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Abstract: This paper aims to consider approximation-estimation tests for decision-making by
machine-learning methods, and integral-estimation tests are defined, which is a generalization
for the continuous case. Approximation-estimation tests are measurable sampling functions (statis-
tics) that estimate the approximation error of monotonically increasing number sequences in different
classes of functions. These tests make it possible to determine the Markov moments of a qualitative
change in the increase in such sequences, from linear to nonlinear type. If these sequences are
trajectories of discrete quasi-deterministic random processes, then moments of change in the nature
of their growth and qualitative change in the process match up. For example, in cluster analysis,
approximation-estimation tests are a formal generalization of the “elbow method” heuristic. In
solid mechanics, they can be used to determine the proportionality limit for the stress strain curve
(boundaries of application of Hooke’s law). In molecular biology methods, approximation-estimation
tests make it possible to determine the beginning of the exponential phase and the transition to
the plateau phase for the curves of fluorescence accumulation of the real-time polymerase chain
reaction, etc.

Keywords: quasi-deterministic process; unsupervised machine learning; Markov decision process;
approximation-estimation test; integral-estimation test; Markov moment; Markov chain with mem-
ory; approximation; least-squares method

1. Introduction

Many questions originating from the classical works of P. L. Chebyshev and A. A.
Markov on approximation methods are of significant theoretical and great practical im-
portance. The generalized Markov moment problem is closely related to problems of
geometry, algebra, and function theory. From this point of view, it is possible to study not
only tasks of the Petersburg mathematical school “on the limiting values of integrals”, but
also problems of the theory of approximation, interpolation and extrapolation in various
classes of functions [1].

It is also interesting that not only the main theorems and statements and the accom-
panying auxiliary and preparatory results help solve applied problems. It turned out to
be possible to use some of them to solve modern artificial intelligence problems, such as
machine-learning methods. Today, several types of machine learning are known: super-
vised, semi-supervised, unsupervised, and reinforcement learning. Unsupervised learning
is a type of machine learning that makes decisions or searches for patterns in a set of
unlabeled data. He is designed to solve three types of problems: clustering, dimensionality
reduction, and anomaly detection.

Cluster analysis is a multivariate statistical procedure for training a set of labels on
a sample of unlabeled data. The range of applications of cluster analysis is extensive: it
is used in archeology, medicine, psychology, chemistry, biology, public administration,
philology, anthropology, marketing, sociology, geology, and other disciplines. However,
the universality of application has led to the emergence of many conflicting terms, meth-
ods, and approaches. This universality complicates the unambiguous use and consistent
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interpretation of cluster analysis. There are many clustering algorithms, and it is difficult
to say which one will be the most adequate for a given dataset.

Hierarchical methods form a tree-like structure of cluster formation, which is com-
monly called a dendrogram. New clusters are formed from the previously formed clus-
ters [2,3]. Another approach to solving the clustering problem in Euclidean space is based
on the estimation of the distribution density of the elements of the sample population, for
example, the methods DBSCAN [4] and OPTICS [5,6]. Splitting methods break objects into
a priori a given number of clusters. They are used to optimize the similarity function of
objective criteria, for example, when distance is the main parameter. The most famous of
these algorithms is the K-means method [2,3]. Grid-based methods form the data space as
a finite number of cells that form a grid-like structure. All clustering operations performed
on these grids are independent of the number of data [7].

In statistics, machine learning, and information theory, dimensionality reduction
is the transformation of data, which reduces the number of variables by deriving the
principal variables. Dimensionality reduction of the data removes redundant or highly
correlated features and reduces the amount of noise in the data. This transformation of data
allows simpler mathematical models that are easier and more transparent to interpret. In
practice, the following methods are commonly used for dimensionality reduction: Principal
Component Analysis, Uniform Manifold Approximation and Projection, Discriminant
Analysis, and Autoencoders [8,9].

The task of anomaly detection is to identify data significantly different from the typical
elements of some set. Anomalies are also referred to as outliers, novelties, noise, deviations,
and exceptions [10,11]. In particular, in the context of network intrusion detection, objects
of interest are often not rare objects but unexpected bursts of activity. This pattern does
not follow the general statistical definition of an outlier as a rare object, and many outlier
detection methods (in particular, uncontrolled methods) do not work with such data [12].

Sometimes we can consider anomaly detection by unsupervised machine-learning
methods as a sequential statistical analysis of monotone trajectories yt of a discrete quasi-
deterministic process ξ. For example, solving cluster analysis problems, solid mechanics
problems, molecular biology, switched systems, etc.

The main idea of the approach proposed in this article has a pioneering character and
is as follows. If a quasi-deterministic process ξ with monotone trajectories yt is studied,
then the moment t0 of the change in the character of their increase from linear to nonlinear
type may coincide with a qualitative change ξ. Analytically, this moment can be determined
by comparing the squared error of the linear approximation of the trajectory yt with the
squared errors of the nonlinear approximation of the same trajectory. The difference in
such errors is a quadratic form. This quadratic form changes the sign at the point t0 if the
point is of qualitative change of the trajectory yt. The coefficients of the approximating
functions are sought using the least-squares method by of the yt0−k, . . . , yt0−2, yt0−1, from
the left semi-neighborhood of the point t0.

It is noteworthy that in our study, we use a whole set of mathematical concepts bearing
the name of the outstanding Russian scientist A. A. Markov. In addition to the constructions
accompanying the generalized problem of Markov moments, this is a Markov decision
process, a Markov moment in time in the theory of random processes, and a Markov chain
with memory.

2. Quasi-Deterministic Processes, Markov Moments and Markov Decision Process

Let T = 1, m− 1 be a finite subset of the sequence of natural numbers. The family
ξ = {ξt, t ∈ T} of random variables ξt = ξt(ω), given on the probability space (Ω,F , P) is
called a discrete random process [13,14]. Each random variable ξt generates an σ-algebra,
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which we will denote by as Fξt [15]. The σ-algebra generated by the random process
ξ = {ξt, t ∈ T} is the minimal σ-algebra containing all, Fξt i.e.,

σ(ξ) = σ

(
m−1⋃
t=1

Fξt

)
. (1)

If we fix a time, t then obtain a random variable ξt. If we fix a random event ω0, then
obtain a trajectory of the random process ξ, which is a random sequence yt = ξt(ω0).

Random processes can be divided into two classes: quasi-deterministic processes and
non-deterministic processes. We will consider only quasi-deterministic processes with
monotonic trajectories. A random process ξ = ξ(t, ω) is called quasi-deterministic if all
sequences yt are functions of time of a given form, but each of them depends on a random
parameter ω. In general, ω can be a randomly selected number, a random vector, a random
sequence, or a random function. The main property of any quasi-deterministic process
is that each random event ω corresponds to only one trajectory yt of the random process
ξ = ξ(t, ω) [16].

2.1. Markov Stopping Time

We will consider the binary problem of testing the statistical hypotheses H0 and H1.
The null hypothesis H0—the sequence yt increases linearly, and the alternative hypothesis
H1—the sequence yt increases nonlinearly.

To test a statistical hypothesis, it will be necessary to construct a criterion allowing it
to be accepted or rejected. Statistical criteria are based on a random set X. Two variants are
possible; in the first, the sample X is extracted from the n -dimensional Euclidean space
En at once, i.e., it has a fixed volume. The second, when the sample X is generated over a
period of time, and its size is a random variable [17]. A combined case is possible when
X is extracted from En at once, and then its variable size subsample is studied, which is
formed by mapping X into itself. In the last two cases, one speaks of sequential statistical
analysis and sequential statistical test [18,19].

Decision-making at a certain moment of time can be based only on the known values
of the discrete process ξ = ξ(t, ω). If we use a formal approach, then the events under
study should be measurable in a non-decreasing sequence of σ -algebras Fk generated
by the process ξ = ξ(t, ω) [20]. On the probability space, (Ω,F , P) such a sequence is
considered to be a family of σ-algebras F = {Ft, t ∈ T} and is called a filtration if for
∀ i, j ∈ T | i < j : Fi ⊂ Fj ⊂ F . The map τ : Ω −→ T is called the Markov moment with
respect to the filtration F, if for ∀ t ∈ T is the preimage of the set {τ ≤ t} ∈ Ft. If moreover
Pr(τ < +∞) = 1, then τ is called the Markov stopping time [21].

For example, a random event ω belongs to Ω from the previously introduced prob-
ability space (Ω,F , P). If this random event ω is the extraction of a finite set X from the
n-dimensional Euclidean space, En then any point x ∈ En can belong to the set X. By
definition, the σ-algebra from the (Ω,F , P) contains all En. In addition, this σ-algebra
contains any finite set X from the space En, all possible countable unions of such sets and
complements to hims. We denote this system of sets as S(En). The same reasoning is valid
for any σ-algebra Fξt , therefore σ(ξ) = S(En). These σ-algebra S(En) will be filtration for
ξ = ξ(t, ω) [22,23].

If a random event ω ∈ Ω is the extraction of a countable set X from the n-dimensional
Euclidean space En, then the filtration for ξ = ξ(t, ω) will again be the σ-algebra S(En). If
the event ω ∈ Ω is some random function f (x), then the filtration for ξ = ξ(t, ω) is Borel’s
σ-algebra B(En).

In all these cases, the Markov stopping time is the minimum value τ at which the
null hypothesis is rejected—H0 (the trajectory of the quasi-determinate process ξ = ξ(t, ω)
increases linearly) and an alternative hypothesis is accepted—H1 (the trajectory of the
quasi-determinate process ξ = ξ(t, ω) increases nonlinearly).
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2.2. Approximation-Estimation Tests

To test the statistical hypotheses H0 and H1, we use the approximation-estimation
tests [24,25]. We will construct quadratic forms of approximation-estimation tests as
the difference between the quadratic error of the linear approximation of the numerical
sequence yt and the quadratic error of the nonlinear approximation of yt in various classes
of nonlinear functions.

Let us use the concept of an approximating function. Ordered pairs (i, yi) are the
knots of approximation for the numerical sequence yt where i is a natural argument, yi
is the corresponding value of the sequence yt. We will be called (i, yi) the natural knot of
approximation [24,25].

The segment of the real axis [y0, yk−1], on which the knots y0, y1, . . . , yk−1 are located,
will be called the “current interval of approximation”.

Let a real function f (t) belong to class Y. The function f (t) approximates a numerical
sequence yt by the least-squares method if

δ2 = min
f∈Y

k−1

∑
i=0

( f (i)− yi)
2. (2)

There is always such the minimum since δ2 is a positive definite quadratic form.
The quadratic error of approximation of the numerical sequence yt by an arbitrary

nonlinear function f (t) is equal to the sum of the squares of the differences yt and f (t) at
the knots y0, y1, . . . , yk−1 for the corresponding values of the natural argument.

δ2
f (k0) =

k−1

∑
i=0

( f (i)− yi)
2. (3)

The quadratic error of yt linear approximation with respect to the same knots is
equal to:

δ2
l (k0) =

k−1

∑
i=0

(a · i + b− yi)
2. (4)

If in our reasoning, the specific number of approximation knots does not play a
role, then the quadratic errors will be denoted by δ2

f and δ2
l . These errors calculate from

Formulas (3) and (4) respectively.
Let us introduce the notation: m = min(δ2

l , δ2
f ).

We assume by definition that the increase in the numerical sequence yt along the knots
y0, y1, . . . , yk−1 is linear if m = δ2

l . Otherwise, the increase in yt has a nonlinear character. If
δ2

l = δ2
f , then the point yk−1 is called “critical”.

When constructing quadratic forms of approximation-estimation tests, can use a tech-
nique that facilitates calculations. The values of yt can be taken at the points, y0, y1, . . . , yk−1
assuming that y0 = 0. This condition can be easily achieved at any approximation step
using the transformation:

y0 = yj − yj, y1 = yj+1 − yj, . . . , yk−1 = yj+k−1 − yj. (5)

It is possible to construct several approximation-estimation tests, for example, loga-
rithmic, parabolic, exponential, etc. In the general case, the approximation-estimation test
can be formulated as follows.

Let δ2(k0) = δ2
l (k0)− δ2

f (k0). We will say that at the left semi-neighborhood of the
point k (between points k − 1 and k) is the character of the increase of the sequence yt
has changed from linear to nonlinear, if the following conditions hold: for the knots
y0, y1, . . . , yk−1 is true δ2(k0) ≤ 0, and for the knots y1, y2, . . . , yk is true δ2(k0) > 0. If we
use terms of sequential statistical analysis, then the Markov stopping time for a quasi-
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deterministic process ξ = ξ(t, ω), with a random parameter ω ∈ Ω and a monotonically
increasing trajectory yt is

τ = min{k | δ2(k0) > 0}. (6)

where in the null hypothesis H0 is rejected, and the alternative hypothesis H1 is accepted.

2.3. Markov Decision Process

Let us move to decisions by unsupervised machine-learning methods. We will use
the formal apparatus Markov decision process (MDP) for this. MDP is a discrete-time
stochastic control process. It is used to make decisions in situations where the results are
partly random and partly under the control of the decision-maker [26,27]. The MDP is in
some state s at every moment, and the decision-maker can choose any action a available in
the state s. In response, the MDP randomly transitions to the new state s′ at the next time
step and gives the decision-maker a reward Ra(s, s′).

The probability of the process entering the new s′ state depends on the action chosen.
This probability is given by the function of transition to a new state Pa(s, s′). Thus, the
next state of s′ depends on the current state of s and the action of the decision-maker, a.
Therefore, we can say that the next state does not depend on all previous states and actions,
i.e., MDP satisfies the Markov property.

Markov’s decision-making processes are generalizations of Markov chains; the differ-
ence lies in adding actions and rewards.

Formally, the MDP is an ordered set of four elements (S, As, Pa, Ra), where:

S—set of states (state space),

As—set of actions (action space) available from the state s,

Pa(s, s′) = Pr(st+1 = s′ | st = s, at = a)—the probability that the action a in state s and at
time t will lead to state s′ at time t + 1,

Ra(s, s′)—reward received after executing action a and transition from state s to state s′.

The goal of the Markov decision process is to build a “good strategy“ for the decision-
maker. This strategy is made to maximize some cumulative random reward function.

The MDP for quasi-deterministic random processes with monotone trajectories degen-
erates into a special case when all states S are linearly ordered into a sequence of a given
form yt, i.e., for each state S there is only one action, the transition from yt to, yt+1 with
the probability either 0 or 1. Rewards also take two values, which, by definition, will be
considered equal to either 0 or 1. When using approximation-estimation tests, the decision
on the amount of remuneration is based on the Markov stopping time, for determining
which are used yt0−k, . . . , yt0−2, yt0−1, from the left semi-neighborhood of the point t0.

By definition, a Markov chain with memory of order k is a process that satisfies
the condition:

Pr(Xn = xn | Xn−1 = xn−1, Xn−2 = xn−2, . . . , X1 = x1) =

= Pr(Xn = xn | Xn−1 = xn−1, Xn−2 = xn−2, . . . , Xn−k = xn−k). (7)

where n > k, i.e., the future state depends on k the past states and the set Yn is such that
Yn = (Xn, Xn−1, . . . , Xn−k+1) has the Markov property [28,29].

In the case of using approximation-estimation tests, the formation of a new set of
points yt0−k, . . . , yt0−2, yt0−1, from the left semi-neighborhood points t0, can be considered
to be some random event Ωt0 , and it will correspond to a certain value of the quadratic
form of the approximation-estimation test, which we denote as δ2

t0
.

Consider a sequence of random events: Ωk, . . . , Ωt, . . . with a two-element set of
outcomes {C, B}, where outcome C is the event δ2

t0
≤ 0 and B—event δ2

t0
> 0. Since the

probability of occurrence of either C or B depends only on the set yt0−k, . . . , yt0−2, yt0−1,
then the sequence of random events Ωk, . . . , Ωt, . . . is a Markov chain with memory of order
k. Consequently, the MDP, based on approximation-estimation tests for quasi-deterministic
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random processes with monotone trajectories, can be considered a Markov chain with
memory of order k. In this case, decisions are made at the expense of the Markov stopping
time, and, by definition, the decision-maker receives a maximum remuneration equal to 1.

3. Parabolic Approximation-Estimation Tests

We will distinguish between the complete parabolic approximation in the class of
functions Q(t) = at2 + bt + c, and incomplete parabolic approximation in the class of
functions q(t) = ct2 + d. Let us denote the quadratic error of the complete parabolic
approximation over k knots y0, y1, . . . , yk−1 as

δ2
Q(k0) =

k−1

∑
i=0

(a · i2 + b · i + c− yi)
2. (8)

In addition, let us denote the quadratic error of incomplete parabolic approximation
for the same knots as

δ2
q(k) =

k−1

∑
i=0

(c · i2 + d− yi)
2. (9)

It is known that a complete parabolic approximation is always no worse than a
linear one, i.e., the inequality is true δ2

Q ≤ δ2
l . If we consider the incomplete parabolic

approximation, then it is always no better than the complete parabolic approximation, i.e.,
the inequality δ2

q ≥ δ2
Q holds.

When comparing δ2
l and δ2

q three cases are possible: δ2
q < δ2

l , δ2
q > δ2

l , δ2
q = δ2

l .

3.1. Quadratic Errors of Linear Approximation of Natural Knots

The least-squares method will be using for calculating the coefficients a, b of the
function of two variables

fl(a, b) =
k−1

∑
i=0

(a · i + b− yi)
2. (10)

We calculate the partial derivatives of this function

∂ fl
∂a

= 2a
k−1

∑
i=0

i2 + 2b
k−1

∑
i=0

i− 2
k−1

∑
i=0

i · yi, (11)

∂ fl
∂b

= 2a
k−1

∑
i=0

i + 2b
k−1

∑
i=0

1− 2
k−1

∑
i=0

yi (12)

and we are solving the corresponding system of linear equations.
k(k− 1)(2k− 1)

6
· a + k(k− 1)

2
· b =

k−1

∑
i=0

i · yi,

k(k− 1)
2

· a + k · b =
k−1

∑
i=0

yi.

(13)

According to Cramer’s rule, a =
4a

4 , b =
4b

4 , where

4 =
k2(k2 − 1)

12
; 4a =

k
2

k−1

∑
i=0

(2i + 1− k)yi; 4b =
k(k + 1)

6

k−1

∑
i=0

(2k− 1− 3i)yi, (14)

then

a =
6

k(k2 − 1)

k−1

∑
i=0

(2i + 1− k)yi, b =
2

k(k + 1)

k−1

∑
i=0

(2k− 1− 3i)yi. (15)
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We use Formulas (4) and (15), to explicitly write down linear approximating functions
over natural knots . Let us calculate the square-law errors for three, four, five, six, and
seven natural knots .

For natural knots , y0, y1, y2 the linear approximating function has the form:

at + b =
1
6

(
3y2 · t + (2y1 − y2)

)
. (16)

Then

δ2
l (30) =

2

∑
i=0

(
3y2 · i + (2y1 − y2)

6
− yi

)2

=
1
6

(
y2 − 2y1

)2
. (17)

Similarly for knots y0, y1, y2, y3

δ2
l (40) =

1
10

(
7y2

1 + 7y2
2 + 3y2

3 − 2y1(2y2 + y3)− 8y2y3

)
. (18)

For knots y0, y1, y2, y3, y4

δ2
l (50) =

1
10

(
7y2

1 + 8y2
2 + 7y2

3 + 4y2
4 − 2y1(2y2 + y3)− 4y2(y3 + y4)− 8y3y4

)
. (19)

For knots y0, y1, y2, y3, y4, y5

δ2
l (60)=

2
105

(
37y2

1 + 43y2
2 + 43y2

3 + 37y2
4 + 25y2

5 − y1(22y2 + 13y3 + 4y4 − 5y5)−

− y2(16y3 + 13y4 + 10y5)− y3(22y4 − 25y5)− 40y4y5

)
. (20)

And for knots y0, y1, y2, y3, y4, y5, y6

δ2
l (70) =

1
28

(
20y2

1 + 23y2
2 + 24y2

3 + 23y2
4 + 20y2

5 + 15y2
6 − 4y1(3y2 + 2y3 + y4 − y6)−

− 2y2(4y3 + 3y4 + 2y5 + y6)− 8y3(y4 + y5 + y6)− 2y4(6y5 + 7y6)− 20y5y6

)
. (21)

3.2. Quadratic Forms of Parabolic Approximation-Estimation Tests

The least-squares method will be using for calculating the coefficients c, d of the
function of two variables

fq(c, d) =
k−1

∑
i=0

(c · i2 + d− yi)
2. (22)

Let us calculate the partial derivatives:

∂ fq

∂c
= 2c

k−1

∑
i=0

i4 + 2d
k−1

∑
i=0

i2 − 2
k−1

∑
i=0

i2 · yi, (23)

∂ fq

∂d
= 2c

k−1

∑
i=0

i2 + 2d
k−1

∑
i=0

1− 2
k−1

∑
i=0

yi, (24)

and solve the system of two linear equations for the unknowns c, d
k(k− 1)(2k− 1)(3k2 − 3k− 1)

30
· c + k(k− 1)(2k− 1)

6
· d =

k−1

∑
i=1

i2 · yi ,

k(k− 1)(2k− 1)
6

· c + k · d =
k−1

∑
i=0

yi .

(25)
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c =
30

k(k− 1)(2k− 1)(8k2 − 3k− 11)

k−1

∑
i=0

(6i2 − (k− 1)(2k− 1))yi , (26)

d =
6

k(8k2 − 3k− 11)

k−1

∑
i=0

(3k(k− 1)− 1− 5i2)yi . (27)

We use Formulas (9), (26) and (27), and write incomplete parabolic (without linear
term) approximating functions for natural knots . Let us calculate the quadratic errors for
them, and then, taking into account the corresponding errors of the linear approximation
(Formulas (17)–(21)), write quadratic forms for the parabolic approximation-estimation
tests δ2

lq for three, four, five, six and seven knots .
For knots y0, y1, y2 obtain

ct2 + d =
2

52

(
(7y2 − 2y1) · t2 + (12y1 − 3y2)

)
. (28)

Then

δ2
q(30) =

2

∑
i=0

(
2

52

(
(7y2 − 2y1 · i2 + (12y1 − 3y2)

)
− yi

)2

=
1

26

(
y2 − 4y1

)2
. (29)

Hence,

δ2
lq(30) = δ2

l (30)− δ2
q(30) =

1
39

(
2y2

1 − 14y2y1 + 5y2
2

)
. (30)

Likewise for knots y0, y1, y2, y3

δ2
q(40) =

1
98

(
61y2

1 + 73y2
2 + 13y2

3 − 44y1y2 + 6y1y3 − 60y2y3

)
. (31)

δ2
lq(40) = δ2

l (40)− δ2
q(40) =

1
245

(
19y2

1 − 11y2
2 + 41y2

3 + 12y1y2 − 64y1y3 − 46y2y3

)
. (32)

For knots y0, y1, y2, y3, y4

δ2
q(50) =

1
870

(
571y2

1 + 676y2
2 + 651y2

3 + 196y2
4 − 2y1(224y2 + 99y3 − 76y4)−

− 288y2y3 − 148y2y4 − 648y3y4

)
. (33)

δ2
lq(50) = δ2

l (50)− δ2
q(50) =

1
435

(
19y2

1 + 10y2
2 − 21y2

3 + 76y2
4+

+ 2y1(25y2 + 6y3 − 38y4)− 10y2(3y3 + 10y4)− 24y3y4

)
. (34)

For knots y0, y1, y2, y3, y4, y5

δ2
q(60) =

2
2849

(
987y2

1 + 1107y2
2 + 1187y2

3 + 1047y2
4 + 435y2

5 − y3(468y4 + 459y5)−

− 7y1(104y2 + 69y3 + 20y4 − 43y5)− y2(480y3 + 263y4 − 16y5)− 1124y4y5

)
. (35)

δ2
lq(60) = δ2

l (60)− δ2
q(60) =

4
42735

(
127y2

1 + 448y2
2 − 152y2

3 − 323y2
4 + 1825y2

5+

+ y1(983y2 + 977y3 + 236y4 − 1240y5) + y2(344y3 − 673y4 − 2155y5)−

− y3(967y4 + 1645y5) + 290y4y5

)
. (36)
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And for knots y0, y1, y2, y3, y4, y5, y6

δ2
q(70) =

1
1092

(
792y2

1 + 855y2
2 + 920y2

3 + 927y2
4 + 792y2

5 + 407y2
6−

− 24y1(22y2 + 17y3 + 10y4 + y5 − 10y6)− y2(384y3 + 258y4 + 96y5 − 102y6)−

− y3(288y4 + 216y5 + 128y6)− y4(384y5 + 450y6)− 864y5y6

)
. (37)

δ2
lq(70) = δ2

l (70)− δ2
q(70) =

1
546

(
− 6y2

1 + 21y2
2 + 8y2

3 − 15y2
4 − 6y2

5 + 89y2
6+

+ y2(36y3 + 12y4 − 30y5 − 90y6)− y3(12y4 + 48y5 + 92y6)−

− y4(42y5 + 48y6) + 42y5y6

)
. (38)

In the general case, the parabolic approximation-estimation test has the form:

δlq(k0) = δ2
l (k0)− δ2

q(k0). (39)

If the inequality δlq(k0) ≤ 0 holds for natural knots y0, y1, . . . , yk−1, but for knots
y1, y2, . . . , yk, holds δlq(k0) > 0, then we can say that near the point yk the character of the
increase yt changed from linear to parabolic [24,25], i.e., under the condition δlq(k0) > 0 the
null hypothesis H0 is rejected, the alternative hypothesis H1 is accepted, and the Markov
stopping time for the parabolic approximation-estimation test will be

τ = min{k | δlq(k0) > 0}. (40)

It is important to note that in all cases, the point yk is an “upper estimate” for the
corresponding critical value of the monotonically increasing numerical sequence yt.

3.3. Solution of Inverse Problem and Remark on Finite Differences

Of particular interest is the solution of the “inverse problem”. Specifically, let the
values of the sequence yt at the knots y0, y1, . . . , yk−2 be known, and it is required to
determine at what value in the knot yk−1 we can say that the character of the increase of
the yt has changed from linear to parabolic. In other words, it is necessary to calculate at
what numerical value the point yk−1 will become critical.

Let us solve this problem for the knots y0, y1, y2, y3.
Equated to zero the quadratic form δ2(40), and replace y3 by x obtain the quadratic equa-

tion
41x2 − (64y1 + 46y2)x +

(
19y2

1 + 12y2y1 − 11y2
2

)
= 0, (41)

for which

x1,2 =
32y1 + 23y2 ± 7

√
5(y1 + 2y2)

41
. (42)

Considering that 7
√

5 ' 15.65 and 0 ≤ y1 ≤ y2 ≤ y3 we will obtain

y3 =
32y1 + 23y2 + 7

√
5(y1 + 2y2)

41
. (43)

Now we can answer the frequently asked questions. First, “Why can’t we limit
ourselves to a simple comparison of finite differences?” Here we mean that when passing
to a parabolic increase, the finite difference MYk−1 = yk − yk−1 is greater than the previous

finite difference MYk−2 = yk−1− yk−2, i.e.,
Myk−1

Myk−2
= K > 1. The following second question

arises: “What is equal K at the critical value of yk−1”?
Let us look at an example that answers these questions.
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We will use Formula (43) to determine the critical value wheat the knot y3 if known
knots y0, y1, y2.

First, let y0 = 0, y1 = 0.1, y2 = 0.2. Then, by Formula (43) y3 = 0.381128. Let us
calculate the ratio of finite differences for the obtained critical value y3 and obtain that

K =
MY2

MY1
= 1.8112. The value K = 1.8113 corresponds to “already” parabolic increase,

and the ratio of finite differences K = 1.8111 is to a linear change in the sequence yt.
For knots y0 = 0, y1 = 1.1, y2 = 2.3 by Formula (43) y3 = 4.32486, the quotient

K =
MY2

MY1
= 1.687385. In addition, finally for y0 = 0, y1 = 0.1, y2 = 0.3 by Formula (43)

y3 = 0.513579, the quotient K =
MY2

MY1
= 1.06785.

Thus, for three different sets of knots y0, y1, y2 and the critical value at the point y3,
were received different the ratio of the first order finite differences. Consequently, the
comparison of finite differences of elements of the sequence yt cannot be used to obtain a
criterion determining the point of change of character of increase for the yt [25].

4. Approximation-Estimation Tests with Irrational Coefficients

Let us construct approximation-estimation tests for four classes of nonlinear functions:
of exponential—p exp t + q, of logarithms—g ln(t + 1) + h, of arctangents—w arctan t + v,
and of square-roots m

√
t + l.

In the general case, for all these functions, the coefficients of the corresponding
quadratic forms are irrational numbers. Therefore, in contrast to parabolic approximation-
estimation tests, these coefficients can be calculated only approximately.

It is easy to see that all four approximating functions have the same structure con-
cerning unknown coefficients α and β: αϕ(t) + β. Using the least-squares method, we will
calculate these coefficients.

Let us find the local minimum of a function of two variables

f (α, β) =
k−1

∑
i=0

(αϕ(i) + β− yi)
2. (44)

First, we will calculate the partial derivatives of the function f (α, β) and equate them
to zero.

∂ f
∂α

= 2
k−1

∑
i=0

ϕ(i)(αϕ(i) + β− yi); (45)

∂ fe

∂β
= 2

k−1

∑
i=0

(αϕ(i) + β− yi). (46)


α ·

k−1

∑
i=0

ϕ(i)2 + β ·
k−1

∑
i=0

ϕ(i) =
k−1

∑
i=1

yi ϕ(i);

α ·
k−1

∑
i=0

ϕ(i) + kβ =
k−1

∑
i=1

yi .

(47)

Then we solve the system of linear equations for the unknowns α and β

α =
k ·∑k−1

i=1 yi ϕ(i)−∑k−1
i=0 ϕ(i) ·∑k−1

i=1 yi

k ·∑k−1
i=0 ϕ(i)2 −

(
∑k−1

i=0 ϕ(i)
)2 ; (48)

β =
∑k−1

i=1 yi ·∑k−1
i=0 ϕ(i)2 −∑k−1

i=0 ϕ(i) ·∑k−1
i=1 yi ϕ(i)

k ·∑k−1
i=0 ϕ(i)2 −

(
∑k−1

i=0 ϕ(i)
)2 . (49)
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We will construct the approximation-estimation tests by three, four, and five natural
knots for exponentials, logarithms, argtangentials functions, and square-roots.

4.1. Exponential Approximation-Estimation Tests

The quadratic approximation error by natural knots in the class of exponential func-
tions p exp t + q is

δ2
e (k0) =

k−1

∑
i=0

(p exp i + q− yi)
2. (50)

When we use Formulas (48) and (49) and we obtain:

p =
k ·∑k−1

i=1 yi exp i−∑k−1
i=0 exp i ·∑k−1

i=1 yi

k ·∑k−1
i=0 exp 2i−

(
∑k−1

i=0 exp i
)2 ; (51)

q =
∑k−1

i=1 yi ·∑k−1
i=0 exp 2i−∑k−1

i=0 exp i ·∑k−1
i=1 yi exp i

k ·∑k−1
i=0 exp 2i−

(
∑k−1

i=0 exp i
)2 . (52)

In generalized, the exponential approximation-estimation test has the form:

δle(k0) = δ2
l (k0)− δ2

e (k0). (53)

If for knots y0, y1, . . . , yk−1 is valid δle(k0) ≤ 0, and for knots y1, y2, . . . , yk the inequal-
ity δle(k0) > 0, then the character of growth of yt changed from linear to exponential, i.e.,
in this case, the null hypothesis H0 is rejected, the alternative hypothesis H1 is accepted.
Then the Markov stopping time for the exponential approximation-estimation test will be

τ = min{k | δle(k0) > 0}. (54)

Similar to the construction of parabolic approximation-estimation tests, we will cal-
culate the coefficients of quadratic forms for exponential, logarithmic, arctangential, and
square-root tests.

For an exponential test by three knots: y0, y1, y2 we obtain:

δ2
e (30) ' 0.6224y2

1 − 0.33476y1y2 + 0.045015y2
2. (55)

δ2
le(30) = δ2

l (30)− δ2
e (30) ' 0.044302y2

1 − 0.33191y1y2 + 0.12165y2
2. (56)

For knots y0, y1, y2, y3

δ2
e (40) ' 0.6344y2

1 + 0.749y2
2 + y1(−0.5186y2 + 0.05939y3)− 0.4549y2y3 + 0.0735y2

3. (57)

δ2
le(40) = δ2

l (40)− δ2
e (40) ' 0.06563y2

1 − 0.04925y2
2+

+ y1(0.1186y2 − 0.2594y3)− 0.3451y2y3 + 0.2265y2
3. (58)

And for knots y0, y1, y2, y3, y4

δ2
e (50) ' 0.694y2

1 + 0.752y2
2 + 0.796y2

3 + y2(−0.371y3 − 0.02968y4)+

+ y1(−0.543y2 − 0.357y3 + 0.1474y4)− 0.511y3y4 + 0.0904y2
4. (59)

δ2
le(50) = δ2

l (50)− δ2
e (50) ' 0.00556y2

1 + 0.0483y2
2 − 0.0957y2

3+

+ y2(−0.02895y3 − 0.370y4) + y1(0.1428y2 + 0.1572y3 − 0.1474y4)−
− 0.2890y3y4 + 0.3096y2

4. (60)
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4.2. Logarithmic Approximation-Estimation Tests

The quadratic approximation error by natural knots in the class of logarithm functions
g ln(t + 1) + h is

δ2
n(k0) =

k−1

∑
i=0

(g ln(i + 1) + h− yi)
2. (61)

When we use Formulas (48) and (49) and we obtain:

g =
k ·∑k−1

i=1 yi ln(i + 1)−∑k−1
i=0 ln(i + 1) ·∑k−1

i=1 yi

k ·∑k−1
i=0 ln2(i + 1)−

(
∑k−1

i=0 ln(i + 1)
)2 ; (62)

h =
∑k−1

i=1 yi ·∑k−1
i=0 ln2(i + 1)−∑k−1

i=0 ln(i + 1) ·∑k−1
i=1 yi ln(i + 1)

k ·∑k−1
i=0 ln2(i + 1)−

(
∑k−1

i=0 ln(i + 1)
)2 . (63)

In generalized, the logarithmic approximation-estimation test has the form:

δln(k0) = δ2
l (k0)− δ2

n(k0). (64)

If for knots y0, y1, . . . , yk−1 the inequality δln(k0) ≤ 0 is valid, and for knots y1, y2, . . . , yk
the inequality δln(k0) > 0, then the character of growth of yt changed from linear to
logarithmic. When this condition is met, the null hypothesis H0 is rejected, the alter-
native hypothesis H1 is accepted, and the Markov stopping time for the logarithmic
approximation-estimation test will be

τ = min{k | δln(k0) > 0}. (65)

For knots: y0, y1, y2 we obtain

δ2
n(30) ' 0.65177y2

1 − 0.82244y1y2 + 0.25945y2
2. (66)

δ2
ln(30) = δ2

l (30)− δ2
n(30) ' 0.0148974y2

1 + 0.155775y1y2 − 0.092785y2
2. (67)

For knots: y0, y1, y2, y3

δ2
n(40) ' 0.74052y2

1 + 0.66471y2
2+

+ y1(−0.44314y2 − 0.38934y3)− 0.83197y2y3 + 0.42699y2
3. (68)

δ2
ln(40) = δ2

l (40)− δ2
n(40) ' −0.040523y2

1 + 0.035294y2
2+

+ y1(0.043138y2 + 0.18934y3) + 0.031966y2y3 − 0.12699y2
3. (69)

And for knots: y0, y1, y2, y3, y4

δ2
n(50) ' 0.75674y2

1 + 0.78767y2
2 + 0.68619y2

3 + 0.53691y2
4 − 0.74609y3y4−

− y2(0.47491y3 + 0.51389y4)− y1(0.35382y2 + 0.25967y3 + 0.18664y4). (70)

δ2
ln(50) = δ2

l (50)− δ2
n(50) ' −0.056743y2

1 + 0.0123264y2
2 + 0.0138145y2

3−
− 0.136906y2

4 + y2(0.074911y3 + 0.113895y4)+

+ y1(−0.046182y2 + 0.059668y3 + 0.18664y4)− 0.053914y3y4. (71)
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4.3. Arctangential Approximation-Estimation Tests

The quadratic approximation error by natural knots in the class of arctangential
functions w arctan t + v is

δ2
a(k0) =

k−1

∑
i=0

(w arctan i + v− yi)
2. (72)

When we use Formulas (48) and (49) and we obtain:

w =
k ·∑k−1

i=1 yi arctan i−∑k−1
i=0 arctan i ·∑k−1

i=1 yi

k ·∑k−1
i=0 arctan2 i−

(
∑k−1

i=0 arctan i
)2 ; (73)

v =
∑k−1

i=1 yi ·∑k−1
i=0 arctan2 i−∑k−1

i=0 arctan i ·∑k−1
i=1 yi arctan i

k ·∑k−1
i=0 arctan2 i−

(
∑k−1

i=0 arctan i
)2 . (74)

In generalized, the arctangential approximation-estimation test has the form:

δla(k0) = δ2
l (k0)− δ2

a(k0). (75)

If for knots y0, y1, . . . , yk−1 the inequality δla(k0) ≤ 0 is valid, and for knots y1, y2, . . . , yk
the inequality δla(k0) > 0, then the character of growth of yt has changed from linear to
arctangential. When this condition is met, the null hypothesis H0 is rejected, the alter-
native hypothesis H1 is accepted, and the Markov stopping time for the arctangential
approximation-estimation test will be

τ = min{k | δla(k0) > 0}. (76)

For knots: y0, y1, y2 we obtain

δ2
a(30) ' 0.62985y2

1 − 0.89361y1y2 + 0.31696y2
2. (77)

δ2
la(30) = δ2

l (30)− δ2
a(30) ' 0.036820y2

1 + 0.226946y1y2 − 0.150292y2
2. (78)

For knots: y0, y1, y2, y3

δ2
a(40) ' 0.75y2

1 + 0.63932y2
2 − 0.5y1(y2 + y3)− 0.81898y2y3 + 0.52017y2

3. (79)

δ2
la(40) = δ2

l (40)− δ2
a(40) ' −0.05y2

1 + 0.06068y2
2+

+ y1(0.1y2 + 0.3y3) + 0.01898y2y3 − 0.22017y2
3. (80)

And for knots: y0, y1, y2, y3, y4

δ2
a(50) ' 0.79001y2

1 + 0.76095y2
2 + 0.69185y2

3 − y2(0.52998y3 + 0.55804y4)−
− y1(0.36049y2 + 0.33425y3 + 0.32005y4)− 0.66300y3y4 + 0.64011y2

4. (81)

δ2
la(50) = δ2

l (50)− δ2
a(50) ' −0.090007y2

1 + 0.039054y2
2 + 0.0081498y2

3−
− 0.24011y2

4 + y2(0.129980y3 + 0.15804y4)+

+ y1(−0.039511y2 + 0.134249y3 + 0.32005y4)− 0.136998y3y4. (82)
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4.4. Square-Root Approximation-Estimation Tests

The quadratic approximation error by natural knots in the class of square-roots func-
tions m

√
t + l is

δ2
s (k0) =

k−1

∑
i=0

(m
√

i + l − yi)
2. (83)

When we use Formulas (48) and (49) and we obtain:

m =
k ·∑k−1

i=1 yi
√

i−∑k−1
i=0

√
i ·∑k−1

i=1 yi

k2(k−1)
2 −

(
∑k−1

i=0

√
i
)2 ; (84)

l =
k2(k−1)

2 ∑k−1
i=1 yi −∑k−1

i=0

√
i ·∑k−1

i=1 yi
√

i
k2(k−1)

2 −
(

∑k−1
i=0

√
i
)2 . (85)

In generalized, the square-root approximation-estimation test has the form:

δls(k0) = δ2
l (k0)− δ2

s (k0). (86)

If for knots y0, y1, . . . , yk−1 the inequality δls(k0) ≤ 0 is valid, and for knots y1, y2, . . . , yk
the inequality δls(k0) > 0, then character of growth of yt has changed from linear to
parabolic of degrees the half. When this condition is met, the null hypothesis H0 is rejected,
the alternative hypothesis H1 is accepted, and the Markov stopping time for the square-root
approximation-estimation test will be

τ = min{k | δls(k0) > 0}. (87)

For knots: y0, y1, y2 we obtain

δ2
s (30) ' 0.6306y2

1 − 0.8918y1y2 + 0.31530y2
2. (88)

δ2
ls(30) = δ2

l (30)− δ2
s (30) ' 0.036065y2

1 + 0.22514y1y2 − 0.14863y2
2. (89)

For knots: y0, y1, y2, y3

δ2
s (40) ' 0.7492y2

1 + 0.6662y2
2 − y1(0.4838y2 + 0.4701y3)− 0.8086y2y3 + 0.4658y2

3. (90)

δ2
ls(40) = δ2

l (40)− δ2
s (40) ' −0.04921y2

1 + 0.033788y2
2+

+ y1(0.08377y2 + 0.27012y3) + 0.008612y2y3 − 0.16583y2
3. (91)

And for knots: y0, y1, y2, y3, y4

δ2
s (50) ' 0.77850y2

1 + 0.78601y2
2 + 0.69659y2

3 − y2(0.47608y3 + 0.51663y4)−
− y1(0.36531y2 + 0.30570y3 + 0.25544y4)− 0.71704y3y4 + 0.55700y2

4. (92)

δ2
ls(50) = δ2

l (50)− δ2
s (50) ' −0.078502y2

1 + 0.0139938y2
2 + 0.0034103y2

3−
− 0.157003y2

4 + y2(0.076082y3 + 0.116627y4)+

+ y1(−0.034690y2 + 0.105699y3 + 0.25544y4)− 0.082961y3y4. (93)

5. Integral-Estimation Tests

Let us consider a generalization of the approximation-estimation tests for the con-
tinuous case. We will consider continuous and non-decreasing functions y = f (t) on the
segment [0, b]. The class of such functions will be denoted by M, i.e., f (t) ∈ M[0, b].
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Let us study the problem of classifying f (t) ∈ M[0, b] by the character of their in-
crease on the segment [0, b]. We will choose the following etalons for such a classifica-
tion by analogy with the approximation-estimation tests: linear functions —ϕ1(t) = at,
parabolic functions—ϕ2(t) = ct2, exponential functions—ϕ3(t) = p(exp t− 1), logarithmic
functions—ϕ4(t) = g ln(1+ t), arctangent functions—ϕ5(t) = w arctan t and square-roots—
ϕ6(t) = m

√
t.

All these functions are equal to zero at the point 0. Any function f̃ (t) ∈ M[0, b] can be
changed using the transformation f (t) = f̃ (t)− f̃ (0) so that it also satisfies the condition
f (0) = 0. Additionally, we accept the agreement that undefined coefficients for etalon
functions must satisfy the condition f (b) = ϕi(b) and then:

a =
f (b)

b
, c =

f (b)
b2 , g =

f (b)
ln(1 + b)

, p =
f (b)

exp b− 1
, w =

f (b)
arctg(b)

, m =
f (b)√

b
. (94)

The purpose of classification will be to determine the nature of the increase in f (t) ∈
M[0, b]. We note that the integral characteristic of the speed is the distance traveled.
Therefore, if being compared to two speeds, then the criterion could be the difference in
the distance traveled. Based on this, we will define the criterion comparison rate of change
of two functions f (t), ϕ(t) ∈ M[0, b] as an integral

S(b) =
b∫

0

( f (t)− ϕ(t))2 dt. (95)

The geometric meaning of this criterion is that S(b) estimates the area of a flat closed
region bounded by the continuous curves f (t) and ϕ(t).

Let us introduce the notation

Si =

b∫
0

( f (t)− ϕi(t))
2 dt, (96)

and by definition, we say that the continuous function f (t) “almost linearly” increases on
the segment [0, b] if the inequality is true: S1 < Si, where index i ∈ 2, 6, otherwise, the
change in f (t) will be considered nonlinear.

To determine the point at which the linear increase of f (t) becomes nonlinear, it is
necessary to compare this function with the etalons ϕ1(t), ϕi(t), where i ∈ 2, 6. We will
calculate two integrals with variable upper limit:

I1(x) =
x∫

0

( f (t)− ϕ1(t))
2dt, I2(x) =

x∫
0

( f (t)− ϕi(t))
2dt. (97)

Then the solution to the equation

I1(x)− I2(x) = 0 (98)

with respect to the unknown x is the “critical point” b, at which the linear increase of f (t)
changes to nonlinear.

5.1. Tangential Test for a Discrete Case

We will consider a simple computational experiment will be called the tangential test.
We use tan t as a model function. As is known, in a neighborhood of zero tan t ∼ t. When
the argument t tends to π/2 on the left, the function tan t is infinitely large and approaches
the vertical asymptote t = π/2. Therefore, on the interval (0, 1.571) there must be a point
to the left of which the ascending tan t is closer to linear, and to the right of it, the function
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tan t is more precisely approximated by a parabola. According to a previous convention,
such a point is called the critical value of the argument.

Table 1 (adapted from [25]) shows the results of the tangential test for the
approximation-estimation tests by three, four, five, six, and seven approximation knots ;
the values of the δ2 were calculated by Formulas (30)–(38). It is important to note that the
character of an increase in any variable does not depend on the scale. Therefore, before
using the indicated formulas, the corresponding similarity transformation was performed
so that the discreteness step becomes one.

Table 1. Tangential test for the parabolic approximation-estimation test.

Step y0 − y2 y0 − y3 y0 − y4 y0 − y5 y0 − y6

0.1 1.3 1.2 1.1 1.1 1.0
0.09 1.35 1.26 1.17 1.08 0.99
0.08 1.36 1.28 1.2 1.12 1.04
0.07 1.4 1.33 1.19 1.12 1.12
0.06 1.44 1.32 1.26 1.2 1.14
0.05 1.45 1.35 1.3 1.25 1.2
0.04 1.48 1.4 1.36 1.28 1.24
0.03 1.5 1.44 1.41 1.35 1.32
0.02 1.52 1.48 1.46 1.42 1.4
0.01 1.55 1.53 1.51 1.5 1.48

In the left column of the table, the initial (before similarity transformation) value of
the discreteness step is indicated, in the following columns, the value of the minimum
upper estimate for the critical value of the argument for three, four, five, six, and seven
knots of approximation, respectively.

It is easy to see that as the discreteness step decreases, the critical point shifts to the
right, closer to the vertical asymptote. At the same time, with an increase in the number of
approximation knots , the critical point at the same discreteness step shifts to the left.

Let us pay attention to the following fact: sometimes, when the discreteness step
decreases, monotonically of the increase in the minimum upper bound for the critical value
of the argument is violated. The explanation for this phenomenon is simple: for example,
for seven points with a discreteness step of 0.1, the critical value of the argument for tan t
lies in the interval (0.9, 1.0). When the discreteness step decreases to 0.09, such a point,
although it shifts to the right, is within the interval (0.9, 0.99) [25].

5.2. Tangential Test for a Continuous Case

We will be based on the results of the discrete tangential test. We can assume that
as the number of approximation knots increases, the upper bound for the critical value
of the function argument tan t will tend to the minimum value. Integral-estimation tests
generalize approximation-estimation tests in the continuous case. It can be assumed that
they are corresponding to an infinite number of approximation knots. For the parabolic
approximation-estimation tests, it was shown that the minimum upper estimate for the
critical point tan t is equal to 0.99. Let us solve the same problem using the integral-
estimation test and compare the results.

Let us solve the same problem using the integral-estimation test, comparing tan t with
etalons functions ϕ1(t) = at and ϕ2(t) = ct2.

We will be to consider two integrals with the variable upper limit:

I1(x) =
x∫

0

(tan t− a t)2dt, I2(x) =
x∫

0

(
tan t− c t2

)2
dt. (99)
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Let us calculate I1 as a function of x.

I1(x) =
x∫

0

(
tan2 t− 2a t tan t + a2 t2

)
dt =

x∫
0

tan2 t dt− 2a
x∫

0

t tan t dt+ a2
x∫

0

t2dt. (100)

For ∀ x ∈ [0, π/2) the function tan t can be expanded in a power series [30]:

tan t = t +
t3

3
+

2
15

t5 + . . . +
22n(22n − 1)Bn

(2n)!
t2n−1 + . . . , (101)

where Bn are Bernoulli numbers, then∫
t tan t dt =

t3

3
+

t5

15
+ . . . +

22n(22n − 1)Bn

(2n + 1)!
t2n+1 + . . . , (102)

I1(x) = (tan t− t)

∣∣∣∣∣
x

0

− 2a
(

t3

3
+

t5

15
+ o(t6)

)∣∣∣∣∣
x

0

+ a2
(

t3

3

)∣∣∣∣∣
x

0

=

= x +
x3

3
+

2
15

x5 − x +
a2 − 2a

3
x3 − 2a

15
x5 + o(x6). (103)

Consequently

I1(x) =
(1− a)2

3
x3 +

2(1− a)
15

x5 + o (x6). (104)

Likewise

I2(x) =
x∫

0

(
tan2 t− 2c t2 tan t + c2 t4

)
dt =

x∫
0

tan2 t dt− 2c
x∫

0

t2 tan t dt + c2
x∫

0

t4dt. (105)

∫
t2 tan t dt =

t4

4
+

t6

18
+ . . . +

22n−1(22n − 1)Bn

(n + 1)(2n)!
t2n+2 + . . . , (106)

Then

I2(x) = (tan t− t)

∣∣∣∣∣
x

0

− 2c
(

t4

4
+

t6

18
+ o(t6)

)∣∣∣∣∣
x

0

+
c2t5

5

∣∣∣∣∣
x

0

=

= x +
x3

3
+

2
15

x5 − x− c
(

x4

2
+

x6

9

)
+

c2x5

5
+ o(x6). (107)

Consequently

I2(x) =
x3

3
− c

2
x4 +

2 + 3c2

15
x5 − c

9
x6 + o(x6). (108)

The solution to Equation (98) will be the critical point at which the “almost linear”
increase in tan t changes to “almost parabolic”. Using (94) for expressions of undefined
coefficients a, b and Formulas (104) and (108) we obtain the transcendental equation:

I1(x)− I2(x) = x tan x
(

2
15

tan x− x
6
− x3

45

)
= 0 (109)

with a unique solution x ' 0.885 (Figure 1).



Mathematics 2021, 9, 2301 18 of 26

Figure 1. Numerical-graphic solution of the equation I1(x)− I2(x) = 0.

From which it follows that on the segment [0, 0.885] the function tan t increases
“almost linearly”, and to the right, its growth becomes nonlinear. Thus, the determination
of the critical growth point for tan t using the integral-estimation test qualitatively coincides
with the solution of the same problem using the approximation-estimation test, but the
integral-estimation test gives a more minimum estimate.

6. Discussion

When applied problems to solve, discrete quasi-deterministic random processes with
monotonically increasing trajectories are encountered quite often. For example, these are
sequences of minimum distances at clustering by agglomerative methods, deformation
diagrams of various materials, experimental creep curves, fluorescence accumulation
curves for a real-time polymerase chain reaction, the dependence of network activity on
generalized time (milliseconds, iterations, time to live, etc.) during DoS and DDoS attacks.

6.1. Analytical Generalization of the “Elbow Method” Heuristic

One of the main problems at the cluster analysis is the determination of the preferred
number of clusters. Finding the moment of completion of the process itself is associated
with the solution of this issue [31,32]. Usually, the decision on the number of clusters is
made during the process of clustering, but sometimes before it starts (for example, when
using the k-means method) [2,3].

At present, the problem of determining the number of clusters is open. For instance,
Baxter and Everitt argue that the approach to establish the true number of clusters is to use
subjective criteria based on expert judgment [3,33]. Nevertheless, cluster analysis remains
one of the main methods of preliminary typology [34], and this necessitates the derivation
of formal criteria for completing the clustering process and the rules for calculating the
number of clusters.

In the overwhelming majority of modern works devoted to studying and solving these
problems, the authors consider not general but various exceptional cases of clustering. We
can highlight the article [35], which describes an algorithm based on finding and evaluating
jumps of the so-called index functions. Developing the ideas presented in [35], it was
proposed to use randomized algorithms for approximation of jumps of index functions [36]
to find the number of clusters.

Quite often, the determination of the number of clusters during the execution of
the hierarchical agglomerative clustering process is based on a visual analysis of dendro-
grams [37,38]. However, this approach is heuristic, but heuristic methods are based on
some plausible assumptions and not on rigorous mathematical inferences.

Another heuristic approach to determining the preferred number of clusters under
hierarchical agglomerative clustering is called the “elbow method” [39]. The main idea
of this heuristic is that if the graph of some variable describing the clustering process
resembles a hand, then the “elbow” (the point of the sharp bend in the graph) is a good
indicator that we received of the preferred number of clusters. From a formal point of view,
if a value increased linearly, its increase became nonlinear at the “elbow” point.

For the “elbow method” application, can be used the sequence of minimum distances
between the elements of the set X. This sequence linearly ordered with respect to numeric
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values: 0 ≤ F1 ≤ F2 ≤ . . . ≤ Fm−1. In Euclidean spaces, when clusters merge, there should
be a sharp jump in the numerical value of the minimum distance, which is the moment
of completion of the clustering process. In Figure 2 shows a graph of the sequence of
minimum distances for the model set X. The figure shows that this jump (point F30) is
better approximated not by a linear function, but of a parabolic or exponential. Moreover,
this point is the “elbow” of the graph.

Figure 2. Graph of Fi values, the abscissa represents the iteration numbers, the ordinate represents
the sequence of minimum distances.

Clustering study as a quasi-deterministic process, as its trajectories, one can consider
monotonically changing numerical characteristics, including the sequence of minimum
distances, where time is the iteration number of the agglomerative process. To construct
statistical criteria for completing the clustering process, one can use quadratic forms of
approximation-evaluative criteria, which are an analytical generalization of the heuristic of
the “elbow method”. It is essential to emphasize that determining the number of clusters
with their help is based not on heuristic conclusions but sequential statistical analysis.

Several clusters automatic determination is an urgent problem in many cases of
preliminary typologization of empirical data. For example, in cytometric blood analysis [40],
in automatic analysis of texts [41] both on topics [23,42], and by emotional coloring [43], as
well in all other cases when the number of clusters is a priori unknown.

6.2. Limits of Application of Hooke’s Law

The main requirement for any structure is that it has strength, rigidity, and stability.
The calculations of these parameters are based on experimental data and assumptions
made within disciplines such as structural mechanics, the strength of materials, and
elasticity theory.

The main goal of studying the properties of materials under the influence of external
forces is to describe the relationship between stresses and strain. Sometimes strains are
determined by stresses, and sometimes, conversely, stresses are determined by strain. The
elastic deformation is described by Hooke’s law, which states that the stress is proportional
to the strain, i.e., the relationship between them is linear [44,45].

Elastic deformation study is critical primarily since it is with it that any deformation
process begins: plastic deformation, highly elastic deformation, or brittle fracture. The
behavior in the elastic region is of great practical importance both for the brittle states of
solids and for the plastic states of materials, for which elastic deformation has a significant
effect on the development of inelastic processes.

The elastic properties of a solid are related to the nature of the adhesion forces,
intermolecular bonds, etc. The nature of the interatomic forces indicates that Hooke’s law is
approximate, and the directly proportional relationship between stresses and deformations
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is an idealized scientific abstraction. However, it has been shown experimentally that
Hooke’s law is observed with sufficient accuracy for most materials, but only within certain
limits. If the relationship between stresses and strains becomes nonlinear, then Hooke’s
law becomes inapplicable [46].

The currently used graphical methods for determining the boundaries of the elastic
zone using the stress strain curve are rather primitive. They are intended for a situation
where stress is a function of deformation in the one-dimensional case [47]. Then the
transition from elastic to plastic state is characterized by a change in the type of stress
increase from linear to logarithmic or arctangential (Figure 3) [48].

Figure 3. Sketch of a stress–strain curve, on the abscissa—strain, on the ordinate—stress values.

However, cases where, on the contrary, stress is a function of deformation are also
of great importance. Then the transition from elastic to plastic state is characterized
by a change in the type of deformation growth from linear to parabolic or exponential
(Figure 4) [49].

Figure 4. Sketch of the inverse strain diagram (strain–stress curve), on the abscissa—stress values, on
the ordinate—strain.
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Various types of approximation-estimation tests can be used to determine the scope of
Hooke’s law [22].

6.3. Singular Points of the Creep (Cold Flow) Curve

As a rule, creep (cold flow) is slow, occurring in time, deformation of a solid under the
influence of a constant load. Cold flow is described by the so-called “creep curve”, which
depends on deformation on time at constant temperature and force. Creep mechanisms
depend both on the type of material and on the conditions under which it occurs. Its
physical mechanism is predominantly of a diffusion nature, which makes it different from
plastic deformation, which is associated with fast sliding along the atomic planes of grains
of the polycrystal [50].

The creep curve is conventionally divided into three sections (stages). The first stage is
a section of unsteady creep when the creep rate slows down. The second stage is a section
of steady-state creep when deformation occurs at a constant rate. The third stage is an
area of accelerated creep. Creep curves have the same form (Figure 5) for a wide range of
materials: metals, alloys, semiconductors, polymers, ice, etc.

Figure 5. Classic view of the creep curve (according to Rabotnov), on the abscissa—time, on the
ordinate—strain values.

In the first stage of creep, the initial velocity, given by the instantaneous initial defor-
mation, gradually decreases to a particular minimum value. At the second stage, creep
occurs at a constant speed [50]. This piece of the curve can be compared to a graph of the
locus of points, in which the relationship between the abscissa and the ordinate is first
linear, then logarithmic, and then linear again.

We will call the moment of change in the nature of the increase in deformation from
linear to logarithmic—“the first singular point of the creep curve”.

At the third stage, the growth of deformation occurs at an increasing rate and ends
with the destruction of the material. The transition from the second stage to the third is
characterized by a change in the rate of increase in deformation from linear to parabolic, or
exponential [50].

We will call the moment of change in the nature of the increase in deformation from
linear to parabolic or exponential—“the second singular point of the creep curve”.

Methods of analytical determination of singular points of the creep curve can be
of practical and theoretical interest in both physical and computational experiments. A
possible approach to solving this problem can be the use of approximation-estimation tests.
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6.4. Characteristic Points for the Curves of the Real-Time PCR

Real-time polymerase chain reaction (real-time PCR, qPCR), based on the PCR
method [51], allows you to determine the presence of the target nucleotide sequence
in the sample and measure the number of its copies. The amount of amplified DNA is
measured after each cycle of amplification using fluorescent labels. Evaluation can be
quantitative (measuring the number of copies of the template) and relative (measuring
relative to the introduced DNA or additional calibration genes). For real-time PCR, the
amount of product formed is monitored during the reaction by monitoring the fluorescence
of the dyes introduced into the reaction. The number of fluorophores is proportional to the
amount of the resulting DNA product. Assuming a specific amplification efficiency, which
is usually close to doubling the number of molecules per amplification cycle, it is possible
to calculate the number of DNA molecules initially present in the sample. Thanks to highly
efficient detection chemistry, sensitive instrumentation, and optimized analysis methods,
DNA molecules can be quantified with unprecedented precision [52].

The fluorescence accumulation curve (fluorescence graph) for real-time PCR has a
characteristic form (Figure 6); it consists of a baseline, an exponential phase, and a plateau
phase [53].

For initial cycles, when the fluorescent signal is below the value that the instrument
can register, the amplification graph slowly increases as a linear function. Then, as the
product accumulates, the signal increases exponentially and then reaches a plateau, similar
to an arctangent. The plateau is due to the lack of one or another component of the reaction.
In a standard real-time PCR reaction, all samples will plateau and reach approximately the
same signal level. On the other hand, in the exponential phase, differences in the growth
rate of the amount of product can be traced. Differences in the initial number of molecules
affect the number of cycles required to raise the fluorescence level above the noise level.

There are many mathematical models describing the fluorescence graph for real-time
PCR [54,55]. In some cases, theoretical and practical interest is not a heuristic inference,
but a formal determination of the moments of transition of the fluorescence accumulation
curve from linear growth to exponential growth, and then, reaching the plateau [56,57].

Figure 6. Fluorescence accumulation curve (fluorescence graph) for real-time PCR, abscissa—
amplification cycles, ordinate—fluorescence brightness.

6.5. Switched Systems

Continuous dynamics and discrete events interconnect many systems encountered
in practice. Systems in which these two types of dynamics coexist and interact are usu-
ally called hybrid systems. Their study entails interesting theoretical problems that are
important for solving many applied problems. Due to its interdisciplinary nature, this field
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attracts the attention of a wide range of scientists. Researchers with experience and interest
in continuous-time systems and control theory are primarily interested in the properties
of continuous dynamics, such as Lyapunov stability. At the same time, it is necessary to
study the discrete behavior of such systems. To describe the specifics of discrete dynamics,
it is helpful to analyze a more general situation that contains a specific model as a particu-
lar case. We can is done this by considering systems with continuous-time and discrete
switching events from a particular class. Such systems are called switched systems and are
considered higher-level abstractions than hybrid systems. It should be borne in mind that
such systems often demonstrate non-trivial switching behavior and, thus, go beyond the
traditional control theory [58].

For example, we can consider the security issues on the Internet of Things (IoT), which
connects devices and users without limiting time and place. Latency, availability, and
reliability are critical metrics for the efficient use of IoT data and services. IoT devices
equipped with embedded controllers are often targeted by denial-of-service attacks. Denial-
of-service (DoS) attacks and Distributed Denial-of-Service (DDoS) attacks are the most
common attacks on the Internet of Things [59]. They can take many forms and are defined
as attacks that can undermine the network’s ability to perform its function. During DoS
and DDoS attacks, several “malicious” computer systems “flood” the selected server with
a huge volume of concurrent requests and cause a denial of service for users and devices
on the network [60].

In these cases, the system must change “its behavior” depending on the situation and
use specialized hardware and software methods to deal with them. A possible approach, in
this case, would be to use machine-learning methods in the IoT [61]. The fact is that random
functions, which are mappings between the generalized time and the amount of informa-
tion (the number of requests), at the beginning of the attacks change the character of their
increase from linear to nonlinear form, as a rule—exponential (Figure 7). Approximation-
estimation tests can be used to definition Markov stopping time corresponding to a change
in strategy in response to an attack or overload.

Figure 7. Sketch of the network activity curve during DoS or DDoS attacks, on the abscissa—
generalized time, on the ordinate—the number of requests.

The flexibility of the set of approximation-estimation tests allows them to make deci-
sions on changing the control strategy based on any available metric. Network congestion
control can be thought of as a switching system [62,63]. In this case, the primary mechanism
for congestion avoidance is to determine the available system bandwidth. If the network is
overloaded, it is necessary to automatically switch to emergency mode with a decrease in
unacknowledged packets.
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One of the most critical aspects of the considered tools is that the decision to change
the strategy is made based on data on changes in the nature of network activity and not
based on overcoming specific fixed load values. This allows these algorithms to be applied
without additional configuration on systems of any size.

7. Conclusions

At the end of the article, it should be noted that modern computers do not learn any-
thing. Typical machine learning boils down to finding and using “mathematical formulas”
that produce the desired results when applied to a set of inputs. Just as artificial intelligence
is not intelligence, machine learning is not learning. The term was coined for marketing
reasons; in the 1960s, IBM used it to attract customers and talents [64]. Nevertheless, the
term machine learning has gained worldwide acceptance and is understood as the theory
and practice of creating hardware and software that can perform practical actions without
direct human intervention.

The practical application of approximation-estimation tests for solid mechanics, molec-
ular biology, and switching systems can be attributed to a particular case of detecting
anomalies. The same applies to their use in cluster analysis; the definition of “elbow” on
the graph identifies an anomaly. Specific implementations of the proposed formulas and
algorithms and an assessment of their computational complexity are beyond the scope
of this article, but there are no prerequisites to believe that this aspect will cause signif-
icant difficulties in implementation. Moreover, the implementation of algorithms using
approximation-estimation tests is possible in both hardware and software.

Approximation-estimation tests and integral-estimation tests open up new purely
mathematical problems. For example, we can be studying their extreme properties.
Approximation-estimation tests let obtain an upper bound for the critical point of the
transition of the trajectory of a quasi-deterministic process from linear to nonlinear growth.
Moreover, if the trajectory is convex, then an increase in the approximation knots shifts
this upper bound to the left. Integral and differential calculus tools provide more accurate
results than discrete methods. Therefore, it can be assumed that integral-estimation tests
allow one to obtain more accurate estimates for critical points of monotonic trajectories than
approximation-estimation tests. The next problem, by the way, is related to the previous
one. Behavior study of approximation-estimation tests and integral-estimation tests if an
increasing variable has not one inflection point, such as a sigmoid or a logit, but a countable
set of such points, etc.

And in the end, for the sake of fairness, it should still be noted that integral-estimation
tests are primarily of academic interest since practical implementation in digital technolo-
gies is possible mainly for discrete solutions.
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