endofunctor that serves as a
model of passive IDS. For a coalgebra, we need to consider the following:

(a) Many-typed signatures for specifying network intrusions;
(b) A category of packets as a state-space of IDS;
(c) A polynomial endofunctor over that category;
(d) Modeling the behavior of an IDS using a coalgebra for a polynomial endofunc-

tor over a constructed category;
(e) The description of a behavior of an IDS using the coalgebraic modal linear

logic formula; and
(f) Obtaining knowledge about the possible intrusions by the linear BDI.

2. The second layer is a model of an active IDS. It formally consists of the following parts:

(a) Obtaining a belief of an intrusion by the linear BDI;
(b) A definition of the security policy database—i.e., the desires; and
(c) A definition of the countermeasures for a security policy’s possible violations,

i.e., the intentions.
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Figure 2. Logical model for active IDS.

4.1. Many-Typed Signatures of Network Intrusions

Network-based intrusion detection systems are divided into types based on a method
of intrusion detection. In our work, we use an IDS that detects intrusions based on known
patterns. Those patterns are called network intrusion signatures [30].

The first step of our logical model definition is a specification of network intrusion
signatures as many-typed algebraic signatures. Based on that, we can extract specific
symptoms of a particular intrusion and determine a coalgebra’s selectors. The approach
presented in this paper is demonstrated on a practical example of real network intrusions
and reactions of a signature-based IDS. As a motivating example, we chose three specific
network intrusions of a “Man-In-The-Middle” type:

• Portscan intrusion is a prerequisite attack technique. It sends each client a local area
network request, intending to find some active ports. One can use known exploits to
attack them [31].

• ARP spoofing uses a vulnerability of the ARP protocol to redirect network traffic [32].
• SSLstrip downgrades a connection from a secure HTTPS to an insecure HTTP [33].

The whole process of a specification is rather complex; therefore, here, we present
only the results of our works published in [34,35]. Treated intrusions and their symptoms
are listed in Table 1.

Table 1. Symptoms of intrusions.

NMAP ARP Spoofing SSLStrip

exter_net == any exter_net == any exter_net == any
home_net == any home_net == any home_net == any
home_port == 7 redir_host == any redir_host == any
protocol == tcp protocol == icmp ttl == 1
flow == stateless icode == 1 protocol == pim
tcp_flags == F,P,U,12 itype == 5 flow == stateless

flow == stateless

4.2. Category of Packets

In the second step of our approach, we constructed a category of packets Cpackets
based on the definition coalgebra in Section 2.2.2, where

• Objects are packets Packets = {p1, p2, . . . , };
• The morphism n is specified as follows:

n : Packets→ Packets, (9)
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and defined as
n(pi) = pi+1, (10)

which describes one transitional step between two packets in a stream, where i ∈ N; and
• Identity morphisms: for each object pi ∈ Packets, there exists its identity morphism idpi :

idpi : Packets→ Packets, (11)

defined as follows:
idpi (pi) = pi. (12)

We consider packets as an infinite stream, and we denote it as Packets, where

Packets = {p1, p2, . . . }, (13)

and it is considered later as a state space of a coalgebra.
A model of the category Cpackets is depicted in Figure 3.

p1
n - p2

n - p3

. . . �
n

p5 � n
p4

n

?

Figure 3. Category of an infinite stream of packets Cpackets.

Theorem 1. From the definition of category (Section 2.2), the category Cpackets is a category if it
holds composition and associative laws.

Proof. We show that composition and associative laws are valid in the category
Cpackets.

• Composition law:
Let p1, p2, p3 ∈ Cobj, and n ∈ Cmor f .

– Let n(p1) = p2, and n(p2) = p3,
– then the following holds:

(n ◦ n)(p1) = p3,
n(n(p1)) = p3,
(n ◦ n)(p1) = (n(n(p1))).

(14)

This can be depicted by a commutative diagram as follows:

p2

p1 n ◦ n
-

n
-

p3

n

-

• Associative law:
Let p1, p2, p3, p4 ∈ Cobj, and n ∈ Cmor f .

– Let n(p1) = p2, n(p2) = p3, and n(p3) = p4,
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– then the following holds:

n(n(n(p1))) = p4,
n(n ◦ n)(p1) = p4,
(n ◦ n)(n(p1)) = p4,
(n ◦ n ◦ n)(p1) = p4,

(15)

Therefore,
n(n(n(p1))) = n(n ◦ n)(p1) =
= (n ◦ n)(n(p1)) = (n ◦ n ◦ n)(p1).

(16)

This can be depicted by a commutative diagram as follows:

p1
n - p2

p4

n ◦ n ◦ n

?
�

n
�
n ◦

n

p3

n

?

n ◦ n
-

4.3. Coalgebra Determined by the Polynomial Endofunctor over Category of C Packets

We formulate a polynomial endofunctor over a category Cpackets as follows:

T : Cpackets→ Cpackets. (17)

We define the endofunctor as follows:

• For objects,

T(pi) =
n⊔

j=1

Aj × n(pi), and (18)

• For morphisms,
T(pi 7→ pi+1) = pi+1 7→ pi+2, (19)

where

• i ∈ N;
• I denotes the number of known attacks, where j ∈ I;
• A = {ε, A1, A2, . . . , An} represents the class of specific known attacks and their char-

acteristic symptoms, specified by signatures, where ε denotes a situation where no
intrusion has been detected;

•
⊔

Aj is a sum of the intrusions that occurred; and
• A function n is defined as follows n : Packets→ T(Packets).

Important symptoms of intrusions are in the form of equalities, defined as elementary
formulae, as follows.

– A1 = {a1, a2, a3, a4, a5, a6} represents the symptoms of a known attack NMAP;
– A2 = {b1, b2, b3, b4, b5, b6, b7} represents the symptoms of a known attack ARP

Spoof; and
– A3 = {c1, c2, c3, c4, c5, c6} represents the symptoms of a known attack SSLStrip.

Based on the definition of a polynomial endofunctor introduced, we coalgebraically
model the IDS as a coalgebra for a polynomial endofunctor:

IDS = (Packets, n : Packets→ T(Packets)). (20)
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Now, we assume that a stream of packets consists of the following sequence:

(. . . , pi, pi+1, pi+2, pi+3, . . . ), (21)

which is monitored by the coalgebra defined:

. . . , Aj × T(pi), Ak × T(pi+1), Al × T(pi+2), Am × T(pi+3), . . . . (22)

where Aj, Ak, Al , Ajm represent specific intrusions from the class of known intrusions A.
The formulae of coalgebraic logic are used for logical reasoning over states of a

dynamic system that is captured by the coalgebra for a polynomial endofunctor. Now, we
specify a stream of packets as formulae of the modal language defined in Section 3.

The application of coalgebraic specification creates an infinite sequence of coalge-
braic formulae:

(1)
(p1, 1)

(p1, (p2, 1))
(p1, (p2, (p3, 1)))

. . .
(p1, (p2, (p3, (. . . , (. . . , 1) . . . )))),

(23)

where the first line (1) denotes an empty sequence, considered the initial state of the system.
The second line arises after the first application of coalgebraic specification. It specifies
the initial (starting) packet. The next lines describe an iterative application of coalgebraic
specification up to a possible infinite sequence. The last row corresponds with the following
coalgebraic linear formula:⊗

{(p1, (p2, (p3, (. . . , (. . . , 1) . . . ))))}. (24)

4.4. From Knowledge to Belief

We extended the language of our logical system by the modal operators of knowledge
(Ka ϕ) and belief (BELa ϕ).

ϕ ::= . . . | Ka ϕ | BELa ϕ. (25)

For a definition of semantics, we use a Kripke model introduced in Section 3.2. Through
this model, we demonstrate how knowledge and a belief about the system’s intrusion can
be acquired. The Kripke satisfaction relation is defined as follows:

|=: W × BDI f orm. (26)

In Jaakko Hintikka’s publication [36] about semantics for (Ka ϕ) and (BELa ϕ), he stated that
“whenever one knows something, one believes that one knows it” and that “whenever one
beliefs something, one knows that one believes it”. Based on that, we define the semantics
for the operators of knowledge (Ka ϕ) and belief (BELa ϕ) as follows, where a is an agent
and x is a designated world:

MBDI, x |= Ka(ϕ) iff (∀xn)x ≤ xn : MBDI, x |= ϕ,
MBDI, x |= BELa(ϕ) iff (∀xn)x ≤ xn : MBDI, x |= ϕ.

(27)

The first line of the definition (27) states that a formula “an agent a knows that ϕ” has sense
in a designated world x in a Kripke model MBDI. The second line states that a formula “an
agent a believes that ϕ” has sense in a designated world x in a Kripke model MBDI.

From the statement above, we define a semantics for a knowledge operator as follows:

if MBDI, x |= Ka(ϕ) then MBDI, x |= BELa(ϕ), (28)
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which can be read as “if an agent a knows about ϕ, then it believes that ϕ in a designated
world x, in a Kripke model MBDI”.

Now, we assume that a stream of packets consists of the following sequence:

(. . . , p1, p2, p3, p4, . . . ), (29)

which is monitored by the defined coalgebra.
In the following example, the behavior of the system can be modeled in particu-

lar steps:
· · · 7→ ε× T(p1) 7→
7→ A1 × T(p2) 7→
7→ A2 × T(p3) 7→
7→ A3 × T(p4) 7→ . . .

(30)

where ε denotes a situation, when no intrusion is detected in the treated packet. In the
example above, the coalgebra “observes” a stream with the following results:

• p1—no intrusion detected;
• p2—an intrusion A1 detected, which represents the NMAP intrusion;
• p3—an intrusion A2 detected, which represents the ARP spoofing intrusion; and
• p4—an intrusion A3 detected, which represents the SSLStrip intrusion.

Let following set be a set of atomic formulae:

{a1, a2, a3, a4, a5, a6, . . . , b1, b2, b3, b4, b5, b6, b7, . . . , c1, c2, c3, c4, c5, . . . }. (31)

Each atomic formula denotes one symptom of possible intrusions. Our motivation
example deals with three intrusions, with their specific symptoms based on the detection
signatures. Treated intrusions and their symptoms are depicted in Table 2:

Table 2. Atomic formulae as intrusion symptoms.

A1 : NMAP s A2 : ARP Spoofing A3 : SSLStrip

a1 : exter_net = any b1 : exter_net = any c1 : exter_net = any
a2 : home_net = any b2 : home_net = any c2 : home_net = any
a3 : home_port = 7 b3 : redir_host = any c3 : redir_host = any
a4 : protocol = tcp b4 : protocol = icmp c4 : ttl = 1
a5 : flow = stateless b5 : icode = 1 c5 : protocol = pim
a6 : tcp_flags = F,P,U,12 b6 : itype = 5 c6 : flow = stateless

b7 : flow = stateless

An agent a gains knowledge about a specific intrusion in a Kripke world if all symp-
toms are valid in this world. In our example:

• The intrusion A1 can be detected if, in some possible worlds xn, all symptoms (a1− a6)
are valid. This means that 6 symptoms create 64 possible worlds (x1 − x64), where
only 1 is designated as the world

MBDI, xn |= A1 iff MBDI, xn |= a1 ⊗ a2 ⊗ a3 ⊗ a4 ⊗ a5 ⊗ a6. (32)

Let the designated world be x1. Then,

MBDI, x1 |= Ka(
⊗

s∈A1

as) iff MBDI, x1 |= Ka(A1). (33)
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• The intrusion A2 can be detected if, in some designated world xn, all symptoms
(b1− b7) are valid. This means that 7 symptoms create 128 possible worlds (x65− x192),
where only 1 is the designated world

MBDI, xn |= A2 iff MBDI, xn |= b1 ⊗ b2 ⊗ b3 ⊗ b4 ⊗ b5 ⊗ b6 ⊗ b7. (34)

Let the designated world be x65. Then,

MBDI, x65 |= Ka(
⊗

s∈A2

bs) iff MBDI, x65 |= Ka(A2). (35)

• The intrusion A3 can be detected if, in some designated world xn, all symptoms
(c1− c6) are valid. This means that 6 symptoms create 64 possible worlds (x193− x256),
where only 1 is the designated world

MBDI, xn |= A3 iff MBDI, xn |= c1 ⊗ c2 ⊗ c3 ⊗ c4 ⊗ c5 ⊗ c6. (36)

Let the designated world be x193. Then

MBDI, x193 |= Ka(
⊗

s∈A3

cs) iff MBDI, x193 |= Ka(A3). (37)

From the definition of a belief operator’s semantics (28), the agent a “believes” that
an intrusion happened in a designated world if it "knows" that an intrusion happened in a
designated world.

if MBDI, x1 |= Ka(A1) then MBDI, x1 |= BELa(A1),
if MBDI, x65 |= Ka(A2) then MBDI, x65 |= BELa(A2),
if MBDI, x193 |= Ka(A3) then MBDI, x193 |= BELa(A3).

(38)

The agent a now obtains beliefs about the three intrusions A1, A2, and A3. The next
step is to create appropriate countermeasures based on the network security policies.

4.5. Desires

The layer desires represents the security policy of a network’s organization. Network
security policies are mostly defined informally by natural language sentences. This creates
certain ambiguities within a policy. In our approach, we define it as a sequence of logical
formulae, i.e., desires, that has to be valid. For that, we extended the language of our logical
system using the modal operators of desire (DESa ϕ)

ϕ ::= . . . | DESa ϕ, (39)

and we defined its Kripke satisfaction relation as follows:

MBDI, x |= DESa(ϕ) iff (∀xn)x ≤ xn : MBDI, x |= ϕ, (40)

Once an agent obtains a belief about some malicious activity, it is checked with the
agent’s desires for the monitored system; after that, appropriate countermeasures are taken.
Therefore, we define a database of an agent’s desires, which represents estimated state of
the system. In the case of IDS, an agent’s desires are opposite to the detection of intrusions.
That means that an agent’s desires are defined as follows:

if MBDI, x |= BELa AI then MBDI, x |= DESa(AI)
⊥ (41)

Security policies are defined by an individual organization; therefore, one can define
other desires or choose which detected intrusions are not against a policy. In our case, we
defined a database of desires (41) simply for our motivation example.

For our motivation example, we define the following desires:
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• DESa A⊥1 : an agent a does not desire an intrusion A1, which represents the NMAP
intrusion;

• DESa A⊥2 : an agent a does not desire an intrusion A2, which represents the ARP
spoofing intrusion; and

• DESa A⊥3 : an agent a does not desire an intrusion A3, which represents the SSLStrip
intrusion.

Therefore, consider that the three desires of a security policy were broken.

4.6. Intentions

In the case of IDSs, intentions represent the countermeasures (i.e., an agent’s plans)
that should be taken into account in order to bring about/restore the desired state of the
system. Each plan is constructed to restore this desired state (i.e., to prohibit and prevent
future possible breaches in a security policy). An agent starts executing an intention only if
it believes an intrusion occurred that is in contradiction with its desires. On the other hand,
if the belief about an intrusion is not against a security policy, then no action is undertaken.
For that, we extended the language of our logical system using the modal operators of
intention (INTa ϕ).

ϕ ::= . . . | INTa ϕ, (42)

and we defined its Kripke satisfaction relation as follows:

MBDI, x |= INTa(ϕ) iff (∀xn)x ≤ xn : MBDI, x |= ϕ, (43)

This process is described by the following formulae.

x |= (BELa ϕ⊗ DESa ϕ⊥) ( INTa ϕI , (44)

where Equation (44) represents a situation where the desires of an agent a are in contradic-
tion with the agent’s beliefs. Therefore, it implies that an appropriate countermeasure has
to be undertaken to restore the desired state. This means that, after a plan is executed, the
agent stops believing that an intrusion has occurred.

MBDI, x |= INTa ϕI ( BELa ϕ⊥. (45)

After the defined intention takes place (ϕI), an agent a loses their belief of an intru-
sion (ϕ).

The formula
MBDI, x 2 (BELa ϕ⊗ DESa ϕ⊥) ( ⊥, (46)

represents a situation where an agent’s beliefs are not in conflict with its desires and where,
therefore, no intentions are acted upon.

The intrusions are divided into different types, e.g., Man-In-The-Middle, Denial of
Service, etc. Usually, it is necessary to configure the system only against one type to prevent
the whole group of intrusions.

We define an intention INTa ϕIj as follows:

• a is the atomic formulae: i.e., actions a1, a2, . . . , an; they represent specific actions
that should be taken in order to deal with an intrusion. Some of the elementary
formulae that are defined for an individual intrusion can be used as the parameters of
an intention’s action, e.g., the IP address of an intruder.

• ϕIj represents a specific intention, i.e., a plan constructed from elementary action for
each type of intrusion Ij or one specific intrusion.

For our motivation example, we define following intentions.

• IAMITM for intrusions A1, A2, and A3, with following atomic formulae:

1. a1—Add an attacker’s IP address to the list of blocked IP addresses.
2. a2—Create an appropriate log about an intrusion.
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3. a3—Send an email to the system administrator.

In this motivation example, an agent a deals with their intrusions, which is of the
MITM type. After the detection of an intrusion, agent a obtains a belief that an intrusion
occurred and checks if this situation is against the network’s security policy defined by the
database of desires. After that, an agent creates a plan with countermeasures to prevent
future occurrences of intrusions from the same intruder.

5. Conclusions

In this paper, we presented a new approach that extends the current functionalities of
intrusion detection systems using active reactions to detect intrusions. Our main result is
an exact formal model based on category theory and logical systems. The results of this
paper are based on our long-term work at formally modeling complex systems. Here, we
present a new formal model of such a IDS, which in general, can improve network security.

The passive part of our active model of an IDS is the detection of an intrusion. We
used a real implementation of a network IDS and its network intrusion detection signatures
for its definition. Based on that part of our model of a passive IDS, we can obtain logical
knowledge about an intrusion. This serves as an “input sensor” for the BDI part of our
model. At this point of our model, we formulated a new approach to autonomous IDSs
using the belief–desire–intention philosophy.

Following an exact formal design, one can also increase the reliability and correctness
of a real IDS implementation. Such a proposed model with a concrete security policy can
serve as a design model for the implementation of a concrete IDS in a real environment.

Such a model based on coalgebras and categories is clearly formulated without the loss
of exactness. This approach can also help make formal methods more attractive in other
areas of information and communication technologies. It can also contribute to education,
where it is possible to show the possible practical use of logic and other formal methods.
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