
mathematics

Article

A Massively Parallel Hybrid Finite Volume/Finite Element
Scheme for Computational Fluid Dynamics

Laura Río-Martín 1 , Saray Busto 1,2,* and Michael Dumbser 1,*

����������
�������

Citation: Río-Martín, L.; Busto, S.;

Dumbser, M. A Massively Parallel

Hybrid Finite Volume/Finite Element

Scheme for Computational Fluid

Dynamics. Mathematics 2021, 9, 2316.

https://doi.org/10.3390/

math9182316

Academic Editor: Efstratios

Tzirtzilakis

Received: 26 August 2021

Accepted: 9 September 2021

Published: 18 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratory of Applied Mathematics, DICAM, University of Trento, Via Mesiano 77, 38123 Trento, Italy;
laura.delrio@unitn.it

2 Departamento de Matemática Aplicada a la Ingeniería Industrial, Universidad Politécnica de Madrid,
José Gutierrez Abascal 2, 28006 Madrid, Spain

* Correspondence: saray.busto@unitn.it (S.B.); michael.dumbser@unitn.it (M.D.)

Abstract: In this paper, we propose a novel family of semi-implicit hybrid finite volume/finite
element schemes for computational fluid dynamics (CFD), in particular for the approximate solution
of the incompressible and compressible Navier-Stokes equations, as well as for the shallow water
equations on staggered unstructured meshes in two and three space dimensions. The key features of
the method are the use of an edge-based/face-based staggered dual mesh for the discretization of the
nonlinear convective terms at the aid of explicit high resolution Godunov-type finite volume schemes,
while pressure terms are discretized implicitly using classical continuous Lagrange finite elements
on the primal simplex mesh. The resulting pressure system is symmetric positive definite and can
thus be very efficiently solved at the aid of classical Krylov subspace methods, such as a matrix-free
conjugate gradient method. For the compressible Navier-Stokes equations, the schemes are by
construction asymptotic preserving in the low Mach number limit of the equations, hence a consistent
hybrid FV/FE method for the incompressible equations is retrieved. All parts of the algorithm can
be efficiently parallelized, i.e., the explicit finite volume step as well as the matrix-vector product in
the implicit pressure solver. Concerning parallel implementation, we employ the Message-Passing
Interface (MPI) standard in combination with spatial domain decomposition based on the free
software package METIS. To show the versatility of the proposed schemes, we present a wide range
of applications, starting from environmental and geophysical flows, such as dambreak problems
and natural convection, over direct numerical simulations of turbulent incompressible flows to high
Mach number compressible flows with shock waves. An excellent agreement with exact analytical,
numerical or experimental reference solutions is achieved in all cases. Most of the simulations are
run with millions of degrees of freedom on thousands of CPU cores. We show strong scaling results
for the hybrid FV/FE scheme applied to the 3D incompressible Navier-Stokes equations, using
millions of degrees of freedom and up to 4096 CPU cores. The largest simulation shown in this paper
is the well-known 3D Taylor-Green vortex benchmark run on 671 million tetrahedral elements on
32,768 CPU cores, showing clearly the suitability of the presented algorithm for the solution of large
CFD problems on modern massively parallel distributed memory supercomputers.

Keywords: incompressible and compressible Navier-Stokes equations; shallow water equations;
finite element method; finite volume scheme; semi-implicit scheme on staggered unstructured meshes;
ADER methodology; High-Performance Computing (HPC); Message-Passing Interface (MPI)

MSC: 35L40; 65M08; 65M60; 65Y05

1. Introduction

Since the advent of modern computers and the first numerical methods for the approx-
imate solution of nonlinear partial differential equations (PDE), the field of computational
fluid dynamics (CFD) has been a major driving force for research and new developments
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in applied mathematics and scientific computing in the last decades, see (e.g., [1–3]) for
the first finite difference schemes for CFD. Further groundbreaking inventions for the
numerical solution of PDE are the finite element (FE) method, which makes use of discrete
variational calculus, see (e.g., [4–18]), and finite volume (FV) schemes [19–25], which are
based on the integral form of the governing PDE system. While finite element schemes
are traditionally preferred for computational solid mechanics and stationary elliptic prob-
lems, finite volume schemes are widespread in the context of time-dependent hyperbolic
partial differential equations, especially when flows become supersonic/supercritical and
discontinuous solutions (shock waves) develop, see [26,27].

In [28–31], a novel family of semi-implicit hybrid FV/FE schemes has been developed
and applied to incompressible, weakly compressible, and all Mach number flows, including
shock waves. The main idea behind the hybrid FV/FE framework is a flux-vector splitting
of the governing PDE system, see [32], where the purely convective (hyperbolic) terms are
discretized with an explicit finite volume scheme, while the remaining pressure terms in
the flux vector can be rewritten as a second order wave equation and are thus more conve-
niently discretized at the aid of an implicit finite element method. For the incompressible
Navier-Stokes equations, the resulting pressure equation is indeed elliptic, hence the FE
approach is clearly more convenient compared to a finite volume discretization. In order to
avoid odd-even decoupling and checkerboard effects, the hybrid FV/FE method makes
use of a staggered unstructured mesh, where the pressure field is defined in the vertices
of a primal simplex mesh composed of triangles or tetrahedra, while all the other flow
variables, such as density and momentum, are defined on a dual edge-based/face-based
staggered dual mesh, see also [33–35]. The use of staggered meshes in CFD goes back
to the pioneering work of Harlow and Welch [36] for the solution of the incompressible
Navier-Stokes equations and was subsequently also employed, for example, in [37,38]. For
a non-exhaustive overview of efficient semi-implicit schemes for CFD, see (e.g., [39–53])
and references therein.

In previous work on hybrid FV/FE schemes for the Navier-Stokes equations [28–31],
all simulations have been performed with a classical sequential implementation, allowing
the use of only one CPU core for a simulation, even on modern multi-core workstations.
In order to reduce the computational cost and perform large simulations with complex
geometries and fine meshes needed in CFD for aircraft and vehicles, see (e.g., [54–58])
and references therein for an overview, it is essential to use a parallel implementation.
In this paper, the hybrid FV/FE scheme has been parallelized by using the Message-
Passing Interface (MPI) standard. The computational domain is partitioned in space via
the free domain decomposition software METIS [59], and each processor handles its own
data and its own part of the computational domain, hence using a distributed data and
distributed workload paradigm. While the parallelization of the explicit finite volume
part is straightforward, the implicit discretization of the pressure terms leads to a very
large and sparse linear algebraic system that needs to be solved. However, thanks to the
underlying basic properties of the governing PDE and its finite element discretization, the
resulting discrete pressure system is always symmetric and positive definite. An efficient
parallel solution is therefore achieved at the aid of a matrix-free conjugate gradient (CG)
method [60]. For more advanced and optimized linear solvers for finite elements, the
reader is referred to [61–64]. The final structure of the matrix-vector product that needs
to be evaluated in each CG iteration is similar to the one of an explicit method and can
therefore be parallelized as usual at the aid of spatial domain decomposition. In this way,
the computational cost is shared among all the processors, both for the explicit FV part as
well as for the implicit FE part of the hybrid FV/FE scheme. The parallelism is achieved in
all cases via the communication of data among neighboring MPI ranks via shadow/halo
zones. For the efficient parallel implementation of explicit schemes for the solution of
hyperbolic PDE, the reader is referred to [65–70], for example.

By using this parallel implementation of the hybrid FV/FE scheme, numerical sim-
ulations involving meshes with several hundreds of millions of elements can be run on
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modern massively parallel distributed memory supercomputers. Moreover, good parallel
performance is obtained, as confirmed by a strong scaling analysis. The numerical solutions
obtained with the parallel hybrid FV/FE scheme have been carefully compared with exact
analytical, numerical and experimental reference solutions, obtaining in all cases a very
good agreement. Currently, the algorithm presented in this paper is limited to simplex
meshes, i.e., triangles in 2D and tetrahedra in 3D. Future work will concern the extension
to mixed element unstructured meshes, including also prisms, pyramids, and hexahedra,
as well as more general polygonal and polyhedral meshes, using e.g., the virtual element
method (VEM), see [71–73] and references therein. Another limitation of the algorithm is
the use of a pure MPI parallelization instead of a mixed MPI + OpenMP implementation.

The structure of this paper is as follows: The mathematical models and the underlying
semi-discretization in time that is necessary for the semi-implicit hybrid FV/FE scheme
are introduced in Section 2. In particular, the governing PDE systems solved in this paper
are the incompressible, the weakly compressible, and the fully compressible Navier-Stokes
equations, as well as the shallow water equations for geophysical free surface flows. The
spatial discretization of the hybrid FV/FE scheme is presented in Section 3. Section 4 is
devoted to describing the parallelization of the staggered semi-implicit hybrid FV/FE
approach using the MPI standard. The performance of the parallel scheme is demonstrated
via a quantitative speedup analysis. An extensive set of numerical results is presented
in Section 5, ranging from the incompressible over the weakly compressible and fully
compressible Navier-Stokes equations to the shallow water equations. The paper closes
with some concluding remarks and an outlook to future work in Section 6.

2. Mathematical Models and Semi-Discretization in Time

In this section, we recall the mathematical models considered in this paper: the
incompressible Navier-Stokes equations, the weakly compressible formulation of the
Navier-Stokes equations in terms of the pressure, the fully compressible Navier-Stokes
equations in terms of the total energy density, which are suitable for the description of all
Mach number flows, and, last but not least, the shallow water equations for the modeling of
geophysical free surface flows. Following the hybrid methodology proposed in [28–31,74],
we rely on a flux vector splitting [32] of the associated semi-discrete systems in time.
Consequently, we get a first set of transport-diffusion equations that can be efficiently
discretized in space using classical explicit finite volume methods. The remaining set of
equations can be expressed as a Poisson-type system in the case of the incompressible
Navier-Stokes equations and as a second order wave equation for the pressure in the case
of the compressible Navier-Stokes equations and the shallow water system. Continuous
finite elements are used to solve this system due to the excellent mathematical properties
they present for the solution of second order PDE in general and of elliptic problems in
particular. Therefore, the corresponding weak formulation of the implicit pressure terms is
presented for each mathematical model. Finally, we will recast the resulting systems into a
general formulation easing the introduction of the spatial discretization of the equations in
the next section.

2.1. Incompressible Navier-Stokes Equations

The incompressible Navier-Stokes equations read

∇ ·wv = 0, (1)
∂wv

∂t
+∇ ·Fwv(wv) +∇ p−∇ · τwv(∇ v) = 0, (2)

where wv := ρv is the linear momentum, ρ the density, v the velocity vector, Fwv =
1
ρ wv ⊗ wv is the physical flux tensor related to the nonlinear convective terms in the
momentum conservation equation, p denotes the pressure, and τwv corresponds to the
viscous stress tensor, which for laminar incompressible flows reads τwv = µ

(
∇ v +∇ vT),

with µ the dynamic viscosity.
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Applying a projection method [53,75], to decouple the computation of the linear
momentum unknowns and the pressure field, together with a semi-discretization in time
of the above system yields

W̃v = Wn
v − ∆t∇ ·Fwv(Wn

v)− ∆t ∇Πn + ∆t∇ · Twv(∇Vn), (3)

Wn+1
v = W̃v − ∆t ∇

(
Πn+1 −Πn

)
, (4)

∇ ·Wn+1
v = 0. (5)

Throughout the paper, capital letters are used to identify discrete variables, i.e.,
Wn

v is the discrete approximation of wv(x, tn), while Πn = p(x, tn) and so on. Inter-
mediate variables are denoted with a tilde, e.g., W̃v is the intermediate variable for
the linear momentum including all contributions needed to compute the solution at
the new time step but for the spatial gradient of the pressure difference between the
two consecutive times, ∇

(
Πn+1 −Πn). Besides, we denote with Ω the computational

domain and by Γ := ∂Ω its boundary, η the outward-pointing normal vector, and by
z ∈ V0 :=

{
z ∈ H1(Ω) :

∫
Ω zdV = 0

}
a test function. Then, Equations (4) and (5) can be

seen as a Poisson-type problem with the following weak formulation:

Weak problem. Find δΠn+1 := Πn+1 −Πn ∈ V0 verifying
∫

Ω
∇ δΠn+1 · ∇ z dV =

1
∆t

∫

Ω
W̃n+1

v · ∇ z dV− 1
∆t

∫

Γ
Wn+1

v · η z dS, ∀z ∈ V0. (6)

2.2. Weakly Compressible Flows

To develop a solver for weakly compressible flows, we consider the mass and mo-
mentum equations of the compressible Navier-Stokes system, combined with a pressure
equation written in non-conservative form, see [30],

∂ρ

∂t
+∇ · F ρ(w) = 0, (7)

∂wv

∂t
+∇·Fwv(w) +∇ p−∇ · τwv(∇ v) = ρg, (8)

∂p
∂t

+ v · ∇ p− c2v · ∇ ρ + c2∇·(ρv) + (γ− 1)(∇· q− τwv(∇ v) : ∇ v) = 0, (9)

with the state vector w = (ρ, ρv, p)T and where F ρ := wv = ρv is the flux related to the
mass conservation equation, g is the gravity vector, q = −λ∇ θ is the heat flux, λ the
thermal conductivity coefficient, θ the temperature, and c2 = (∂p/∂ρ)s is the square of the
isentropic sound speed c. Let us also note that the stress tensor for the laminar compressible
regime reads τwv = µ

(
∇ v +∇ vT)− 2

3 µ(∇ · v)I, with I the identity matrix, and for the

ideal gas equation of state (EOS), we have c =
√

γp
ρ , p = ρRθ, with R the specific gas

constant and γ the adiabatic index or ratio of specific heats.
Semi-discretization in time of the former system yields

ρn+1 = ρn − ∆t ∇·F ρ(Wn), (10)

W̃v = Wn
v − ∆t ∇·Fwv(Wn) + ∆t ∇·Twv(∇Vn) + ∆t ρng, (11)

Π̃p = pn − ∆t Vn · ∇Πn − ∆t (γ− 1)∇ · qn, (12)

Π̃ρ = ∆t c2Vn · ∇ ρn, (13)

Πn+1 = Π̃− ∆t c2∇·Wn+1
v + ∆t (γ− 1)Twv(∇Vn) · ∇Vn, (14)

Wn+1
v = W̃v − ∆t ∇Πn+1 (15)
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with Π̃ := Π̃ρ + Π̃p. The corresponding second order wave equation for the pressure,
derived from (14) and (15), results in

Weak problem. Find Πn+1 ∈ V0 verifying

∆t 2
∫

Ω
∇Πn+1 · ∇ z dV+

1
c2

∫

Ω
Πn+1z dV =∆t

∫

Ω
W̃v · ∇ z dV−∆t

∫

Γ
Wn+1

v · η z dS

+
1
c2

∫

Ω
Π̃z dV−∆t

c2

∫

Ω
(γ− 1)Twv(∇Vn) · ∇Vn z dV, ∀z ∈ V0. (16)

2.3. Compressible Navier-Stokes Equations for All Mach Number Flows

To get an all Mach number flow solver, we go back to the classical conservative
formulation of the compressible Navier-Stokes equations in terms of the total energy
density, wE := ρE [31],

∂ρ

∂t
+∇·F ρ(w) = 0, (17)

∂wv

∂t
+∇·Fwv(w) +∇ p−∇· τwv(∇ v) = ρg, (18)

∂wE
∂t

+∇·
[

1
ρ

wv(wE + p)
]
−∇·

(
1
ρ

τwv(∇ v) ·wv

)
+∇· q = g ·wv. (19)

Here, the state vector is w = (ρ, ρv, ρE).
To discretize the compressible system, we follow the flux splitting techniques intro-

duced in [32,48], obtaining the following semi-discrete system in time:

Wn+1
ρ = Wn

ρ − ∆t ∇·F ρ(Wn), (20)

W̃v = Wn
v − ∆t ∇·Fwv(Wn)− ∆t ∇Πn + ∆t ∇·Twv(∇Vn) + ∆t ρng, (21)

W̃E = Wn
E − ∆t∇·FK(Wn) + ∆t ∇·

(
1
ρn Twv(∇Vn)Wn

v

)
+ ∆t ∇·Qn + ∆t g ·Wn

v, (22)

1
γ− 1

δΠn+1,k+1 − ∆t 2∇·
(

Hn+1,k∇ δΠn+1,k+1
)
= W̃E −

Πn

γ− 1
− (ρK)n+1,k − ∆t ∇·

(
Hn+1,k W̃v

)
, (23)

Wn+1,k+1
v = W̃v − ∆t ∇ δΠn+1,k+1, (24)

Πn+1,k+1 = Πn + δΠn+1,k+1, (25)

Wn+1
E = W̃E − ∆t ∇·

(
Hn+1,k+1Wn+1,k+1

v

)
, (26)

where FK := KnWn
v is the flux related to the kinetic energy. Let us remark that in (23)–(26),

we have introduced a Picard iteration procedure, k the Picard index, in order to avoid the
solution of a highly nonlinear pressure system, further details can be found in [31]. The
weak formulation related to the pressure subsystem (23) reads

Weak problem. Find δΠn+1,k+1 = Πn+1,k+1 −Πn ∈ V0 verifying

1
γ− 1

∫

Ω
δΠn+1,k+1z dV− ∆t 2

∫

Ω
Hn+1,k∇ δΠn+1,k+1 · ∇ z dV = −∆t

∫

Γ
Hn+1,k Wn+1

v · η z dS

+
∫

Ω

(
W̃E − (ρK)n+1,k

)
z dV− 1

γ− 1

∫

Ω
Πnz dV+∆t

∫

Ω
Hn+1,k W̃v · ∇ z dV, ∀z ∈ V0. (27)
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2.4. Shallow Water Equations

Following [40], the well-known shallow water system of partial differential equations
can be written as

∂η

∂t
+∇ ·wv = 0, (28)

∂wv

∂t
+∇ ·Fwv(w) + gh∇η = −γwv, (29)

where η := h + b is the free surface elevation, h is the water depth, b is the bottom elevation,
that we assume constant in time, wv = hv is the conservative variable related to the
velocity field, Fwv := 1

h wv ⊗wv is the flux of the momentum conservation equation, g is
the gravity constant, and γ is a shorthand notation for the bottom friction.

γ =
g

κ2
s h

4
3
|v|, (30)

with κs = n−1 the Strickler coefficient and n the Manning coefficient. An important aspect
that should be noticed is that the hybrid FV/FE algorithm proposed is well balanced by
construction so water at rest solutions are preserved [33,76,77].

After discretization in time and some manipulations of the resulting equations, see [74]
for further details, we get

W̃v = Wn
v − ∆t ∇ ·Fwv(Wn), (31)

ηn+1 − ∆t 2 g∇ ·
(

Hn

1 + ∆t γn∇ηn+1
)
= ηn − ∆t ∇ ·

(
1

1 + ∆t γn W̃v

)
, (32)

Wn+1
v =

1
1 + ∆t γn

(
W̃v − ∆t g Hn∇ηn+1

)
. (33)

Similar to what we have already seen for the pressure subsystems for the compressible
Navier-Stokes equations, we get a second order wave equation for the unknown free
surface. Besides, to increase the accuracy in time, we employ the θ-method that reduces to
the classical Crank-Nicolson scheme for θ = 0.5. The final weak formulation results in

Weak problem. Find ηn+1 ∈ V0 verifying

∫

Ω
ηn+1z dV + ∆t 2 θ2 g

∫

Ω

(
Hn

1 + ∆t γn ∇ ηn+1
)
· ∇ z dV =

∫

Ω
ηnzdV + ∆t

∫

Ω

˜̃Wv∇ z dV

− ∆t
∫

Ω
Wn+θ

v · n z dV−∆t 2 θ(1− θ)g
∫

Ω

Hn

1 + ∆t γn ∇ ηn · ∇ z dV, ∀z ∈ V0. (34)

In (34), we have introduced a new intermediate variable

˜̃Wv = (1− θ)Wn
v +

θ

1 + ∆t γn W̃v.

2.5. General Formulation

As mentioned before, the former systems can be recast into a general formulation
which eases the development of a general code for its solution. In particular, we consider
two different sets of equations: the first one is related to the transport-diffusion equations,
while the second one corresponds to the second order pressure system. Moreover, an extra
set of equations allows the final update of the intermediate variables computed from the
transport-diffusion equations once the implicit pressure system has been solved.

Denoting Q the vector of conservative variables, the general form of the transport-
diffusion subsystems reads:
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Q̃ = Qn − ∆t ∇·F (Qn)− ∆t B(Qn) · ∇Qn − ∆t ∇ Pn + ∆t∇ · T(∇Qn) + ∆t f1(∇Qn) + ∆t f2(Qn), (35)

while the second order pressure equation can be reshaped into:

∫

Ω
G1(Qn)Pn+1z dV+

∫

Ω
H1

(
Qn+1,k, Qn

)
∇ Pn+1 · ∇ z dV = −

∫

Γ
H2

(
Qn+1,k, Qn+1, Qn+θ

)
· n z dS

+
∫

Ω
G2

(
Pn, P̃

)
zdV +

∫

Ω
H3

(
Qn+1,k, Q̃

)
· ∇ z dV+

∫

Ω
G3

(
Qn+1,k, Q̃, Qn

)
z dV+

∫

Ω
G4(Qn,∇ Pn) · ∇ z dV . (36)

The different terms in the former equation have been clustered into the auxiliary func-
tions G1, G2, G3, G4, H1, H2, H3 to ease the introduction of the numerical method in the
next sections. Note that not all arguments are necessary for all models. In what follows, we
detail the values taken by each term in (35)–(36) according to the four models considered:

• Incompressible Navier-Stokes equations:

Q̃ = W̃v, Qn = Wn
v, F (Qn) = Fwv(Qn), Pn = Πn,

T(∇Qn) = Twv(∇Vn), B(Qn) = f1(∇Qn) = f2(Qn) = 0,

Pn+1,k+1 = δΠn+1, G1 = 0, H1 = 1, H2 =
1

∆t
Wn+1

v , H3 =
1

∆t
W̃v, G2 = G3 = 0, G4 = 0.

• Weakly compressible flows:

Q̃ =




ρn+1

W̃v
Π̃p


, Qn =




ρn

Wn
v

Πn


, F (Qn) =



F ρ(Qn)
Fwv(Qn)

0


, B(Qn) · ∇Qn =




0
0

Vn · ∇Πn


, Pn = 0,

T(∇Qn) =




0
Twv(∇Vn)

0


, f1(∇Qn) =




0
0

(γ− 1)∇ ·Qn


, f2(Qn) =




0
ρng

0


, Π̃ = Π̃p + ∆t c2vn · ∇ ρn,

Pn+1,k+1 = Πn+1, G1 =
1
c2 , H1 = ∆t 2, H2 = ∆t Wn+1

v , H3 = ∆t W̃v,

G2 =
1
c2 Π̃, G3 =

∆t
c2 Twv(∇Vn) · ∇Vn, G4 = 0.

Let us remark that in this case, an additional term, Πρ, is computed between the
approximation of the transport equations and the second order wave equation.

• Compressible Navier-Stokes equations for all Mach number flows:

Q̃ =




ρn+1

W̃v

W̃E


, Qn =




ρn

Wn
v

Wn
E


, F (Qn) =



F ρ(Qn)
Fwv(Qn)
FK(Qn)


, B(Qn) · ∇Qn = 0,

∇ Pn =




0
∇Πn

0


, T(∇Qn) =




0
Twv(∇Vn)

1
ρn Twv(∇Vn)Wn

v


, f1(∇Qn) =




0
0

∇ ·Qn


, f2(Qn) =




0
ρng

g ·Wn
v


,

Pn+1,k+1 = δΠn+1,k+1, G1 =
1

γ− 1
, H1 = −∆t 2Hn+1,k, H2 = ∆t Hn+1,kWn+1

v ,

H3 = ∆t Hn+1,kW̃v, G2 = − 1
γ− 1

Πn, G3 = W̃E − (ρK)n+1,k, G4 = 0.

• Shallow water equations:
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Q̃ = W̃v, Qn = Wn
v, F (Qn) = Fwv(Qn), Pn = B(Qn) · ∇Qn = T(Qn) = f2

(
∇Qn+1

)
= f2

(
Qn+1

)
= 0,

Pn+1,k+1 = ηn+1, G1 = 1, H1 = ∆t 2θ2g
Hn

1 + ∆t γn , H2 = ∆t Wn+θ
v , H3 = ∆t ˜̃Wv,

G2 = ηn, G3 = 0, G4 = −∆t 2θ(1− θ)g
Hn

1 + ∆t γn ∇ ηn.

3. Spatial Discretization

To complete the description of the numerical method, we now present the spatial
discretization of the system (35)–(36). The hybrid FV/FE algorithms [28–31,74] can be
organized into four steps:

1. Transport-diffusion stage. A first intermediate approximation is given for the con-
served variables by solving (35) using explicit finite volume methods.

2. Interpolation stage. For spatial discretization, two staggered grids are employed for
each numerical method, so interpolation of some variables between the two different
grids is needed.

3. Second order pressure equation stage. System (36) is approximated using implicit
continuous finite elements.

4. Correction stage. The intermediate approximation of the conservative variables
obtained in the first stage is updated with the solution of the second order pres-
sure system.

In what follows, we first introduce the staggered unstructured grids employed in our
hybrid FV/FE framework. Then, we focus on the finite volume method applied to the
transport-diffusion equations. Finally, some key points of the finite element methodology
and the correction stage are also provided.

3.1. Staggered Unstructured Grid

In order to deal with complex geometries, unstructured simplex meshes are used
to discretize the computational domain Ω. In particular, edge-type (2D)/face-type (3D)
unstructured staggered meshes are considered in the spatial discretization. To introduce
the notation needed to explain the numerical algorithm, we summarize here the mesh
structure in 2D, further details on the generation of three-dimensional face-based staggered
meshes can be found in [28,47,50].

The spatial computational domain Ω ∈ R2 is covered by a set of disjoint triangular
elements {Tk, k = 1, . . . , nel}, with vertex Vj, j = {1, . . . , nver}, which form the primal
mesh, see the left sketch in Figure 1. Moreover, we denote by B and B′ the barycentres
of two primal elements sharing one interior edge. To build the dual finite volume mesh,
two different kinds of elements are defined: the interior dual elements, which are built
by merging the two triangles which result from connecting this common edge with their
barycentres (see Figure 1 centre), and the dual boundary elements which are built connect-
ing the two vertices of a boundary edge in the primal mesh to the two barycentres of the
triangles sharing this common edge. Each dual element Ci is also called cell. On this dual
mesh, the nodes {Ni, i = 1, . . . , nnod} are the barycentres of the edges of the elements on
the primal mesh. Similarly, in 3D the primal elements are tetrahedra. Each interior dual
element is built by merging the two tetrahedra created connecting one interior face with
the barycentres of the two primal elements which contain this face, and each boundary
dual element is defined by the vertices of one boundary face and the barycentre of the
tetrahedron in the primal mesh containing that face. Thus, the nodes Ni are the barycentres
of the faces of the primal elements. Further details on the 2D and 3D staggered meshes are
shown in Figures 1 and 2, respectively. The remaining mesh-related notation to be used is
as follows:
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• Ki is the set of neighboring nodes of a node Ni, which are the barycentres of the dual
cells sharing an edge/face with Ci.

• Γi is the boundary of cell Ci and η̃i is its outward unit normal.
• Γij is the edge/face between cells Ci, and Cj. Nij is the barycentre of Γij (Figure 1 right),

and Γi =
⋃

Nj∈Ki

Γij.

• |Ci| is the area/volume of cell Ci.
• η̃ij is the outward unit normal vector to Γij. We define ηij := η̃ij||ηij||, where, ||ηij||

represents the length/area of Γij.

Tk

Tl

Tm

V1 V2

V3

V4

V5

Tk

Tl

Tm

V1 V2

V3

V4

V5

B

B
0

B
00

Tk

Tl

Tm

V1 V2

V3

V4

V5

Figure 1. Construction of face-type dual elements from a 2D triangular mesh. (Left): primal elements
Tk, Tl , Tm with vertex Vn, n = 1, . . . , 5. (Center): dual interior cells Ci, Cj (shadowed in grey); white
triangles correspond to boundary cells. (Right): boundary face, Γij (highlighted in red), between the
dual elements Ci and Cj.

Version September 7, 2021 submitted to Mathematics 8 of 38

the barycentres of the faces of the primal elements. Further details on the 2D and 3D staggered meshes are shown in
Figures 1 and 2, respectively. The remaining mesh-related notation to be used is as follows:

• Ki is the set of neighboring nodes of a node Ni, which are the barycentres of the dual cells sharing an edge/face with
Ci.

• Γi is the boundary of cell Ci and η̃i is its outward unit normal.
• Γij is the edge/face between cells Ci, and Cj. Nij is the barycentre of Γij (Figure 1 right), and Γi =

⋃

Nj∈Ki

Γij.

• |Ci| is the area/volume of cell Ci.
• η̃ij is the outward unit normal vector to Γij. We define ηij := η̃ij||ηij||, where, ||ηij|| represents the length/area of Γij.

Tk

Tl

Tm

V1 V2

V3

V4

V5

Tk

Tl

Tm

V1 V2

V3

V4

V5

B

B
0

B
00

Tk

Tl

Tm

V1 V2

V3

V4

V5

Figure 1. Construction of face-type dual elements from a 2D triangular mesh. Left: primal elements Tk, Tl , Tm with vertex
Vn, n = 1, . . . , 5. Center: dual interior cells Ci, Cj (shadowed in grey); white triangles correspond to boundary cells. Right: boundary
face, Γij (highlighted in red), between the dual elements Ci and Cj.

V2

V3

V1

V4

V5

B
B′

Ni

V2

V3

V1

V4
B

Ni

Figure 2. Staggered dual mesh in 3D. Left: interior finite volume. Right: boundary finite volume.

3.2. Transport-diffusion stage

Integrating (35) on each dual control volume Ci, applying the Gauss theorem to advection, pressure, and diffusion
terms, and considering a path conservative approach for the non-conservative products yields

Q̃i =Qn
i −

∆t
|Ci|

∫

Γi

F (Qn)η̃ i dS− ∆t
|Ci|

∫

Γi

D(Qn)η̃ i dS− ∆t
|Ci|

∫

Ci

B(Qn) · ∇Qn dV− ∆t
|Ci|

∫

Γi

Pnη̃ i dS

+
∆t
|Ci|

∫

Γi

T(∇Qn)η̃ i dS+
∆t
|Ci|

∫

Ci

f1(∇Qn)dV+
∆t
|Ci|

∫

Ci

f2(Qn)dV . (37)

To approximate the flux term and get a second order scheme in space and time, we make use of the Rusanov flux
function, [78], combined with a local ADER methodology [29,79]. We first split the integral on the cell boundary in the
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3.2. Transport-Diffusion Stage

Integrating (35) on each dual control volume Ci, applying the Gauss theorem to
advection, pressure, and diffusion terms, and considering a path conservative approach
for the non-conservative products yields

Q̃i =Qn
i −

∆t
|Ci|

∫

Γi

F (Qn)η̃ i dS− ∆t
|Ci|

∫

Γi

D(Qn)η̃ i dS− ∆t
|Ci|

∫

Ci

B(Qn) · ∇Qn dV− ∆t
|Ci|

∫

Γi

Pnη̃ i dS

+
∆t
|Ci|

∫

Γi

T(∇Qn)η̃ i dS+
∆t
|Ci|

∫

Ci

f1(∇Qn)dV+
∆t
|Ci|

∫

Ci

f2(Qn)dV . (37)

To approximate the flux term and get a second order scheme in space and time, we make
use of the Rusanov flux function [78], combined with a local ADER methodology [29,79]. We
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first split the integral on the cell boundary in the sum of the integrals at the cell edges/faces.
For an arbitrary conservative variable Q, the corresponding numerical flux function reads

φ
(

Qn
i , Qn

j , η ij

)
=

1
2

(
ZQ
(

Qn
i , η ij

)
+ZQ

(
Qn

j , η ij

))
− 1

2
α̃n

RS, ij

(
Qn

j −Qn
i

)
(38)

with ZQ(Qn, η i) := FQ(Qn
)η i the physical flux in the normal direction and

α̃n
RS, ij = α̃n

RS

(
Qn

i , Qn
j , η ij

)
:= αn

RS

(
Qn

i , Qn
j , η ij

)
+ cα

∥∥η ij
∥∥ (39)

the Rusanov coefficient, where αn
RS is the maximum signal speed on the edge, computed

as the maximum absolute eigenvalue of the complete transport-diffusion subsystem, and
cα ∈ R+

0 is an optional artificial viscosity coefficient that can be activated to improve the
stability properties of the scheme. The value of the half in time evolved reconstructed
variables Qn can be obtained following the classical ADER procedure:

Step 1. Piecewise polynomial reconstruction of the data in the neighboring of each edge/face
of the cell. To circumvent Godunov’s theorem and obtain a stable scheme, the gradi-
ents for the definition of the polynomial are selected using a nonlinear Essentially
Non-Oscillatory (ENO) methodology [80]. As alternative limiting strategies, we
employ the classical mimmod limiter [23,81] and the more restrictive Barth-Jespersen
limiter, see [82]. Besides, the computation of the gradients is done using a Galerkin
approach which benefits from the staggered meshes arrangement to get a reduced
stencil [30].

Step 2. Computation of the boundary-extrapolated values in the barycentre of the faces by
evaluating the piecewise polynomials.

Step 3. Half in time evolution of the data by using a temporal Taylor series expansion.
The time derivatives are replaced by spatial derivatives considering a Cauchy-
Kovalevskaya procedure based on the original model, i.e., on the continuous PDEs
where the splitting technique has not been applied yet.

The second and third integrals in (37) correspond to the non-conservative product
computed following the path conservative schemes introduced in [76,83–86]. Consequently,
its contribution is divided into a first part accounting for the jumps between cells and the
smooth contribution from inside each cell necessary for getting the second order scheme.
For the jump term, needed to preserve equilibrium solutions of the PDEs exactly at the
discrete level, we perform the integral on the face following [76,85,87]:

∆t
|Ci|

∫

Γij

D(Qn)η̃ ij dS ≈ 1
2 ∑

j∈Ki

B̃ij

(
Qn

j −Qn
i

)
, B̃ij =

∫ 1

0
B
(

ψ
(

Qn
i , Qn

j , s
))
· η̃ ijds. (40)

In particular, ψ = ψ
(

Qn
i , Qn

j , s
)

= Qn
i + s

(
Qn

j −Qn
i

)
has been chosen to be the

simple straight line segment path, and the trapezoidal rule is used to evaluate the integral
in the definition of the Roe-type matrix B̃ij. Meanwhile, the smooth part of the non-
conservative product,

∆t
|Ci|

∫

Ci

B(Qn) · ∇Qn dV, (41)

is approximated, assuming a constant value by cell. First, the gradients in the dual elements
are obtained as a weighted average of the values at the primal elements computed using
the Galerkin approach. Then, we perform the product of matrix B(Qn

i ) by the obtained
(∇Qn)|Ci

.
Regarding the pressure term, we assume a known value at each dual vertex and

approximate the integral on the face using the corresponding quadrature rule. In case the
vertex corresponds to the barycentre of a primal element, the pressure value is taken as the
average value at the vertex of the element.
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Viscous terms are computed by considering the normal projection of the Galerkin
approximation of the gradients on each face. Again a Taylor series expansion in time
jointly with a Cauchy-Kovalevskaya procedure, in which advection terms are neglected,
are employed to get a second order scheme.

Finally, algebraic source terms can be computed using a high enough quadrature rule.
In case source terms depend on the system unknowns, a constant value per cell is assumed
while Gauss theorem is applied when its gradients are involved.

3.3. Interpolation Stage

Since two staggered grids are used, interpolation of data between them becomes
necessary. To minimize artificial diffusion due to this process, we assume the averaged
quantity on dual cells corresponding with the value on the node, and we pass to primal
cells following

Qk =
1

ln f ∑
i∈Kk

Qi (42)

with Kk the set of indexes pointing to the faces of the primal element Tk, Ci the dual cell
related to face i, and ln f the local number of vertex of the faces of the primal element,
namely, ln f = 3 in 2D and ln f = 4 in 3D. The proposed interpolation leads to a provable
exact interpolation technique to pass data between the two different staggered grids,
see [88].

On the other hand, the interpolation back from the primal vertices to the dual cells is
achieved as

Qi =
1

lnv f ∑
k∈Vi

Qk, (43)

where Vi contains the index of the vertex on the face containing the node Ni and lnv f
is the number of vertex at each face. Further interpolations considered, including the
computation of the data in the vertex of primal elements and calculation of auxiliary
variables from mixed data originally coming from both grids, can be found, e.g., in [31].

3.4. Finite Element Method

As pointed out in Section 2.5, all second order pressure equations of the considered
mathematical models can be recast into a general formulation whose corresponding weak
problem reads:

Weak problem. Find Pn+1 ∈ V0 verifying
∫

Ω
G1(Qn)Pn+1z dV+

∫

Ω
H1

(
Qn+1,k, Qn

)
∇ Pn+1 · ∇ z dV = −

∫

Γ
H2

(
Qn+1,k, Qn+1, Qn+θ

)
· n z dS

+
∫

Ω
G2

(
Pn, P̃

)
zdV +

∫

Ω
H3

(
Qn+1,k, Q̃

)
· ∇ z dV+

∫

Ω
G3

(
Qn+1,k, Q̃, Qn

)
z dV+

∫

Ω
G4(Qn,∇ Pn) · ∇ z dV . (44)

Discretization in space at the aid of P1 Lagrange finite elements will provide the
solution Pn+1 at the vertices of the primal elements. The corresponding linear algebraic
system is symmetric and positive definite and can be efficiently solved using a matrix-free
conjugate gradient method [60]. Let us remark that for fully compressible flows, a Picard
iteration procedure is applied to avoid the complex nonlinear system resulting from the
presence of both the enthalpy and the kinetic energy in the integrals on the left-hand side
of (36), see [31] for further details. Besides, the θ-method, introduced in [74] for the shallow
water case, could be applied to increase the time accuracy of the overall scheme.

3.5. Correction Stage

Since the intermediate approximations obtained in the transport diffusion stage lack
for the contributions of Pn+1 related terms, a correction step must be performed at the end
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of each time step. To this end, in the correction stage or post-projection stage, we solve an
extra update equation of the form

Qn+1
i = C1(Qn, Pn)Q̃i − ∆t C2

(
Qn, Pn, Pn+1,∇Pn+1

)
(45)

with the functions C1, C2 defined according to Equations (4), (15), (24)–(26) and (33), for
each mathematical model considered. Note that C2 depends not only on the value of the
variables at the new time step but also on their gradients. To compute this contribution, the
gradient is first computed at each primal element, and then a weighted average provides
the value in the dual elements.

4. Parallel Implementation

In [28–31,74], the hybrid FV/FE approach has been widely described for incompress-
ible, weakly compressible, all Mach number flows, and shallow water equations showing
several results run using a sequential code, written in Fortran language. There exist many
circumstances that lead us to have a high computational cost, such as a large computational
domain, an extremely fine mesh, a complex geometry, or a large final time, and it, therefore,
becomes necessary to implement the numerical scheme in parallel, hence allowing us to
reduce the computational cost of the simulation. High-Performance Computing (HPC)
involves different techniques to achieve efficient and fast simulations, such as distributed or
shared memory parallelisms, vectorization, or memory access optimization. For the family
of hybrid FV/FE methods, we consider parallel programming on distributed memory
environments with the Message-Passing Interface (MPI) standard [89], to distribute data
and workload. The proposed parallel implementation is based on decomposing the compu-
tational domain into many subdomains allotted to various processors (MPI ranks). In the
message-passing paradigm, each MPI rank handles the simulation within its subdomain
and communicates with the others to send data they have and to receive those necessary
data that they can not compute by themselves to achieve parallelism.

4.1. Mesh Partition

For the numerical results, two different kinds of meshes have been considered: com-
pletely unstructured meshes, which have been created by using commercial software, such
as ANSYS Meshing™ or Gambit®, and regular unstructured meshes generated within the
code using a methodology based on split Cartesian meshes. In case the output format of the
external meshing software does not coincide with any of the formats admitted by the solver,
we make use of the feconv mesh converter [90], to transform it. The mesh partitioning is
carried out using the free METIS software package described in [59] when the unstructured
grid is created with commercial software. This software provides an allotment where the
number of elements of the primal mesh assigned to each MPI rank is almost the same.
In this way, we achieve the best performance because computations performed by each
CPU are optimized, and the number of MPI communications among CPUs is minimized.
However, this method is not the most efficient when the grid is extremely fine. The most
relevant reason is that the main rank has to read the entire mesh from disk and subsequently
needs to perform mesh-related computations that are not related to the numerical solution
but to the algorithm parallelization: generation of the staggered dual mesh topology, data
to be distributed has to be prepared before being sent, the mesh has to be partitioned, and
these tasks are performed by a single rank or by all ranks without parallelizing the process.
Moreover, it can also yield a huge memory consumption which may not be affordable for
standard nodes in HPC. To overcome this difficulty, we have implemented a parallel split
Cartesian mesh generator that, as its name suggests, creates an initial Cartesian mesh of
hexahedra, each of which is then divided into five tetrahedra following [91], and thus a
primal mesh of tetrahedra is obtained. Figure 3 shows a cube cartesian mesh of 32 hex-
ahedra in each direction, partitioned in 8 submeshes and a detail of the division of the
hexahedra into tetrahedra. To make good use of the parallel implementation, once the total
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number of hexahedra and the number of partitions in each direction are set, each MPI rank
meshes only its own subdomain, using the parallel grid generator previously described.
For the MPI parallelization of the explicit finite volume schemes on the dual mesh and
for the implicit pressure system, we need to consider a layer of shadow elements around
each subdomain in order to exchange the required cell averages (FV) and vertex data (FE)
between neighbor processors.

Figure 3. (Left): Split-Cartesian mesh of 323 hexahedra and 23 MPI ranks. (Right): Detail of the division of hexahedra
into tetrahedra.

4.2. Neighbour Elements

When the mesh is partitioned, the elements {Tk}, and vertices {Vn} of the primal
mesh are distributed on the different MPI ranks, and after that, each MPI rank builds the
corresponding dual mesh, and the resulting dual cells {Ci} are subsequently distributed.
To compute, for example, the velocity or density fields at cell Ci or the pressure field at each
primal element Tk, some information is required from neighbour finite volumes or finite
elements, and there is no guaranty that both the element where the field is computed and
the neighbour element belong to the same MPI rank. Then, it is necessary to communicate
this information from one rank to the other. For this purpose, each rank will have a
set of shadow primal elements and shadow dual cells, which contain data coming from
neighbour processors. Each rank computes each field only in its own elements and then
exchanges information with the neighbour processors that have these elements as a shadow.
The exchange of information is performed with non-blocking communications based on
standard calls to the MPI library. In the code, there are maps that go from local elements
or vertices of the primal mesh (own and shadow elements of the partitioned mesh for
each rank) to global elements in the original mesh without the partition and vice versa. In
this way, it is easy to go from the original mesh elements to each partition and from the
partition elements to the initial mesh. This neighbor search is completed at the beginning
and is invariant for the entire simulation.

4.3. Periodic Boundaries

When periodic boundaries are considered, the distribution of the primal mesh ele-
ments {Tk} is the same as without periodic boundaries, but the distribution of the vertices
{Vn} is slightly modified. First of all, notice that if a vertex Vn is on one of the periodic
boundaries, another vertex, V′n, is located in the same position on the matching periodic
boundary. Both vertices are identified as the same one (merged), and the value of any
field at both points must be equal. Then, if a vertex Vn is located in one of the periodic
boundaries and belongs to one rank, it is considered that V′n is also own, and if the vertex
Vn is a shadow one, then V′n is also shadow. In this way, although each finite element Tk
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belongs only to one rank, the boundary vertex on a periodic boundary could belong to
more than one rank.

4.4. Scalability

To illustrate the advantages of using parallelization in the family of hybrid methods,
a scalability study is performed by using the Taylor-Green vortex (TGV) benchmark in a
three-dimensional domain Ω = [0, 2π]3 (see [46,86] and Section 5.1.2 for further details
about this test), with a grid created by using the split Cartesian method. First of all, a strong
scaling study is considered. If the problem size n is fixed, the most common measure of
scalability is the simulation speedup which can be measured as a function of the number
of processors used in the simulation p. Thus, the speedup is given by

S(p) =
Tserial

Tparallel(p)
, (46)

where Tparallel(p) is the execution time required by p processors, and Tserial is the time
necessary to execute the serial code. The linear speedup is the ideal situation where the
speedup is equal to the number of processors (S(p) = p), and every processor contributes
100% of its computational power. Moreover, the efficiency, E(p), can be defined as the ratio
of the speedup to the ideal linear speedup, that is,

E(p) =
S(p)

p
=

Tserial
p Tparallel(p)

. (47)

To perform the scalability study, first of all, the left plot of Figure 4 shows the wall-clock
time for solving the TGV benchmark with 2563 hexahedra, that is, with 83,886,080 tetrahedra.
In this case, the wall-clock time is given as a function of the number of processors. The right
plot shows the efficiency in terms of the number of processors going from 16 up to 4096.
All the simulations in this section have been run on the high-performance supercomputer
SuperMUC-NG of the Leibniz Rechenzentrum (LRZ) in Garching, Germany.

Figure 4. (Left): Wall-clock time as a function of the processor number to solve the TGV benchmark with 83,886,080 primal
elements. (Right): Efficiency.

Figure 5 shows the strong scaling study for the parallel computation of the TGV
benchmark with three different meshes: 643 × 5 tetrahedra, in blue, 1283 × 5 tetrahedra,
in green, and 2563 × 5 tetrahedra, in magenta. In the left plot, the speedup computed by
using (46) is plotted in terms of the number of processors and compared with the ideal
wall-clock time from 16 up to 4096 CPUs. The solid lines represent the computed speedup,
and the dashed line the ideal linear speedup. The right plot shows the efficiency calculated
by using (47). Without doing any code optimization, the achieved efficiency is around 60%
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on 4096 CPU cores. As it can be observed, the finer the mesh and the greater the number of
elements, the better the efficiency and speedup. By increasing the number of elements, the
efficiency of the MPI communication improves, as expected.

Figure 5. Speedup graph (left) comparing the measured and the ideal wall-clock time from 16 to 4096 CPUs, and efficiency
graph (right) considering three different meshes: 643 × 5 tetrahedra (in blue), 1283 × 5 tetrahedra (in green), and 2563 × 5
tetrahedra (in cyan).

In strong scaling studies, the problem size is fixed, but in some cases, it is interesting
to study how to increase parallelism to solve problems with a bigger size. In these cases, a
weak scaling study can be performed and it is used the scaled speedup given by

S(p) =
Tserial(n(p))

Tparallel(n(p), p)
, (48)

where n(p) is the problem size chosen so that the work per processor remains constant. In
Figure 6, the scaled speedup, computed by using (48), of the TGV benchmark is shown. The
problem size varies from 163,840 up to 10,485,760 elements, and the number of processors
is chosen between 1 and 64 to maintain the number of elements per processor constant and
equal to 163,840.

Figure 6. Scaled speedup of a parallel simulation of the TGV benchmark. The number of elements
per processor remains constant.

It is important to highlight that the scalability study has been performed without
doing any previous code optimization. Part of our future work will consist in optimizing
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the code to further improve its parallel efficiency. As it can be observed in this section,
when we increase the number of processors, we do not reach the ideal efficiency, and it
could happen for several reasons. Increasing the number of processes sometimes will
not improve the parallel code scaling but may even decrease its performance, and if this
happens by increasing the number of CPUs, there is a communication overhead. The
parallel algorithm should not generate communication overhead, i.e., each CPU should
spend more time performing computations than sending information to achieve an efficient
algorithm. And, in addition, sometimes there is a waiting overhead because ranks must
wait for data from other ranks to perform a computation.

To guess where to focus our efforts on improving efficiency, we have solved the TGV
benchmark with 83,886,080 elements considering the hybrid FV/FE method described
in this paper, but we have also solved it considering only finite elements and only finite
volumes. The left plot in Figure 7 compares the execution time when we solve with the
hybrid FV/FE method with solid blue line, only with finite volumes with dashed red line
and only with finite elements with dash-dotted cyan line. As expected, the wall-clock
time decreases when using only FV. In the right plot of Figure 7, the efficiency comparison
is shown, and, as we suspected, the efficiency when solving with the FE method alone
worsens drastically (almost half that with the hybrid methodology). This study suggests
that we should optimize over all the FE code. In the projection stage, the pressure equation
is solved using a finite element method, and the resulting linear systems are symmetric
and positive definite. For this reason, we have used a matrix-free conjugate gradient
(CG) method where the parallelization of the matrix-vector product is efficient and almost
straightforward. The bottleneck appears when each MPI rank should communicate in
each CG iteration to the master rank the scalar norm of the residual produced, and the
master checks if the tolerance imposed for the iterative method to finish is reached. Then
we have a waiting overhead and an all-to-all communication of the norm of the residual
that is very time-consuming on large CPU numbers, and that should be improved in the
future. Despite that, we consider that the efficiency is good enough, taking into account
that the mesh is really fine and that no optimization has been performed on the code so
far. Future work will concern the extension of the parallel implementation of the code to a
mixed MPI + OpenMP parallelization, in order to reduce the number of ranks involved in
global all-to-all communications.

Figure 7. Comparative of the wall-clock time (left) and the efficiency (right) considering the hybrid FV/FE method (solid
blue line), finite volumes (dashed red line) and finite elements (dash-dotted cyan line) to solve the TGV benchmark with
5× 2563 = 83,886,080 primal elements.
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5. Numerical Results

This section aims at illustrating the behavior of the proposed methodology. To this end,
several classical benchmarks are reproduced. The different tests carried out are organized
according to the mathematical models solved, i.e., incompressible Navier-Stokes equations,
weakly compressible Navier-Stokes equations, fully compressible Navier-Stokes equations,
and shallow water equations.

Let us note that, for stability purposes and unless stated otherwise, the time step is
dynamically computed according to a CFL-type restriction

∆t = min
Ci
{∆t i}, ∆t i = CFL

r2
i

(|ζ|max + cα)ri + 2|ν|max
(49)

for the incompressible and weakly compressible Navier-Stokes equations,

∆t = min
Ci
{∆t i}, ∆t i = CFL

r2
i

(|ζ|max + cα)ri + max
{

2|ν|max, cvγ
κρ

} (50)

for the fully compressible Navier-Stokes equations and

∆t = min
Ci
{∆t i}, ∆t i = CFL

r2
i

(|ζ|max + cα)ri +
8
3
|ν|max

(51)

for the shallow water equations. Above, we have denoted by |ζ|max the maximum absolute
eigenvalue related to the convective terms, while |ν|max corresponds to the one of diffusion
terms and is activated only if they are computed using an explicit approach. Furthermore,
cα is the artificial viscosity parameter, set to zero unless a different value is explicitly given,
cv is the heat capacity at constant volume, and ri denotes the incircle diameter of each dual
control volume.

The international system of units (SI) is used throughout all test cases.

5.1. Incompressible Navier-Stokes Equations

The first mathematical model considered here are the incompressible Navier-Stokes
equations. First, the accuracy of the proposed hybrid FV/FE methodology is assessed using
the Taylor-Green vortex benchmark in 2D. Then, we will show the ability of the scheme to
solve also complex three-dimensional flows. To this end, the first test to be addressed is
the three-dimensional Taylor-Green vortex which presents a complex laminar to turbulent
transition behavior of the fluid flow. Several Reynolds numbers are analyzed, comparing
the results obtained with the hybrid FV/FE methodology against available DNS reference
data. The last test presented here is the classical lid-driven cavity benchmark in 3D, for
whose verification numerical reference data are employed.

5.1.1. Taylor-Green Vortex in a Two-Dimensional Domain

To assess the accuracy of the hybrid FV/FE methodology, we consider the Taylor-
Green vortex benchmark in 2D, whose known exact solution is given by

u(x, t) =
(

sin(x) cos(y)
− cos(x) sin(y)

)
, p(x, t) =

1
4
(cos(2x) + cos(2y)). (52)

The computational domain Ω = [0, 2π]2 is discretized with the mapped triangular
primal meshes described in Table 1. Note that, for this test case, the time step has been
fixed a priori according to the mesh refinement instead of setting a constant CFL value. As
shown in Table 2, the sought second order accuracy is perfectly achieved using the second
order local ADER scheme in the transport-diffusion stage. The simulations have been run
on 16 cores of an Intel® Core™ i9-10980XE workstation.
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Table 1. Description of the meshes and time steps used to perform the convergence analysis with the
Taylor-Green vortex benchmark in 2D.

Mesh Elements Vertices Dual Elements ∆t

M1 128 81 208 2.5× 10−2

M2 512 289 800 1.25× 10−2

M3 2048 1089 3136 6.125× 10−3

M4 8192 4225 12,416 3.125× 10−3

M5 32,768 16,641 49,408 1.5625× 10−3

M6 131,072 66,049 197,120 7.8125× 10−4

M7 524,288 263,169 787,456 3.90625× 10−4

M8 2,097,152 1,050,625 3,147,776 1.953125× 10−4

M9 8,388,608 4,198,401 12,587,008 9.765625× 10−5

Table 2. Spatial L2 error norms and convergence rates at time t = 0.1 obtained using the LADER
scheme for the Taylor-Green vortex benchmark in 2D.

Mesh L2
Ω(p) O(p) L2

Ω(wv) O(wv)

M1 4.13E−01 1.27E−01
M2 1.16E−01 1.83 3.08E−02 2.04
M3 2.99E−02 1.96 7.63E−03 2.01
M4 7.54E−03 1.98 1.90E−03 2.00
M5 1.89E−03 1.99 4.75E−04 2.00
M6 4.74E−04 2.00 1.19E−04 2.00
M7 1.19E−04 2.00 2.97E−05 2.00
M8 2.97E−05 2.00 7.42E−06 2.00
M9 7.42E−06 2.00 1.85E−06 2.00

5.1.2. Taylor-Green Vortex in a Three-Dimensional Domain

Now, the Taylor-Green vortex in a three-dimensional domain Ω = [−π, π]3 is consid-
ered. The initial condition [47,92], is given by

u(x, t) =




sin(x) cos(y) cos(z)
− cos(x) sin(y) cos(z)

0


, p(x, t) =

1
16

(cos(2x) + cos(2y))(cos(2z) + 2). (53)

Variation of the viscosity parameter according to predefined Reynolds numbers,
Re ∈ {100, 200, 400, 800, 1600}, allows the definition of a set of test cases. Despite the initial
condition to be smooth, this benchmark rapidly evolves into a turbulent flow. To properly
capture the complex structures generated for high Reynolds numbers, very fine grids are
required. Generation of the related auxiliary mesh data in a single core might be too RAM
demanding for standard HPC nodes. To overcome this issue, the parallel mesh generator
described in Section 4.1 is employed. Accordingly, we provide the code with the number
of divisions along each axis direction, and each CPU will generate and know only the
hexahedral submesh corresponding to its computational subdomain, plus a shadow layer
needed for MPI communication. Then, the associated primal mesh made of tetrahedra is
built by splitting each hexahedron into five tetrahedra, as well as the related dual mesh.
Table 3 details the grid resolution and the number of MPI subdomains employed in each
spatial direction for each Reynolds number (Re). The total number of elements of each
simulation is, therefore, Ntot = 5 · Nx · Ny · Nz and the total number of CPU cores and thus
MPI ranks is Ctot = Cx · Cy · Cz. Periodic boundary conditions are considered everywhere.
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Table 3. Number of spatial divisions Nx = Ny = Nz and number of MPI subdomains (CPU
cores) Cx = Cy = Cz along each coordinate direction of the grids used for the solution of the
three-dimensional Taylor-Green vortex with different Reynolds numbers.

Re Number Nx = Ny = Nz Cx = Cy = Cz

100 128 8
200 128 8
400 128 8
800 256 16

1600 512 32

The simulations were carried out up to a final time of t = 10 with CFL = 0.5 and
using the local ADER methodology without any limiters or artificial viscosity. The left
subplots of Figures 8–12 show thirteen equidistant isosurface contours for the pressure field,
p ∈ [−0.1, 0.4], at the final time. The total kinetic energy dissipation rates for the considered
Reynolds numbers are presented in the corresponding right subplots and compared with
available DNS reference data given in [93]. An excellent agreement is observed even for
the high Reynolds number test cases.
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DNS data by Brachet et al.
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Re=100

Figure 8. Three-dimensional Taylor-Green vortex with Re = 100. Pressure isosurfaces at time t = 10 for p ∈ [−0.1, 0.4],
∆p = 0.025 (left) and 1D plot of the total kinetic energy dissipation rate compared against the DNS data in [93] (right).
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Figure 9. Three-dimensional Taylor-Green vortex with Re = 200. Pressure isosurfaces at time t = 10 for p ∈ [−0.1, 0.4],
∆p = 0.025 (left) and 1D plot of the total kinetic energy dissipation rate compared against the DNS data in [93] (right).
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Figure 10. Three-dimensional Taylor-Green vortex with Re = 400. Pressure isosurfaces at time t = 10 for p ∈ [−0.1, 0.4],
∆p = 0.025 (left) and 1D plot of the total kinetic energy dissipation rate compared against the DNS data in [93] (right).
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Figure 11. Three-dimensional Taylor-Green vortex with Re = 800. Pressure isosurfaces at time t = 10 for p ∈ [−0.1, 0.4],
∆p = 0.025 (left) and 1D plot of the total kinetic energy dissipation rate compared against the DNS data in [93] (right).
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Figure 12. Three-dimensional Taylor-Green vortex with Re = 1600. Pressure isosurfaces at time t = 10 (left) and 1D plot of
the total kinetic energy dissipation rate compared against the DNS data in [93] (right).
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5.1.3. Lid-Driven Cavity in 3D

The lid-driven cavity test is a classical benchmark for incompressible flow solvers [48,94].
The computational domain, Ω = [0, 1]3, contains an initial fluid at rest, which starts moving
thanks to the displacement of the upper boundary of the domain, whose velocity is of
the form v = (1, 0, 0). Homogeneous Dirichlet boundary conditions are imposed for the
velocity on the bottom and lateral boundaries. Two different Reynolds numbers, Re = 400
and Re = 1000 are studied using the incompressible hybrid FV/FE solver with artificial
viscosity coefficient cα = 2 for the convection terms. The solution obtained at time t = 40 is
reported in Figure 13. The streamlines clearly show the three-dimensional effects arising in
this test case. Contour plots of the velocity components at the mid-planes of the domain
allow for a quantitative comparison of the obtained solution against available reference
data [48,94]. Moreover, Figure 14 depicts the comparison between the approximated and
the reference solution for the horizontal and vertical velocities along the vertical and
horizontal 1D cuts in the middle of the domain. A good agreement is observed for both
Reynolds numbers studied in this paper.

Figure 13. Streamlines and velocity contour colors (m/s) for the three–dimensional lid–driven cavity at Re = 400 (left) and
Re = 1000 (right) at time t = 40.
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Figure 14. 1D cuts through the numerical solution for the 3D lid–driven cavity at time t = 40 and comparison with available
numerical reference solutions in [48,94]. (Left): Re = 400. (Right): Re = 1000.
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5.2. Weakly Compressible Navier-Stokes Equations

We now consider the hybrid FV/FE method applied to the non-conservative weakly
compressible Navier-Stokes Equations (7)–(9). The first two test cases are focused on
natural convection applications and analyze the evolution of the flow field generated by a
heated bubble embedded in an initial fluid at rest. The third test case analyses the sound
waves generated by the unsteady viscous laminar flow around a circular cylinder and
corresponds to a medium Mach number problem.

5.2.1. Rising Bubble in 2D

As first test case addressing thermal convection-driven problems in compressible
flows, we consider a two-dimensional rising bubble following classical benchmarks intro-
duced in [30,50,95–98]. In particular, we define the computational domain Ω = [0, 2]× [0, 3],
an initial fluid at rest and a thermal bubble centered in xb = (1, 1.5):

ρ(x, y, 0) =





1− 1
2

e−
1
2 (

r
0.2 )

2
if r2 ≤ 0.1,

1− 1
2

e−
5
4 otherwise;

p(x, y, 0) = 105 + g · x, (54)

where r =
√
(x− 1)2 + (y− 1.5)2 is the radius with respect to xb. We furthermore set

the viscosity µ = 10−2, the thermal conductivity λ = 2.38× 10−2, the heat capacity ratio
γ = 1.4, the heat capacity at constant volume cv = 717.5, and the gravity g = (0,−9.81)T .
The final simulation time is t = 1.5, and the domain has been discretized using 501, 680
primal elements run on 72 CPU cores of HPC2-UNITN supercomputer. Periodic boundary
conditions are defined in the y-direction, while the fixed values imposed in the upper
and bottom boundaries for the velocity and temperature fields are assumed to match the
initial conditions.

According to the magnitude of the physical viscosity and to reduce the computational
cost of the algorithm, the viscous terms have been computed implicitly. To this end, the
viscous subsystems are defined following [48,88], and continuous finite elements are used
for its solution, see [88] for details. The explicit transport stage has been solved using the
local ADER method without limiters and cα = 0.5.

The contour plot of the temperature field obtained at times t ∈ {0.5, 1, 1.5} is shown
in Figure 15. As expected, the bubble starts rising due to gravity and natural convection
effects, generating a non-zero velocity field, while the maximum temperature decreases
due to heat conduction (see [50]). Let us note that, even if this test case is included in
the weakly compressible flows section of this paper, the simulation has been carried out
also using the hybrid FV/FE solver for fully compressible flows. A good agreement can
be observed between both methods. Due to the low Mach number regime and taking
into account the computational cost of both solvers, it is advisable to employ the weakly
compressible method within this kind of regime. Consequently, for the three-dimensional
natural convection test presented in the next subsection, we will only consider the weakly
compressible solver. Further comparisons, in the context of natural convection problems,
of the proposed methodology with a very high order DG numerical scheme for all Mach
number flows [48], can be found in [30].
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Figure 15. Comparison of the temperature field obtained using the weakly compressible scheme
(left) and the all Mach number solver. From top to bottom: t = 0.5, t = 1, t = 1.5.
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5.2.2. Rising Bubble in 3D

This test corresponds to the 3D version of the former rising bubble. We consider the
computational domain Ω = [0, 2]× [0, 2]× [0, 5] discretized with a primal mesh made of
10, 240, 000 tetrahedral elements built using the parallel split Cartesian grid generator with
Nx = Ny = 160, Nz = 400. The initial conditions correspond to (54) with r2 = (x− 1)2 +
(y− 1)2 + (z− 1)2. To complete the setup of this test, we define µ = 10−3, λ = 2.38× 10−2,
γ = 1.4, cv = 717.5, g = (0, 0,−9.81)T . Periodic boundary conditions have been set
in x and y directions, while Dirichlet boundary conditions for the conserved variables
and Neumann boundary conditions for the pressure are considered in the upper and
bottom boundaries. The simulation has been run on the high-performance supercomputer
SuperMUC-NG using 2000 CPU cores. Figure 16 depicts the thermal bubble rising up in
the domain for times t ∈ {0, 1, 2, 3, 4, 5}. Due to the differences of temperature between the
bubble and the remaining computational domain, a velocity field conveying the heated
flow upwards is generated, see Figure 17. Accordingly the initially round bubble rises and
gradually deforms into a mushroom-shaped structure. Despite no reference solution is
available for this test case, a qualitative comparison against numerical and experimental
data can be performed, and the symmetry of the bubble can be checked, confirming the
correct behavior of the applied methodology, see (e.g., [50]) for comparison.

Figure 16. Temperature contours at plane x = 0 and isosurfaces T ∈ {410, 420, 430} for the 3D rising bubble. From top left
to bottom right: t = 0, t = 1, t = 2, t = 3, t = 4, t = 5.



Mathematics 2021, 9, 2316 25 of 41

Figure 17. Mach contours and velocity vectors at plane x = 0 for the 3D rising bubble. From left to right: t = 1, t = 3, t = 5.

5.2.3. Aeolian Tones Generated by the Compressible Flow around a Circular Cylinder

It is well known that the unsteady flow of a von Karman vortex street in the wake
of a circular cylinder generates aeolian tones within a compressible fluid, see (e.g., [99])
and references therein. This section reproduces the test according to the setup detailed
in [99,100]. Our computational domain Ω is a circle of radius R = 300 centered in the
origin, and the embedded circular cylinder with the same center has a diameter of d = 1.
The Reynolds number based on the diameter of the cylinder is Re = ρ∞v∞d

µ = 150, while
the Mach number of the flow is set to M∞ = 0.2, hence it is sufficient to solve the weakly
compressible Navier-Stokes equations. Heat conduction is neglected in our test. The ratio
of specific heats is set to the usual value of γ = 1.4, the freestream density, pressure, and
velocity are ρ∞ = 1, p∞ = 1/γ, and v∞ = 0.2, respectively.

The simulation is run on an unstructured triangular mesh composed of 667,340 trian-
gles with a characteristic mesh spacing of h = 0.05 at the cylinder and h = 4 at the outer
boundary. As already mentioned before, the computational domain is a circle with radius
R = 300, and the outer region 200 ≤ ‖x‖ ≤ 300 is used as a sponge layer in order to allow
the sound waves to leave the domain without spurious reflections. Within the sponge
layer, the degrees of freedom of the pressure Π̂i are simply overwritten in each timestep
as follows:

Π̃n+1
i = (1−m)Π̂n+1

i + mp∞, (55)

where Π̂n+1
i are the degrees of freedom (DoF) obtained after the projection stage of the

hybrid FV/FE scheme, and Π̃n+1
i is the final value assigned to each DoF after the application

of the sponge layer. The absorption coefficient is set to m = 3× 10−5. The simulation is
performed on 2400 CPU cores of the SuperMUC-NG supercomputer until t = 900.

The sound pressure field generated by the von Karman vortex street is depicted in
Figure 18 and agrees qualitatively very well with the sound field obtained in [99,100].
The time series of the velocity component v2(xp, t) in the point xp = (10, 0) is shown in

Figure 19. From this time signal, we obtain a Strouhal number of St = f d
u∞

= 0.179, which
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can be compared with the reference value of St = 0.183 found by Müller in [99] and the
other reference values given therein. The Strouhal number obtained in [100] was St = 0.182.
The error with respect to [99,100] is of the order of 2%, hence we obtain a rather good
quantitative agreement with reference results published in the literature.

Figure 18. Sound field generated by the weakly compressible flow around a circular cylinder at time
t = 900.
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Figure 19. Time series of the velocity component v2(xp, t) at xp = (10, 0) in the time interval
t ∈ [600, 900]. The resulting Strouhal number is St = 0.179.
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5.3. Fully Compressible Navier-Stokes Equations

This section shows some computational results obtained with the hybrid FV/FE
method applied to the fully compressible Navier-Stokes equations in two and three space
dimensions, see also [31], where this method was introduced for the first time. The first test
is a two-dimensional Kelvin-Helmholtz instability run at a low Mach number, while the
second test consists of two shock tube problems in order to show that the proposed scheme
is indeed an all Mach number flow solver that is able to solve both low Mach number flows
as well as high Mach number flows with shocks and discontinuities.

5.3.1. Kelvin-Helmholtz Instability

The computational domain used for this simulation is the square Ω = [0, 1]× [0, 1],
with periodic boundary conditions in the x−direction and slip wall boundaries in the
y−direction. The initial condition of this test problem is given by

ρ = 1− 1
4

tanh(25y), v1 = −1
2

tanh(25y), v2 =
1

100
sin(2πx) sin(πy), p =

104

γ
. (56)

The average Mach number of this test problem is, therefore, M = 0.01. The viscosity
coefficient is set to µ = 0.0001, while thermal conduction is neglected, i.e., λ = 0. A
second order accurate local ADER scheme without limiter is employed to discretize the
nonlinear convective terms. The simulation is run on 2400 CPU cores of the SuperMUC-NG
supercomputer until a final time of t = 8, using an unstructured primal simplex mesh
with characteristic mesh spacing h = 1/1000 composed of a total of 2,279,386 triangular
elements. The time evolution of the density contours is shown in Figure 20. One can notice
the development of the typical vortex structures that are expected for this type of physically
unstable shear flow.

Figure 20. Cont.
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Figure 20. Temporal evolution of the density contours of the 2D compressible Kelvin–Helmholtz
instability at times t = 4, t = 5, t = 6, t = 7, t = 8, from top to bottom. Three periods of the periodic
domain in the x−direction are shown.

5.3.2. Riemann Problems

In this section, we solve two Riemann problems that are well-known standard bench-
mark problems for numerical methods applied to nonlinear hyperbolic conservation
laws, but here we are using an unstructured tetrahedral mesh in three space dimen-
sions in order to check our hybrid FV/FE algorithm in 3D. The computational domain
is Ω = [−0.5, 0.5]× [0.0125, 0.0125]2 with Dirichlet boundary conditions in the x-direction
and periodic boundaries in the y- and z-directions. The unstructured mesh is a regular one,
with 5× 512× 32× 32 elements. The first test problem is the classical Sod shock tube [101],
while the second test problem is taken from the textbook of Toro [23] and corresponds to
Riemann problem number 4. The initial condition for a generic quantity q takes the form

q(x, 0) =
{

qL if x ≤ xc,
qR if x > xc.

(57)

According to the above-mentioned references, the left and right states for density,
velocity component v1 = u and pressure are briefly summarized in Table 4, including the
final time of the simulation tend and the initial position of the discontinuity xc. For the 3D
setup we set the tangential velocity components to zero, i.e., v2 = v3 = 0. For this test we
use an inviscid fluid, setting µ = λ = 0 and γ = 1.4. Simulations are carried out on 16
CPU cores of an Intel® Core™ i9-10980XE workstation with 64 GB of RAM.
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Table 4. Initial states left and right, initial position of the discontinuity xc, and final simulation time t for each Riemann
problem.

Test ρL ρR uL uR pL pR xc t

RP1 1 0.125 0 0 1 0.1 0 0.2
RP4 5.99924 5.99242 19.5975 −6.19633 460.894 46.095 −0.2 0.035

In Figure 21, the numerical results obtained with our 3D hybrid FV/FE method are
compared with the exact solution of the Riemann problem provided in [23]. We obtain a
very good agreement between the exact solution and numerical results for all test problems
and all flow variables.
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Figure 21. Riemann problems solved on a regular unstructured 3D mesh composed of 5× 512× 32× 32 primal simplex
elements. Top row: results obtained for the Sod shock tube at time t = 0.2. Bottom row: results obtained for the Riemann
problem RP4 of Toro at time t = 0.0035.

5.4. Shallow Water Equations

The last model discretized using the hybrid FV/FE methodology corresponds to the
Saint-Venant equations. We consider two different test cases of dambreaks with known
numerical and experimental reference solutions, thus allowing for a careful validation of
the proposed algorithm.

5.4.1. 3D Dambreak on a Dry Plane

We consider the three-dimensional dam break on a dry plane proposed in [102], where
experimental data and numerical results are provided. The physical domain consists of
a tank of dimensions 1× 2× 0.7 connected to a flat plate through a removable gate that
can be opened in less than 0.1 s, simulating an instantaneous dam break, see Figure 22
for further details on the computational domain. The rupture of the gate leads to a water
front traveling over the dry plane, while in the meantime, a rarefaction wave propagates
backward inside the tank. In the numerical framework, the test can be reproduced by
considering symmetry boundary conditions for the tank walls and free outflow in the
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three remaining boundaries delimiting the initially dry plane. Within the model, we set
the friction coefficient to n = 10−3 so that experimental data can be correctly reproduced.
Regarding the algorithm, the generation of spurious oscillations is avoided by using a
Rusanov-type dissipation in the FE discretization, see [74] for further details.

2m

2m1m

1:8m

0:4m

0-2A-3A-5A 8A1A

Figure 22. Sketch of the computational domain for the 3D dambreak on a dry plane test case including
the position of the wave gauges.

The simulation has been run up to time t = 2 in a primal mesh made of 2,178,836
simplex elements using 2400 CPU cores of SuperMUC-NG. Figure 23 depicts the surface
elevation obtained at times t ∈ {0.1, 0.2, 0.3, 0.5, 1.0, 2.0}. Moreover, the time evolution for
the wave gauges described in Table 5 is shown in Figure 24 jointly with the experimental
data provided in [102]. To ease the comparison with numerical data from different numeri-
cal approaches, we also include the solution obtained in [103] using a three-dimensional
smooth particle hydrodynamics (SPH) scheme for the weakly compressible free surface
Navier-Stokes equations, the numerical results for the diffuse interface method (DIM) for
the weakly compressible Euler equations proposed in [104] and the approximation obtained
in [102] with a Godunov-type finite volume scheme for the shallow water equations. As ex-
pected, the hydrostatic Saint Venant model provides worse results than the non-hydrostatic
fully 3D Navier-Stokes solvers at short times due to the hydrostatic pressure assumption
in the shallow water equations, but for larger times, the results greatly improve while
presenting a reduced computational cost.

Note that this test case has already been run with the hybrid FV/FE scheme using a
coarse mesh in [74], assessing the capability of the hybrid FV/FE methodology to address
practical applications. Nevertheless, some small structures could not be captured with the
grid resolution employed in [74]. To this end, a much finer grid and thus a larger number
of parallel processors is needed. The new results presented in this paper confirm the ability
of the hybrid methodology to accurately solve dambreak problems showing an excellent
agreement with experimental and other numerical reference data, thus demonstrating the
importance of the massive parallel computing to attain the level of accuracy sought in
practical applications.

Table 5. Coordinates of the wave gauges of the three-dimensional dambreak on a dry plane for a
bi-dimensional domain Ω = [−1, 1]× [−1, 2].

Wave Gauge −5 A −3 A −2 A 0 1 A 8 A

x −0.82 −0.62 −0.42 0 0.02 0.722
y 0 0 0 0 0 0
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Figure 23. Water surface for the dambreak over a plane dry bed obtained at times t ∈ {0.1, 0.2, 0.3, 0.5, 1.0, 2.0}, from top
left to bottom right. The last figure also depicts the MPI partition of the computational domain considered to run the
simulation on 2400 CPU cores of the SuperMUC-NG supercomputer.
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Figure 24. Time evolution of the free surface elevation obtained at wave gauges 0, −2 A, −3 A, −5 A, 1 A and 8 A for the
dambreak over a plane dry bed. Hybrid FV/FE scheme applied to the shallow water equations (blue line); experimental
results of Fraccarollo and Toro [102] (squares); explicit Godunov-type finite volume scheme (red line); fully nonhydrostatic
3D SPH scheme [103] (black dashed line); 3D diffuse interface method [104] (black line).
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5.4.2. Dambreak into a Channel with a 45◦ Bend (CADAM)

The second dambreak problem studied has been first put forward in [105] in the frame-
work of the European Concerted Action on Dam Break Modeling (CADAM). Figure 25
sketches the geometry considered in the physical experiment, consisting of a reservoir
connected to a rectangular channel with a 45◦ bend. We assume the origin of the co-
ordinate system to be placed at the lower left corner of the reservoir, with dimensions
Ωreservoir = [0, 2.39]× [0, 2.44]× [−0.33, 0.4], while the bottom of the first channel section
is located at z = 0 so that a step of height 0.33 meters is placed at the gate between both
subdomains. Like for the previous test case, a physical gate is initially placed at the reser-
voir exit separating it from the dry channel. Initially, the tank is filled with water at rest up
to a height of h = 0.58 m from the bottom, that is, with the free surface being η = 0.25 m.
The gate is then removed, simulating the rupture of a dam. Consequently, the water flows
along the channel, hitting the bend walls and yielding to oblique waves propagating down
the channel as well as a backward front traveling towards the reservoir. Further details on
the experimental test description can be found in [105].

x [m]
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m
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G1 G2 G4
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2.39
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.4

4

0.5

Figure 25. Computational domain and wave gauges locations for the 3D CADAM test case.

For the setup of the numerical test case, we consider symmetry boundary conditions
at the walls and an outflow boundary condition at the end of the channel. Following
the guidelines in [105], the friction coefficient is set to n = 10−3. The primal mesh used
is composed of 2, 495, 116 triangular elements to be divided into 2400 CPU cores. The
free surface elevation for t ∈ {0.5, 1.0, 2.5, 4.0, 6.0, 8.0} is represented in Figure 26. All the
structures presented are in good qualitative agreement with the experiments in [105], the
3D SPH simulations [106], and the solution obtained for the 3D third-order one-step WENO
finite volume scheme [104]. The MPI mesh partition is also depicted in the last subfigure
of Figure 26. To better analyze the numerical solution of the hybrid methodology and to
ease its comparison with available reference data, we also report the time evolution of the
water surface at the fixed locations given in Table 6 and already depicted in Figure 25, see
Figure 27. A good agreement is observed for all wave gauges. The solution reasonably
matches the expected discharge of the reservoir, and the arrival times for the main wave
front are well captured. Moreover, the hybrid FV/FE method is able to reproduce the
backward traveling wave in G5 and perfectly matches the experimental time the main
wave front arrives at G4, thus performing better than the available 3D solutions of DIM
and SPH methodologies and than the pure Godunov-type FV scheme for the shallow
water equations.
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Figure 26. Free surface elevation of the CADAM test case obtained at times t ∈ {0.5, 1.0, 2.5, 4.0, 6.0, 8.0}. Right bottom
figure also depicts the MPI partition obtained using METIS and used to run the test on 2400 CPU cores of SuperMUC-
NG supercomputer.
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Figure 27. Time evolution of the free surface at wave gauges G1, G3, G4, G5, G7, G8 (from left top to right bottom) for
CADAM benchmark. Hybrid FV/FE scheme applied to the shallow water equations run in 2400 CPU cores (blue line);
experimental results of Fraccarollo and Toro [102] (squares); explicit Godunov-type finite volume scheme (red line); fully
nonhydrostatic 3D SPH scheme [106] (black dashed line); 3D diffuse interface method [104] (black line).
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Table 6. Coordinates of the gauges G1–G8 of the CADAM test case.

Gauge G1 G3 G4 G5 G6 G7 G8

x [m] 1.59 4.24 5.74 6.74 6.65 6.56 7.07

y [m] 0.69 0.69 0.69 0.72 0.80 0.89 1.22

6. Conclusions

This paper presents a massively parallel implementation of a novel and versatile
family of pressure-based staggered semi-implicit hybrid finite volume/finite element
schemes for computational fluid dynamics using the MPI standard. The proposed hybrid
FV/FE scheme can be applied to a wide range of incompressible flows [28,29], weakly
compressible low Mach number flows [30], compressible all Mach number flows [31] as
well as to the shallow water equations describing geophysical free surface flows [74].

The parallelization of the scheme, as well as the distribution of data and workload,
is carried out using MPI in combination with spatial domain decomposition. For general
unstructured meshes, we use the standard METIS software package [59] to distribute
the spatial domain onto the various MPI ranks. While MPI parallelization via domain
decomposition is straightforward for the explicit finite volume part of the hybrid FV/FE
scheme, special care is needed concerning the efficient parallel solution of the implicit
pressure system via finite elements. Since the linear algebraic systems that are generated
by the finite element discretization of the pressure equation are always symmetric and
positive definite, throughout this paper, we make use of a matrix-free implementation of
the conjugate gradient (CG) method, which allows an efficient and almost straightforward
parallel implementation of the matrix-vector products that are needed by the matrix-free CG
method. The structure of the resulting parallel implicit solver is in each CG iteration similar
to one of a parallel explicit scheme, with MPI data transfer via a layer of shadow/halo
zones around each MPI rank. The only bottleneck is the global communication needed
for the exchange of the scalar norm of the residual in the CG algorithm, but which is
the least global communication effort that one can imagine in implicit pressure-based
solvers. Following this parallel programming paradigm, the code can be run on modern
massively parallel distributed memory supercomputers. To validate the efficiency of the
parallel implementation, a strong scaling test has been performed for the three-dimensional
Taylor-Green vortex problem up to 4096 CPU cores. For sufficiently large problem sizes,
the total MPI efficiency was still about 60% even on 4096 CPU cores for the complete
semi-implicit hybrid FV/FE algorithm. The largest simulation shown in this paper was the
3D Taylor-Green vortex, run on 32,768 CPU cores and 671 million tetrahedral elements.

The algorithm has been tested on a wide range of test cases, ranging from incompress-
ible flows over weakly compressible low Mach number flows up to compressible flows
with shock waves and free-surface flows described by the shallow water equations.

Future work will concern the extension of the present parallel semi-implicit hybrid
FV/FE method to more complex PDE systems, like the MHD equations [107], the GPR
model of continuum mechanics [108–110], as well as to first order hyperbolic reformu-
lations of nonlinear dispersive systems [111–113]. We will also consider fluid-structure
interaction problems (FSI) on moving meshes via a direct Arbitrary-Lagrangian-Eulerian
(ALE) approach on moving conforming simplex meshes [114,115].
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96. Yelash, L.; Müller, A.; Lukáčová-Medvid’ová, M.; Giraldo, F.; Wirth, V. Adaptive discontinuous evolution Galerkin method for

dry atmospheric flow. J. Comput. Phys. 2014, 268, 106–133. [CrossRef]
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