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Abstract: In this work, a third-order sliding mode controller-based direct flux and torque control
(DFTC-TOSMC) for an asynchronous generator (AG) based single-rotor wind turbine (SRWT) is
proposed. The traditional direct flux and torque control (DFTC) technology or direct torque control
(DTC) with integral proportional (PI) regulator (DFTC-PI) has been widely used in asynchronous
generators in recent years due to its higher efficiency compared with the traditional DFTC switching
strategy. At the same time, one of its main disadvantages is the significant ripples of magnetic flux
and torque that are produced by the classical PI regulator. In order to solve these drawbacks, this
work was designed to improve the strategy by removing these regulators. The designed strategy was
based on replacing the PI regulators with a TOSMC method that will have the same inputs as these
regulators. The numerical simulation was carried out in MATLAB software, and the results obtained
can evaluate the effectiveness of the designed strategy relative to the traditional strategy.

Keywords: asynchronous generator; single-rotor wind turbine; direct flux and torque control (DFTC);
third-order sliding mode controller (TOSMC); integral proportional (PI) regulator; DFTC-PI control;
DFTC-TOSMC strategy

1. Introduction

The strategies of direct flux and torque control (DFTC) scheme or DTC of the asyn-
chronous generator (AG) with constant switching frequency have become a focal point
due to their easy design of the AC harmonic filter and power converter, and also due to
the reduction in the ripples of the rotor flux and torque [1]. This work introduces a new
technique for this technology. It is shown that the DFTC strategy with constant switching
frequency is mainly achieved by using the PWM [2], SVM [3,4], DSVM-DFTC [5], and
P-DFTC [6], respectively. There are many techniques in the literature that have been pro-
posed to minimize the ripples of magnetic flux and torque [7–11]. However, the sliding
mode control (SMC) technique has better dynamics and robustness compared to any other
regulators [12]. It also has a better ability to reduce the ripples of torque and magnetic
flux. Several works on the SMC technique for the control of an alternating current (AC)
machine are available in the literature, which analyzes and discusses its disadvantages and
advantages [13–19]. In [13], the SMC provided better results compared to the traditional
proportional-integral (PI) controller.

Chattering at very high frequencies is defined as a shortcoming of SMC technology,
which causes ripples in the motor. The high-end SMC technology is suitable for reducing
this chattering phenomenon [14]. Many strategies like suboptimal, twisting and super
twisting [15], terminal SMC [16], non-singular terminal SMC [17], fast integral terminal
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SMC [18], and fast terminal SMC technique [19] are available in the references above-
mentioned, but also in other works. These techniques are used to improve the performance
of electric machines. There are several proposed techniques for controlling and reducing
torque ripples, and these methods are divided into two main classes, namely, direct control
and indirect control such as DFTC in the first class, and direct power control (DPC) and
field-oriented control (FOC) in the second class. For the two methods in the second class,
DPC and FOC, the active and reactive power are controlled. As is well-known, the torque
is related to the active power and its reference value. In [20], the authors proposed using
the virtual flux DPC control (VF-DPC) to minimize the electromagnetic torque of the AG-
based wind power. This proposed strategy further minimizes torque ripple compared to
the classic DPC method. On the other hand, the VF-DPC is easy to implement. In [21],
a new DPC technique was proposed based on the terminal synergetic control theory to
reduce ripples of rotor flux, current, and electromagnetic torque. This designed strategy
was more robust compared to the traditional DPC strategy and other strategies such
as the traditional DFTC and FOC control. A new FOC method was proposed in [22] to
minimize the ripples of active power, current, rotor flux, and electromagnetic torque of
the induction generator. This designed FOC strategy based on a hysteresis rotor current
controller and experimental results showed the performance of the designed strategy.
Another intelligent robust technique was designed in [23] to control and reduce the rotor
flux and torque of the induction generator. The proposed method was a combination
of two different methods. The first method was the SMC technique, where durability
is its biggest advantage compared to its counterparts. Regarding the second method, it
was based on fuzzy logic, where simplicity is the biggest advantage that distinguishes it
compared to other methods. The obtained method was more robust, and the simulation
results showed its effectiveness in reducing the value of harmonic distortion (THD) of the
current compared to the traditional strategy. The second-order continuous SMC technique
(SOCSMC) was proposed to improve the performances of the DFTC control of the induction
generator [24]. The designed strategy minimizes the ripples of rotor flux, stator current,
and electromagnetic torque compared to the traditional DFTC strategy with proportional-
integral (PI) controllers. Although the designed strategy is simpler, more robust, and easier
to implement, the THD value remains quite high. Additionally, it does not completely
remove the torque ripples of the electric machine. DPC control with PI controllers (DPC-PI)
reduces the ripples of electromagnetic torque, rotor flux, and stator current compared
to traditional DPC and FOC strategies [25]. The experimental results showed a better
performance obtained for the DPC-PI strategy, which is also easier to implement compared
to traditional direct and indirect FOC strategies. In [26], the author combined two methods,
different in principle, in order to obtain a more robust method. Thus, the SMC method
was incorporated into the DTC method. One of the advantages of the resulting method is
that it obtains much lower current ripples than in the classical method [26]. Moreover, the
method obtained is very simple and can be easily accomplished.

Another robust strategy was proposed in [27] to minimize the ripple of electromag-
netic torque of the induction generator-based dual-rotor wind power. This proposed
method combines two different nonlinear methods: the SMC method, where chattering
phenomenon is its biggest disadvantage compared to other nonlinear methods, and the
synergetic control method, where simplicity is the biggest advantage that distinguishes it
compared to other nonlinear methods. The resulting nonlinear strategy reduces the ripple
of electromagnetic torque, stator current, and rotor flux compared to traditional direct FOC
control and other strategies such as the DFTC, FOC, and SMC methods. However, the
proposed nonlinear strategy is more robust and easier to implement and further reduces the
chattering phenomenon compared to traditional SMC control. Using a research direction
similar to the one in [27], the merger between the synergetic control and super twisting
algorithm was proposed to reduce the ripple of electromagnetic torque of the AG-based
dual-rotor wind turbine [28]. This proposed nonlinear strategy is more robust compared to
traditional controllers such as the PI controller and SMC. Super Twisting algorithm (STA)-
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based SOSM controllers have been proposed to control the AG-based wind power [29].
In order to show the effectiveness and superiority of the designed controller, the thermal
exchange optimization (TEO) method was used. The integral sliding-mode DFTC method
(ISM-DFTC) with space-vector modulation (SVM) for AG-based wind turbine conversion
systems under unbalanced grid voltage was designed in [30]. This proposed DFTC method
minimizes the torque ripples compared to the traditional DFTC strategy.

In this paper, a new high-order SMC technique was proposed and designed to improve
the characteristics of the DFTC control and reduce the rotor flux, current, and torque ripples
of the AG-based wind power. Compared to the classical SMC technique, the chattering
phenomenon was reduced or eliminated. This proposed control technique was based on a
super twisting algorithm (STA) applied for the third-order sliding mode controller (TOSMC)
technique, called below as the DFTC-TOSMC method. In order to improve the performance
of the conventional DFTC technique, the standard hysteresis comparators will be replaced
by two TOSMC methods and the switching table by the SVM technique. The rotor flux and
electromagnetic torque estimation block maintain the same shape as that established for
classical DFTC, as described in [31,32]. In this DFTC control strategy, the rotor flux and
torque are regulated by two proposed TOSMC regulators, while the SVM technique replaces
the traditional switching table. The principle as well as the advantages and disadvantages
of the DFTC-TOSMC method have been comparatively analyzed with other advanced
control strategies proposed in the literature [10,20–29]. The main contributions of the
proposed designed control scheme are to minimize the total harmonic distortion (THD)
of current for an AG-based SRWP system, increases the robustness and stability of the
controlled system, provides methodical and less-complicated techniques based on a novel
SOSMC method to adjust the rotor voltage of DFIG, and reduced ripples of both rotor flux
and electromagnetic torque.

The parameters used to observe the performance of the designed strategy are the
total harmonic distortion (THD) for current, torque ripple, steady-state error, response
time, and rotor flux undulations. The DFTC-PI structure shown in Figure 1 is the system
considered in this paper as a reference to compare the improved performances of the
proposed DFTC-TOSMC method.
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In summary, the novelty and main findings of this paper are as follows:

• A new TOSMC method based on the DFTC method was designed to minimize ripples
of both rotor flux and electromagnetic torque;
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• Third-order sliding mode controllers reduces the tracking error for rotor flux and
electromagnetic torque toward the references of AG-based SRWT systems; and

• The DFTC-TOSMC method with SVM strategy reduces harmonic distortion of the
stator current and torque ripple of AG-based SRWT systems.

Thus, the rest of the paper is structured as follows. Section 2 presents models of
single-rotor wind systems. The model of the AG is presented in Section 3 using Park
transformations. The proposed TOSMC technique is presented in Section 4. DFTC-TOSMC
control of the AG-based SRWP is presented in Section 5. Sections 6 and 7 present and
discuss the results of the research carried out.

2. Single-Rotor Wind Power

Equation (1) expresses the power obtained from a wind turbine [33]:

Pt =
1
2

ρR2Cp(β, λ)V3 (1)

where λ is the tip speed ration; R is the radius of the turbine (m); ρ is the air density (kg/m3);
V is the wind speed (m/s); β is the blade pitch angle (deg); and CP is the power coefficient.

Equation (2) expresses the CP of the wind turbine. The CP is a nonlinear function [34]:

Cp = (0.5− 0.167)(β− 2)× sin
(

π(λ− 0.1)
18.5− 0.3(β− 2)

)
− 0.0018× (β− 3)(β− 2) (2)

The λ is given by:

λ =
R.Ωt

V
(3)

where Ωt is the rotational speed of the SRWP.

3. The AG Model

The asynchronous generator is one of the most popular and widely used in the field
of wind energy due to its low maintenance, reduced cost, robustness, efficiency, ease
of control, minimum energy losses, and ability to work at a speed that varies by ±33%
around the synchronous speed [35]. On the other hand, this is evident in the number of
papers published on AG, where several controls have been developed in order to improve
the characteristics of this generator [36–40]. In order to obtain the mathematical form
of the generator, the Park transform was used. The following equations represent the
mathematical form of the generator [41,42]:

Vdr = Rr Idr +
d
dt Ψdr − wrΨqr

Vqr = Rr Iqr +
d
dt Ψqr + wrΨdr

Vqs = Rs Iqs +
d
dt Ψqs + wsΨds

Vds = Rs Ids +
d
dt Ψsd − wsΨqs

(4)


Ψdr = MIds + Lr Idr
Ψqr = Lr Iqr + MIqs
Ψqs = MIqr + Ls Iqs
Ψds = MIdr + Ls Ids

(5)

The electric machine consists of two main parts: the electrical part, and the mechanical
part. The electrical part is represented in the equations of tension and flux, while the
mechanical part of the electric machine is represented in the following equation:

Te − Tr = J
dΩ
dt

+ f Ω (6)

Torque can be given by the following equation:

Te = 1.5 p
M
Ls

(
−Ψsd Irq + Ψsq Ird

)
(7)
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4. Third-Order Sliding Mode Controller

There are many controllers proposed to regulate and reduce the torque of AC machines
in the literature. Among all the techniques designed for the high-order SMC technique, the
STA strategy is an exception, which only requires information on the nonlinear surface [43].
The proposed high-order SMC controller, named the third-order sliding mode controller
(TOSMC), is an effective strategy for uncertain systems and overcomes the main drawbacks
of the classical SMC technique described in the literature. TOSMC is a robust strategy and
is an alternative to non-linear and linear strategies. In the STA strategy, the command
input applies to the second-order derivative of the nonlinear surface, and reverses the SMC,
which acts on the first derivative of the sliding surface. The proposed TOSMC technique is
based on the STA algorithm. The control input of the proposed TOSMC technique uses the
sum of three inputs, as defined below:

u(t) = u1 + u2 + u3 (8)

u1(t) = λ1

√
|S|sign(S) (9)

u2(t) = λ2

∫
sign(S)dt (10)

u1(t) = λ1

√
|S|sign(S) (11)

The control input of the proposed TOSMC method is obtained as Equation (12).

u(t) = λ1

√
|S|sign(S) + λ2

∫
sign(S)dt + λ3sign(S) (12)

where S is the sliding surface.
The tuning constants λ1, λ2, and λ3 were used to improve the performance of the

TOSMC method. Therefore, this was the design process using TOSMC for the DFTC
strategy. Figure 2 shows the structure of the TOSM controller for the DFTC strategy in
wind power systems.

Mathematics 2021, 9, x FOR PEER REVIEW 6 of 17 
 

 

 
Figure 2. The command law structure of the proposed TOSM controller. 

The stability condition is given by: 𝑆 × 𝑆ሶ < 0 (13)

This proposed controller was used in this paper to reduce the THD of the current and 
ripples of the electromagnetic torque and rotor flux in the case of an AG-based SRWP 
system using the DFTC technique. Note that the inverter was controlled by the SVM strat-
egy. 

5. DFTC-TOSMC Control of the AG-Based SRWP 
The traditional DFTC technique has been developed and investigated as a replace-

ment for the classical FOC method in high-performance AC machine drives. DFTC is well-
known for its robust strategy, simple algorithm, and fast-flux/torque response, which re-
quires no modulation techniques, current control, or coordinate transformation [44]. This 
method has been applied to several electric machines such as induction motor [45], a 
brushless DC electric motor [46], interior permanent magnet synchronous motor [47], five-
phase induction motor [48], brushless doubly-fed machine [49,50], permanent magnet 
synchronous motor (PMSM) [51], six-phase induction motor [52], and five-phase PMSM 
[53,54]. In [55], the DFTC control scheme reduced the electromagnetic torque, stator cur-
rent, and rotor flux compared to the FOC method. The DFTC strategy was designed based 
on a model predictive controller [56]. This proposed DFTC is simpler and, in addition, 
reduces the torque ripple compared to the classical DFTC strategy. A DFTC method with 
a modified finite set model predictive technique was designed in [57]. Simplicity and du-
rability are the two main advantages of this proposed method. A flexible switching table 
(FST) was designed for the DFTC method applied to PMSMs to enhance the dynamic per-
formances and steady-state of the drive system [58]. The simulation results showed that 
the proposed method improved the efficiency of the electric machine. 

Despite the many advantages that characterize the DFTC method, there are several 
problems that characterize it, for example, high ripples in rotor flux and torque, several 
current harmonics, and low-speed problems. Torque ripples represent the major problem 
of the traditional DFTC strategy, which can be very hurtful for the AG because of the use 
of hysteresis comparators and switching table or PI controllers [59]. Some solutions have 
been designed to avoid this disadvantage [60,61,62,63,64,65]. The essential idea was to 
replace the switching table and hysteresis comparators with intelligent techniques and at 
the same time conserve the essential performance of the traditional method. 

In this section, a new DFTC control scheme was designed based on TOSMC tech-
niques. In order to improve the performance of the classical DFTC strategy, the standard 
hysteresis comparators were replaced by two TOSMC controllers and the switching table 
by the traditional SVM strategy. The electromagnetic torque and rotor flux estimation 
block keep the same shape as that established for traditional DFTC with PI controllers, as 
described in [66,67]. In this proposed DFTC control strategy, the electromagnetic torque 

Figure 2. The command law structure of the proposed TOSM controller.

The stability condition is given by:

S×
.
S < 0 (13)

This proposed controller was used in this paper to reduce the THD of the current and
ripples of the electromagnetic torque and rotor flux in the case of an AG-based SRWP system
using the DFTC technique. Note that the inverter was controlled by the SVM strategy.

5. DFTC-TOSMC Control of the AG-Based SRWP

The traditional DFTC technique has been developed and investigated as a replacement
for the classical FOC method in high-performance AC machine drives. DFTC is well-known
for its robust strategy, simple algorithm, and fast-flux/torque response, which requires no
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modulation techniques, current control, or coordinate transformation [44]. This method
has been applied to several electric machines such as induction motor [45], a brushless DC
electric motor [46], interior permanent magnet synchronous motor [47], five-phase induc-
tion motor [48], brushless doubly-fed machine [49,50], permanent magnet synchronous
motor (PMSM) [51], six-phase induction motor [52], and five-phase PMSM [53,54]. In [55],
the DFTC control scheme reduced the electromagnetic torque, stator current, and rotor
flux compared to the FOC method. The DFTC strategy was designed based on a model
predictive controller [56]. This proposed DFTC is simpler and, in addition, reduces the
torque ripple compared to the classical DFTC strategy. A DFTC method with a modified
finite set model predictive technique was designed in [57]. Simplicity and durability are
the two main advantages of this proposed method. A flexible switching table (FST) was
designed for the DFTC method applied to PMSMs to enhance the dynamic performances
and steady-state of the drive system [58]. The simulation results showed that the proposed
method improved the efficiency of the electric machine.

Despite the many advantages that characterize the DFTC method, there are several
problems that characterize it, for example, high ripples in rotor flux and torque, several
current harmonics, and low-speed problems. Torque ripples represent the major problem
of the traditional DFTC strategy, which can be very hurtful for the AG because of the use
of hysteresis comparators and switching table or PI controllers [59]. Some solutions have
been designed to avoid this disadvantage [60–65]. The essential idea was to replace the
switching table and hysteresis comparators with intelligent techniques and at the same
time conserve the essential performance of the traditional method.

In this section, a new DFTC control scheme was designed based on TOSMC techniques.
In order to improve the performance of the classical DFTC strategy, the standard hysteresis
comparators were replaced by two TOSMC controllers and the switching table by the
traditional SVM strategy. The electromagnetic torque and rotor flux estimation block keep
the same shape as that established for traditional DFTC with PI controllers, as described
in [66,67]. In this proposed DFTC control strategy, the electromagnetic torque and rotor
flux are regulated by two proposed TOSMC controllers, while the SVM technique replaces
the switching table. However, this control by DFTC-TOSMC or DFTC-SVM-TOSMC has
the advantages of vector control and conventional DFTC to overcome the problem of
fluctuations in rotor flux and electromagnetic torque generated by the DFIG. TOSMC
regulators and SVM techniques were used to obtain a fixed switching frequency and less
pulsation of the rotor flux and torque.

This proposed strategy can be minimized more than the electromagnetic torque and
rotor flux compared to traditional DFTC and strategies such as FOC, DPC control, and
other control techniques. The DFTC-TOSMC principle is proposed to control the rotor flux
and the torque of the AG-based SRWT systems. The electromagnetic torque is regulated
utilizing the quadrature axis voltage Vqr*, while the flux is regulated utilizing the direct
axis voltage Vdr*.

In this paper, we proposed the use of a new nonlinear controller (based on the TOSMC
technique) to replace the conventional PI controllers.

The designed DFTC-TSOMC strategy is shown in Figure 3 and was designed to reduce
the undulations of the torque and rotor flux of an AG, as presented below.

The estimation of the rotor flux can be done in different ways using the voltage model,
and the rotor flux can be estimated by integrating from the rotor voltage equation.

Qr =
∫ t

0
(Vr − Rrir)dt (14)

In the reference (α-β), the components of the rotor flux are determined as follows:{
Qrα =

∫ t
0 (Vr − Rrirα)dt

Qrβ =
∫ t

0 (Vr − Rrirβ)dt
(15)

where Vr = Vrα + jVrβ; ir = irα + jirβ; Qr = Qrα + jQrβ.
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Figure 3. Bloc diagram of the AG with the DFTC-TOSMC method.

From these two equations, the modulus of the rotor flux and the angle θr result is
as follows:

|Qr| =
√(

Q2
rβ + Q2

rα

)
(16)

θr = artg
Qrβ

Qrα
(17)

The errors of the flux and electromagnetic torque are shown in Equations (18) and (19).

STem = T∗em − Tem (18)

SQr = Q∗r −Qr (19)

where the surfaces are the flux magnitude error SQr = Qr* − Qr and the electromagnetic
torque error STem = Tem* − Tem.

The errors shown in Equations (18) and (19) were used as input to the TOSMC tech-
niques. Electromagnetic torque and rotor flux TOSMC regulators were used to respectively
influence the Vdr* and Vqr* as in Equations (20) and (21):

V∗dr = λ1

√∣∣SQr
∣∣sign

(
SQr
)
+ λ2

∫
sign

(
SQr
)
.dt + λ3sign

(
SQr
)

(20)

V∗qr = λ1

√
|STem|.sign(STem) + λ2

∫
sign(STem)dt + λ3sign(STem) (21)

The TOSMC controller structure for the torque and flux of the DFTC strategy are
presented in Figures 4 and 5, respectively.

This proposed controller was applied for a DFTC strategy based on the TOSMC
technique to obtain a minimum torque ripple and to minimize the chattering phenomenon.
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6. Analysis of the Simulation Results

This work aimed to reduce the flux and torque ripples of an asynchronous generator.
The latter operated at nominal speed. The values of the electric machine elements are
shown in Table A1 (see Appendix A). A generator with a power of 1.5 megawatts was used,
operating under a voltage of 380 V, and the frequency of the network was 50 Hz. The two
DFTC techniques, DFTC-PI and DFTC-TOSMC, were studied, simulated, and compared in
terms of torque ripple, reference tracking, THD value of the current, and rotor flux ripple.

The results obtained by using the MATLAB/Simulink® software are shown in
Figures 6–10. The Simulink diagrams presented above and built-in MATLAB functions
were run on a personal computer with an Intel® Core™ i9-9900K processor. Looking at
Figures 8 and 9, it is worth noting that the rotor flux and electromagnetic torque for the
designed DFTC techniques followed their reference values almost perfectly.
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Figure 8. Electromagnetic torque.
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Figure 9. Rotor flux.
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Figure 10. Stator current.
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Figure 10 shows the stator current of the designed DFTC strategies and it can be seen
that the current was correlated with the torque and flux reference values.

Figures 6 and 7 show the THD value of the stator current of the designed DFTC
techniques. It is worth noting that the THD value was lower for DFTC-TOSMC (0.19%)
when compared to DFTC-PI (0.54%).

The zoom in the torque, flux, and current is shown in Figures 11–13, respectively. The
DFTC-TOSMC technique minimized the undulations in torque, flux, and current compared
to the DFTC-PI technique.
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Figure 11. Zoom in the torque.
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7. Discussion

Based on the above results, it can be said that the DFTC-TOSMC strategy has proven
its effectiveness in minimizing undulations and the chattering phenomenon, in addition to
keeping the other advantages of the DFTC-PI technique. This proposed strategy minimized
the THD value of stator current compared to other strategies (see Table 1).
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Table 1. Comparison of the THD values obtained from the proposed method with values from
several published methods.

Reference Strategy THD (%)

Ref. [20]
DPC 4.88

VF-DPC 4.19

Ref. [21] DPC-TSC 0.25

Ref. [10]
PI controller 0.77

STA-SOSMC controller 0.28

Ref. [22] FOC 3.70

Ref. [23] Fuzzy SMC control 3.05

Ref. [24] DFTC-SOCSMC 0.98

Ref. [25] DPC-IP 0.43

Ref. [26] DFTC 1.45

Ref. [27] Direct FOC with synergetic sliding mode controller 0.50

Ref. [32]
Two-level DFTC method 9.87

Three-level DFTC method 1.52

Ref. [36]
DFTC method 7.54

DFTC method with genetic algorithm 4.80

Ref. [66]
Traditional DFTC strategy 6.70

Fuzzy DFTC technique 2.04

Ref. [68]
FOC with Type 2 fuzzy logic controller (FOC-T2FLC) 1.14

FOC with neuro-fuzzy controller (FOC-NFC) 0.78

Ref. [69]
ISMC 9.71

MRSMC 3.14

Ref. [70] DPC control with intelligent metaheuristics 4.05

Proposed strategy DFTC-TOSM 0.19

The FOC-T2FLC strategy [68] is used as a reference strategy in the same class as the
FOC-NFC strategy. The multi-resonant sliding mode controller (MRSMC) and the integral
sliding mode controller (ISMC) have been proposed for the DFIG-based wind system in
unbalanced and harmonic grid conditions [69].

Table 2 presents a brief comparative study using the simulation results of Figures 6–13.
It is clear that the designed DFTC technique based on TOSMC controllers was more robust
than the traditional one using the PI controller, except for the dynamic response, which
was faster in TOSMC than PI. The analytical reason that proves that the overshoot is very
small in the designed DFTC technique using TOSMC is the absence of zero in the transfer
function of this one. On the other hand, the designed DFTC technique based on TOSMC
controllers improved the rise time, THD, torque and flux tracking, transient performance,
quality of stator current, sensitivity to a parameter change, and settling time compared to
the DFTC with PI controllers.
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Table 2. Comparison of the results obtained from the proposed method with the classical method.

Criteria
Control

DFTC-PI DFTC-TOSMC

Dynamic response (s) Medium Fast

Settling time (ms) High Medium

Overshoot (%) Remarkable ≈ 22% Neglected near ≈ 1.5%

Torque and flux tracking Good Excellent

Sensitivity to parameter change High Medium

Rise Time (s) High Medium

THD (%) 0.54 0.19

Simplicity of converter and filter design Simple Simple

Torque: ripple (N.m) Around 500 Around 60

Simplicity of calculations Simple Simple

Rotor flux: ripple (wb) Around 0.006 Around 0.004

Improvement of transient performance Good Excellent

Reduce torque and flux ripples Acceptable Excellent

Quality of stator current Acceptable Excellent

8. Conclusions

The paper addressed a third-order sliding mode control-based STA technique for a
DFTC technique used in wind power. An SVM technique was used for controlling the
inverter of AG-based SRWP systems. The mathematical design of the proposed TOSMC
technique was discussed in detail for the DFTC technique. The controller was applied
both on the torque and flux to regulate the direct and quadrature rotor voltage and also to
minimize the undulations in stator current, electromagnetic torque, and rotor flux of the AG.
The proposed strategy minimized the THD value of stator current compared to traditional
DFTC, FOC, DPC, FSMC, and DFTC-SOCSMC methods (see Table 1). The proposed DFTC
technique has improved the robustness of the traditional DFTC method, increasing its
performances in transient and dynamic conditions in terms of efficiency, rapidity, overshoot,
rise time, and stability. It was observed that this designed DFTC technique is robust with
less steady-state error and less settling time compared to a traditional PI controller (for more
information, see Table 2). On the other hand, this proposed strategy is a simple structure,
no dynamic coordinate transforms are needed, no PI current controllers, and the switching
frequency of the transistors is constant. At higher speeds, the proposed technique is not
sensitive to any generator parameters. Good tracking capabilities of the desired variable,
very fast steady-state reaching speed, robust dynamic nature of the controller, and also the
elimination of chattering problem in SMC were realized. Zoom has been shown to compare
and highlight its performance. This controller can be an alternative to STA. This proposed
controller can be applied to direct power control and a field-oriented control scheme. A
comparison was undertaken concerning the PI controller in terms of ripple, tracking, and
output current THD for use of this proposed controller for the DFTC technique. Indeed,
this proposed DFTC technique deserves attention because it solves the problem of high
ripples torque and flux for wind turbines.

The current research work is limited given that the wind speed was fixed. Furthermore,
the designed DFTC control scheme investigated a high voltage dip condition. Robustness
enhancement of the AG-SRWP system under the previous concerns will be carried out in
future papers. This will be implemented through interactions among AGs with various
strategies such as neural algorithm, fractional-order PI, and a type 2 fuzzy logic controller.

Therefore, in summary, the main findings of this research are as follows:

• Reduces the electromagnetic torque and rotor flux;
• Simple control was proposed;
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• Minimization of the total harmonic distortion of stator current by 64.81%; and
• A new nonlinear controller was presented and confirmed with numerical simulation.

The paper can be extended with fuzzy-TOSMC controllers (FTOSMC) to obtain zero
settling time, minimum torque ripple, and zero steady-state error. DPC-based TOSMC
controllers can also be taken up as an extension of this paper.
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List of Symbols

φr, φr* Actual and reference rotor flux
Vs, Is Vectors of the stator voltage and current
Vra,b,c, Ira,b,c Rotor voltage and current in abc frame
Vα,β, Iα,β Voltage and current in αβ frame
Te, Te* Actual and reference torques
ωn, ωr Nominal and rotor speeds
Rs, Rr Stator and rotor resistances
φαs, φβs Stator flux components in αβ frame
θr Rotor flux angle
Ki, Kp Integral and proportional gains
Lr, Ls, Lm Rotor, stator and mutual inductances
p Generator pole pairs
Wb Weber (unit)
Hz Hertz (unit)
Mw Migawatt (Unit)
mH Millihenry (unit)
N.m Newton-meter (Unit)

List of Acronyms

DTC Direct torque control
PI Proportional integral
DPC Direct power control
SMC Sliding mode control
DFTC Direct flux and torque control
THD Total harmonic distortion
SOCSMC Second-order continuous sliding mode control
FOC Field oriented control
FSMC Fuzzy sliding mode control
SVM Space vector modulation
IP Integral-proportional
AG Asynchronous generator
TOSMC Third-order sliding mode controller
STA Super twisting algorithm
THD Total harmonic distortion
ISM Integral sliding mode.
MRSMC Multi-resonant-based sliding mode controller
ISMC Integral sliding mode controller.
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Appendix A

Table A1. The AG parameters [22,27,71].

PSRWT 1.5 MW
Pn 1.5 MW
Rs 0.012 Ω
Ls 0.0137 H
Lm 0.0135 H
Rr 0.021 Ω
Lr 0.0136 H
fr 0.0024 Nm·s/rad

Vn 380 V
p 2
Ω 150 rad/s
F 50 Hz
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