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Abstract: Most of the mechanical dynamic systems are subjected to parametric uncertainty, un-
modeled dynamics, and undesired external vibrating disturbances while are motion controlled. In
this regard, new adaptive and robust, advanced control theories have been developed to efficiently
regulate the motion trajectories of these dynamic systems while dealing with several kinds of variable
disturbances. In this work, a novel adaptive robust neural control design approach for efficient
motion trajectory tracking control tasks for a considerably disturbed non-linear under-actuated
quadrotor system is introduced. Self-adaptive disturbance signal modeling based on Taylor-series
expansions to handle dynamic uncertainty is adopted. Dynamic compensators of planned motion
tracking errors are then used for designing a baseline controller with adaptive capabilities provided
by three layers B-spline artificial neural networks (Bs-ANN). In the presented adaptive robust control
scheme, measurements of position signals are only required. Moreover, real-time accurate estima-
tion of time-varying disturbances and time derivatives of error signals are unnecessary. Integral
reconstructors of velocity error signals are properly integrated in the output error signal feedback
control scheme. In addition, the appropriate combination of several mathematical tools, such as
particle swarm optimization (PSO), Bézier polynomials, artificial neural networks, and Taylor-series
expansions, are advantageously exploited in the proposed control design perspective. In this fashion,
the present contribution introduces a new adaptive desired motion tracking control solution based on
B-spline neural networks, along with dynamic tracking error compensators for quadrotor non-linear
systems. Several numeric experiments were performed to assess and highlight the effectiveness of the
adaptive robust motion tracking control for a quadrotor unmanned aerial vehicle while subjected to
undesired vibrating disturbances. Experiments include important scenarios that commonly face the
quadrotors as path and trajectory tracking, take-off and landing, variations of the quadrotor nominal
mass and basic navigation. Obtained results evidence a satisfactory quadrotor motion control while
acceptable attenuation levels of vibrating disturbances are exhibited.

Keywords: quadrotor UAV; artificial neural networks; robust control; Taylor series; B-splines; particle
swarm optimization

1. Introduction

It is known that, in motion control systems, it is required that the system move to
match some desired features of acceleration, velocity, position, or a combination of them.
Unmanned aerial vehicles (UAVs) are dynamic systems where the controlled motion is
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fundamental to complete specific applications. Recently, diverse types of UAVs vehicles
have been developed, with fixed-wing unmanned aerial vehicles (FW-UAVs) being the
most common and most developed. These aircraft are similar to passenger aircraft, with
a pair of wings to provide lift, a propellant system to provide thrust, and aerodynamic
surfaces to control the motion. Their efficiency is higher compared to other UAVs, allowing
it to perform long flights. Nevertheless, their indoors use is exclude since they do not
have the ability to hovering and can not turn at reduced distances [1]. For their part,
rotary-wing unmanned aerial vehicles (RW-UAVs) have various configurations including
the conventional helicopter, the coaxial helicopter, and multi-rotors, which can sustain
hover flight and take-off-landing vertically (VTOL). The FW-UAVs and RW-UAVs are the
classic configurations most used in the applications assigned to unmanned aerial vehicles.
Among the main ones are surveillance, monitoring, photography, inspection, and cargo
transportation [2], with RW-UAVs having more civil applications than FW-UAVs [3]. On
the other hand, technological advances have also allowed the development of new UAV
configurations, such as bio-inspired flapping-wing unmanned aerial vehicles (Fl-UAV) [4]
and lighter-than-air unmanned aerial vehicles, (LtA-UAVs) [5]. The four rotor helicopter or
quadrotor is the most common rotorcraft platform in the research community due to its
properties of under-actuation, low construction cost, symmetrical structure, high coupling
non-linear dynamics, and capabilities of VTOL and hovering.

In the literature, several important contributions have been reported for controlling
the quadrotor dynamics. Motion controllers based on theories, such as sliding modes [6],
active disturbance rejection [7], backstepping [8], Lyapunov functions [9], H∞ [10], adaptive
controllers based on L1 [11,12], fuzzy logic [13], neural networks [14], model predictive
control [15], or combination of them. Since, to some, drawbacks are inherent to each
control strategy, such as high-frequency control actions, unmeasurable system information
required, high dependency of mathematical models, high-gain feedback, and high sensi-
bility against exogenous disturbances, some researchers have been properly exploited the
properties of adaptive and robust control for designing advanced control methodologies.

In contrast with conventional control, intelligent control techniques are able to effi-
ciently deal with incomplete information of many dynamic systems and its environment
within a wide range of operational conditions. Then, adaptive control strategies represent
a potential alternative for improving the performance of robust motion control schemes. In
the literature, adaptive control stands for a class of control techniques used for compensat-
ing parameter changes, disturbances, and unknown changes in the system, by adaptations
based on observations [16]. Relevant and recently research have been inspired by the quali-
ties of adaptive and robust control schemes for quadrotor motion control. Authors in [17]
introduce a model reference adaptive control scheme for a four-rotor helicopter in order
to increase robustness against parametric uncertainty. A baseline controller is proposed
for trajectory tracking task which is further improved by including adaptive capabilities.
Similarly, switched adaptive controller are properly introduced in [18,19]. Here, controllers
are suitably designed for controlling a quadrotor in the presence of unknown external
disturbances and variations in the mass and inertia of the quadrotor due to unknown
payload. Strict simulation scenarios are brought out to validate their proposal.

On the other hand, another adaptive control scheme is presented by authors in [20],
where the quadrotor attitude is stabilized by an adaptive multi-variable finite-time algo-
rithm. The controller design is carried out by using an improved super-twisting technique.
Control methodologies designed based on the central ideas of adaptive sliding mode
control are presented in [21,22]. In [21], a disturbance observer (DO) is integrated in control
design to compensate external disturbances. The tune of the gain of sliding surface is
accomplished via neural networks. In contrast, authors in [22] implement an adaptive
scheme by proposing a super twisting controller along with Lyapunov-based function
methodology and discontinuous projection operators. The research in [23] presents a
fuzzy adaptive linear active disturbance rejection controller. The fuzzy framework is setup



Mathematics 2021, 9, 2367 3 of 28

successfully to compute the observer bandwidth, controller bandwidth, as well as the
control compensation factor.

Considering the aforementioned information, in this paper, authors introduce a novel
and efficient adaptive robust motion tracking control for quadrotor non-linear systems.
The main differences with others proposals reported in the literature are enlisted below:

1. Only position measurements are required for feedback control;
2. High-gain feedback is reduced by using B-spline artificial neural networks;
3. Reduced amount of control parameters needs to be tuned;
4. The use of disturbance observers is unnecessary;
5. The use of the tracking error derivatives is avoided in the controller design;
6. Offline training of B-spline artificial neural networks is performed by particle swarm

optimization;
7. Low dependency of the quadrotor non-linear mathematical model;
8. Robustness against a class of external disturbances, including undesirable vibrating

forces and torques.

The content of this paper is summarized as follows: the quadrotor non-linear and
high coupling mathematical model is presented in Section 2. In Section 3, the design
procedure of the novel robust and adaptive controller is introduced. Subsequently, some
simulation experiments are presented in Section 4 in order to highlight the performance
of the introduced methodology. Finally, some conclusions, remarks, and future work are
mentioned in conclusions section.

2. Mathematical Quadrotor Model

A quadrotor is an aerial under-actuated mechanical system with four independent
variable speed rotors. It has six degrees of freedom which are controlled by four control
inputs: a main thrust force (u), and three torques (rolling τφ, pitching τθ , and yawing τψ).
Lateral, longitudinal, and vertical motion are achieved by a suitable combination of the
control inputs. The main force, produced by the total sum of the thrust provided by each
individual rotor, allows the quadrotor to take-off and land, as well as hover. Meanwhile,
control torques are generated when there exists a difference of the produced forces by two
pair of rotors: first pair rotating clockwise is formed by rotors 1 and 3, and the second by 2
and 4 rotors spinning in the opposite direction. Different from conventional helicopters it
is not required a mechanical pitch system for the rotor blades.

The Euler–Lagrange and Newton–Euler formalisms are usually used to obtain the
quadrotor dynamics described by a set of highly coupled non-linear differential equations.
The quadrotor pose is determined by considering a body-fixed frame with X′, Y′, and
Z′ axes coincident with the centre of mass, and a global inertial coordinate system, or
earth-fixed frame, with X, Y, and Z axes, as shown in Figure 1. By nature the quadrotor is
an unstable system, and during outdoor and indoor flying, quadrotors might be subjected
to undesirable vibrating disturbances. Thus, it should be designed efficient force and
torque controllers to perform a proper motion tracking in the three-dimensional space.

The control inputs are related with each individual rotor by the following expressions

u =
4

∑
i=1

Fi

τψ =
4

∑
i=1

τMi

τθ =(F3 − F1)l

τφ =(F2 − F4)l (1)

here l stands for the distance measured from a rotor axis to the quadrotor centre of mass,
and τMi is the couple developed by motor Mi. Fi and τMi are functions of the rotor angular
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velocities. From Equation (1) it is appreciated that the quadrotor motion is possible by
suitably combining the control inputs.

Figure 1. Schematic of a non-linear quadrotor system [24].

In this work, the non-linear dynamic model of the quadrotor is derived by means
of the Euler–Lagrange formalism. In order to describe the system, let us consider the
following vector of generalized coordinates

q = [x y z φ θ ψ]> ∈ R6 (2)

the centre of mass position is represented by the variables x, y, and z, and the quadrotor
attitude is described by the set of Euler roll φ, pitch θ, and yaw ψ angles.

The Lagrangian is defined by the difference of the kinetic and potential energy, so
we get

L =
1
2

λ̇Mλ̇
>
+

1
2

η̇>Jη̇− λMG (3)

M indicates a diagonal mass matrix, J is the inertia tensor, and G = [0 0 g]> denotes
gravity terms. Henceforth, consider λ = [x y z]> and η = [φ θ ψ]> as the position and
attitude vectors, both expressed in the earth-fixed reference frame.

For controller design, the non-linear quadrotor dynamics can be written as

mẍ = −u sin θ + ξx

mÿ = u cos θ sin φ + ξy

mz̈ = u cos θ cos φ−mg + ξz (4)

unknown time-varying disturbances are represented by ξx, ξy, and ξz. On the other hand,
disturbed rotational dynamics are given by

Jη̈ = τη − C(η̇, η)η̇+ ξη (5)

with

J =

 −Ixsθ 0 Ix
(Iy − Iz)cθcφsφ Iyc2

φ + Izs2
φ 0

Izc2
θc2

φ + Iyc2
θs2

φ + Ixs2
θ (Iy − Iz)cθcφsφ −Ixsθ


C(η̇, η) =

c11 c12 c13
c21 c22 c23
c31 c32 c33

 (6)
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and

c11 = (Iz − Iy)ψ̇sφcφc2
θ

c12 = −Ixψ̇cθ + Iy(θ̇sφcφ + ψ̇cθs2
φ − ψ̇cθc2

φ)− Iz(ψ̇cθs2
φ − ψ̇cθc2

φ + θ̇sφcφ)

c13 = 0

c21 = −Ixψ̇sθcθ + Iyψ̇sθcθs2
φ + Izψ̇sθcθc2

φ

c22 = (Iz − Iy)φ̇sφcφ

c23 = Ixψ̇cθ + Iy(−θ̇sφcφ + ψ̇cθc2
φ − ψ̇cθs2

φ) + Iz(ψ̇cθs2
φ − ψ̇cθc2

φ + θ̇sφcφ)

c31 = θ̇ Ixsθcθ + Iy(−θ̇sθcθs2
φ + φ̇sφcφc2

θ)− Iz(θ̇sθcθc2
φ + φ̇sφcφc2

θ)

c32 = Ixψ̇sθcθ − Iy(θ̇sθsφcφ + φ̇cθs2
φ − φ̇cθc2

φ + ψ̇sθcθs2
φ) + Iz(φ̇cθs2

φ − φ̇cθc2
φ − ψ̇sθcθc2

φ + θ̇sθsφcφ)

c33 = −Ix θ̇cθ + (Iy − Iz)(ψ̇c2
θsφcφ)

For purposes of simplicity of the model representation, the shorthand notation for
trigonometric functions is adopted [25], where sb = sin b and ca = cos a. On the other
hand, the control and disturbance torque vectors are denoted by τη = [τφ τθ τψ]T and
ξη = [ξφ ξθ ξψ]T , respectively.

Since the quadrotor is an under-actuated non-linear system, two synthetic controllers
are designed for tracking tasks of some desired reference position trajectory on the plane.
For control design purposes, it is considered the output feedback errors given as follows

eµ = µ− µ? (7)

for µ = x, y, z, φ, θ, ψ. The superscript ? stands for the desired reference trajectory. Moreover,
in order to perform a proper motion control in X and Y directions, the desired pitch θ? and
roll φ? references are computed from Equation (4) as follows

θ? = sin−1
(
− 1

u
mvx

)
φ? = sin−1

(
1

u cos θ
mvy

)
(8)

To solve adequately the under-actuation problem, the angular dynamics needs to be
faster than translational dynamics. In this way, the proposed motion controllers should be
capable to lead the quadrotor to stable scenarios while performing a proper tracking of the
planned references.

3. Syntheses of an Adaptive Robust Motion Controller

The syntheses of a novel adaptive robust motion controller is introduced in this section
by using the robust control scheme introduced by the authors in [24]. In this proposal, it
is improved the performance of the control scheme by reducing the high-gain effects and
easing the tuning of the control parameters computed online by using the Bs-ANN.

3.1. Dynamic Compensators for Robust Control Design

In order to realize the stable control design, the quadrotor disturbed tracking error
dynamics from Equations (4) and (5) are simplified as follows

ëµ = vµ + ξµ(t) (9)

Moreover, ξµ(t) are assumed to be bounded time-varying disturbance signals locally
approximated into a self-adaptive small interval of time around a given time instant t0 > 0,
say [t0, t0 + ε], by r-th order Taylor polynomials as
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ξµ(t) ≈
r

∑
n=0

ξ
(n)
µ (t0)

n!
(t− t0)

n =
r

∑
n=0

σn,µ(t− t0)
n (10)

where the superscript (n) stands for n-th order time derivative. Furthermore, to avoid
velocity measurements, from Equation (9) structural estimates—known as integral recon-
structors as well [26]—for time derivatives of velocity tracking errors are computed by

̂̇eµ =
∫ t

t0

vµ dt (11)

Here, initial conditions of the non-linear dynamic system, as well as the polynomial
disturbance signal parameters are assumed to be completely unknown. Then, the poly-
nomial relationship between integral reconstructors ̂̇eµ and actual velocity tracking error
signals ėµ is given by

ėµ = ̂̇eµ +
r+1

∑
n=0

αn,µ(t− t0)
n (12)

where parameters αn,µ are assumed to be unknown as well.
In this fashion, the following family of controllers based on dynamic compensators to

actively compensate polynomial disturbances can be synthesized as follows

vµ = −βr+3,µ̂̇eµ − βr+2,µeµ − δr+1,µ (13)

with

δ̇0 = β0,µeµ

δ̇1 = δ0,µ + β1,µeµ

...

δ̇r = δr−1,µ + βr,µeµ

δ̇r+1,µ = δr,µ + βr+1,µeµ (14)

Substitution of Equation (13) into Equation (9), closed-loop tracking error dynamics is
then described by

e(r+4)
µ +

r+3

∑
n=0

βn,µe(n)µ = 0 (15)

Thus, closed-loop system stability criteria is fulfilled by selecting the control gains βk,µ
for k = 0, 1, . . . , r + 3, such a way the characteristic polynomial of Equation (15) is stable
(Hurwitz). By using the family of Hurwitz polynomials

PCLµ
(s) =

(
s + γµ

)r+4, γµ > 0 (16)

the control design parameters can be then computed by

βk,µ =
(r + 4)!

k!(r + 4− k)!
γr+4−k

µ (17)

In the present study, three layers B-spline artificial neural networks and particle swarm
optimization are properly implemented to compute adaptive control gains in order to avoid
possible undesirable high-gain control effects. Furthermore, first order Taylor polynomial
expansions for approximation of disturbance signals are selected. Nevertheless, higher
order polynomial expansions can be also chosen for applications where a much better
approximation of disturbances is demanded. In this work, it is shown that first order
polynomial disturbance approximations yield an acceptable motion trajectory tracking
performance under significantly perturbed operating conditions.
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Thus, from Equation (10), Taylor polynomial expansions for disturbance signals are
described in this work as

ξµ(t) ≈ σ1,µ + σ2,µ(t− t0) (18)

where coefficients σ1,µ and σ2,µ are assumed to be uncertain. Moreover, the structural
estimated variables and actual velocity tracking error signals are related by

ėµ = ̂̇eµ + α0,µ(t− t0) + α1,µ(t− t0)
2 (19)

where parameters αi,µ are unknown.
In this sense, we proposed the following family of auxiliary controllers for robust

quadrotor motion control

vµ = −β4,µ̂̇eµ − β3,µeµ − β2,µδ1,µ − β1,µδ2,µ − β0,µδ3,µ (20)

with

δ̇1,µ = eµ

δ̇2µ, = δ1,µ

δ̇3,µ = δ2,µ (21)

Thence, from Equations (9) and (20) the closed-loop error dynamics is governed by

e(5)µ + β4,µe(4)µ + β3,µe(3)µ + β2,µ ë + β1,µ ė + β0,µeµ = 0 (22)

The control gains βk,µ for k = 0, 1, . . . , 4 should be properly selected in order to the
associated characteristic polynomials

PCLµ
(s) = s5 + β4,µs4 + β3,µs3 + β2,µs2 + β1,µs + β0,µ (23)

are Hurwitz polynomials. In this fashion, reference trajectory tracking can be achieved:

lim
t→∞

eµ = 0 ⇒ lim
t→∞

µ = µ? (24)

with µ and µ? standing for the real and planned references for translational and rotational
trajectories, respectively.

Notice from (5) that the rotational dynamic model can be also be expressed as follows:

η̈ = J−1(τη − C(η̇, η)η̇
)
+ J−1ξη (25)

which can be expressed matching the structure in (9). Therefore, from (21) it is observed that
the synthetic controllers drive the system closed-loop dynamics. Finally, by analyzing the
full non-linear dynamics, the control inputs nature and the robustness of the synthesized
robust scheme, a suitable selection of the control inputs is given as follows

u =
1

cos φ cos θ
(mvz + mg)

τψ = Izvψ

τθ = Iyvθ

τφ = Ixvφ (26)

3.2. Adaptive Outline for Control Purposes

Adaptive control is a viable solution to avoid the use high-gain feedback or high
frequency switching control actions for providing stability to many dynamic systems
subjected to parametric uncertainty, unmodeled dynamics, and external disturbances [27].
In this work, we use a class of artificial neural networks for performing the tuning process
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of the control gains. The B-spline artificial neural networks are suitably integrated into
adaptive motion controllers, where the tracking errors and their derivatives are used as
the inputs of each network. The Bs-ANN functioning is based on the constant learning
process of the physically system variables, therefore, have been successfully used to deal
with system non-linear terms and uncertainty [28].

A B-spline function is a polynomial mapping defined by its extremes which uses a
linear combination of the mono-variable and multi-variable basis functions. The B-spline
networks, as depicted in Figure 2, are associative networks capable to adjust iteratively
their synaptic weights for reproducing a specific function. The author in [29] proposes the
following output:

y = aw, w = [w1 w2 . . . wh]
T , a = [a1 a2 . . . ah] (27)

where wq y aq are the q-th weight and the q-th basis function input, respectively; the
quantity of synaptic weights is denoted by h. Each individual network output y(t) is used
in this work for computing dynamically the control gains. In this study, we introduce
different experiments where the output of the neural networks differs: in experiments 1,
2, 4, and 5, it is computed just one control parameter while in experiment 3, three control
parameters are computed by the adaptive scheme.

Input vector Basis 
functions

Weight vector Output vector

Figure 2. Three layer B-spline artificial neural network structure, Bs-ANN.

The actual output vector value minus the desired value defines the minimization
error, which is used as the key term for the learning process. In this work, the following
instantaneous learning rule has been adopted [30]

wi(t) = wi(t− 1) +
`ei(t)
‖ a(t) ‖2

2
ai(t) (28)

Here, ` represents the learning rate and ei(t) stands for the instantaneous output
error. The adaptive process is achieved by the continuous training and the updating of
the synaptic weights values considering the evolution of the inputs values. The Bs-ANN
internal layer is constituted just by the basis functions, where the limits should be properly
bounded by the adequate selection of the knot vector and basis function shape. In this
proposal, four third order basis functions are employed for the adaptive scheme: two
concerning the tracking error and two for the error derivative, as shown in Figure 2. It is
important to mention that offline training of the Bs-ANN is performed for finding parameters
during the adaptive scheme design process, in order to carry out the quadrotor to stable
scenarios at the begging of the online training. To select properly these parameters, several
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quadrotor operational conditions are considered. The training data includes the transient and
steady state response of the system, within the advantages of the proposed neural strategy, is
that these data can come from an exact or approximate mathematical model or otherwise be
measured data from the real system (inputs, outputs, control signals, etc.).

Thereafter, the control structure is summarized as follows: firstly, only the quadrotor
position measurements are included as a feedback in order to determine the tracking
errors. Later, integral reconstructors are suitably integrated for computation of the error
derivatives which are used as inputs in the adaptive scheme for computing the control
parameters and gains. Posteriorly, the virtual controllers vx and vy within the robust
controller block are used for solving the under-actuation problem. Finally, the force and
torque control inputs are injected to the system as variations of angular velocity of their
four rotors, as portrayed in Figure 3.

Quadrotor

Bs-ANN

Robust

controller

Reference PositionTracking error

Dynamic

 gains

Control 

inputs

+
-

Error 

derivative

Integral

reconstructors

Figure 3. General structure of the adaptive robust motion control scheme.

4. Validation through Simulation Experiments

In this section, we investigate the applicability of the adaptive robust scheme for
enhancing the tracking performance of a quadrotor non-linear system. Thus, several experi-
ments are performed for an aerial vehicle numerically simulated. It is important to mention
that the aim of the experiments is to portray some of the main contributions and advantages
of implementing the proposed motion control strategy. Additionally, the experiments will
demonstrate if the implementation of the proposal can be successfully extended for motion
control of different types of autonomous vehicles. During the experiments, it is considered
an aerial vehicle characterized by the set of parameters presented in Table 1.

Table 1. Parameters of the 6DOF non-linear quadrotor system.

Parameter Units Values

m kg 0.98
g m/s2 9.81
l m 0.25
Jx kg m2 0.012450
Jy kg m2 0.012450
Jz kg m2 0.024752

4.1. Polynomial Interpolation for Quadrotor Navigation

Bézier curves have been used widely and properly for path smoothing in robot
navigation [31] and in motion control schemes for electric motors [32] and mechanical
systems [33]. In the former, curves are expressed, such as parametric equations, where
the time t is used to determine the values of coordinate pairs of (x, y) points graphed
on the plane. In this work, a cubic Bézier curve is used and is defined by end points:
(X1, Y1) and (X4, Y4), and control points: (X2, Y2) and (X3, Y3) such illustrated in Figure 4.
In the second case, Bézier interpolation polynomials are suitably configured as position or
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velocity trajectory reference profiles, in order to soft the transition between two operation
points for electromechanical and mechanical systems.

It is worthwhile to note that, due to its structure and after a proper selection of
endpoints and control points, Bézier curves can be successfully implemented in a quadrotor
to online computing the navigation path in cluttered environments, in order to ensure
adequate obstacle avoidance manoeuvres while accomplishing a specific mission. On the
other hand, it should be noted that derivatives of the trajectory references are not available
in advance, and, in consequence, the proposed approach in this paper can be effectively
implemented for this experiment.

Figure 4. Cubic Bézier curve defined by a couple of pair of endpoints and control points.

During the first experiment, the quadrotor is tasked to perform the following: soft
take-off to a height of 3 m; navigation through specific operation points in the space; and
finally, soft landing, all of them by means of Bézier curves. It is worthwhile to note that
the use of these curves is a viable strategy for solving properly the navigation and obstacle
avoidance problems. Thus, in order to obtain smooth transitions between initial and final
vertical operation points, the following motion scheme is adopted for take-off and landing tasks:

z? =


Γ0 0 ≤ t < T1

Γ0 + (Γm − Γ0)Bz(t, T1, T2) T1 ≤ t < T2
Γm T2 ≤ t < T3

Γm + (Γ0 − Γm)Bz(t, T3, T4) T3 ≤ t < T4
Γ0 t > T4

(29)

where Γ0 = 0 and Γ f = 2, given in meters, stand for the desired initial and maximum
vertical positions. The time values given in seconds are as follows: T1 = 1, T2 = 3, T3 = 37
and T4 = 40. In addition, Bz is a Bézier polynomial [32] defined as

Bz(t, Ti, Tf ) =
n

∑
k=0

rk

(
t− Ti

Tf − Ti

)k

(30)

with Ti and Tf as the initial and final transition times. Moreover, n = 6, and r1 = 252,
r2 = 1050, r3 = 1800, r4 = 1575, r5 = 700, r6 = 126.

Subsequently, after the take-off, the rotorcraft is carry to desired positions in the
horizontal plane, where the third order parametric equations used for navigation are
defined as follows:

x? = (1− T )3X1 + 3(1− T )2(T X2) + 3(1− T )(T 2X3) + T 3X4

y? = (1− T )3Y1 + 3(1− T )2(T Y2) + 3(1− T )(T 2Y3) + T 3Y4 (31)
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Here, the values of the endpoints and control points are selected for performing a
continuous navigation according to the parameters summarized in Table 2. Observe that
four Bézier curves are used to define the whole navigation path and which is segmented
for purposes of mathematical description.

Table 2. Control and endpoint values for the Bézier curves.

Segment Time Lapse [s] T X1 Y1 X2 Y2 X3 Y3 X4 Y4

1 0 ≤ t < 10 t
10 0 0 1 0 1 2 2 2

2 10 ≤ t < 20 t
10 − 1 2 2 3 2 3 4 4 4

3 20 ≤ t < 30 t
10 − 2 4 4 5 4 5 2 6 2

4 t ≥ 30 t
10 − 3 6 2 7 2 7 0 8 0

On the other hand, external vibrating disturbance forces have been included after
12 s for robustness assessment purposes of the introduced motion control scheme, and are
given by

ξ j = Aj sin(ωjt) (32)

with j = x, y, z, Ax = Ay = 1 N, Az = 2 N, and ωx = ωy = ωz = 10 rad/s.
In Figure 5, it is presented the quadrotor flight performance by implementing the pro-

posed controller, where a proper path following is exhibited. Throughout the manuscript,
the use of solid and dashed lines for representing real and desired trajectories is adopted,
respectively. As observed in Figure 6, the Bézier curves are successfully implemented for
navigation between operation positions, and as a consequence of the proposed controller, a
proper trajectory tracking of the planned references is achieved. Moreover, according to
this figure, angular tracking of the online computed references φ? and θ? is achieved in
spite of there is not information about the derivatives of these references since a properly
integration of integral reconstructors and neural networks within the robust motion control
approach is achieved.

Furthermore, it is evident the satisfactory performance of the quadrotor tracking
motion control scheme even though the quadrotor is subjected to undesired harmonic forces.
Notice that regulation around ψ? = 0 rad is performed in this experiment. Additionally,
Figure 7 portrays the controlled vertical quadrotor dynamics, the height control, and yaw
motion regulation. From this figure, the utility of the Bézier polynomial curve, where a soft
take-off and landing are achieved thanks to the mathematical framework introduced by
Equations (30) and (52) is appreciated. In the next section, the ground effect is included
within the analysis in order to assess the control scheme robustness for controlling the
quadrotor vertical motion.
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Figure 5. Quadrotor navigation on the plane and space.
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Figure 7. Vertical motion tracking for experiment 1.

For this experiment the following desired Hurwitz polynomial has been selected,

Pd(s) = (s + γ2)5 (33)

where, in order to ensure close-loop stability and the properly tracking of the planned
trajectory, the control gains in (23) should match the following

β4i = 5γi

β3i = 10γ2
i

β2i = 10γ3
i

β1i = 5γ4
i

β0i = γ5
i (34)
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where γi, for i = x , y , z , φ , θ , ψ, is the unique online computed control parameter. To
improve and ease the parameter selection process in this experiment, each of these control
parameters are suitably derived by the adaptive framework introduced in Figure 2, where
the output of each individual neural network is the value for the control parameter γi. As it
is presented in Figure 8, dynamical updating, as well as a successful parameter computation
of the control gains, is achieved by using the adaptive B-spline artificial neural networks.
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Figure 8. Adaptive γi control parameters, for i = x, y, z.

In Figure 9, it has been included results considering both perturbed and unperturbed
cases in order to contrast the compensation action of the adaptive robust control scheme.
It is worthwhile to note, from Figure 9b, that it is possible to track, satisfactorily, the
references, as well as being demonstrated in Figure 9a. Nevertheless, the vibrating dis-
turbance compensation is not present in the unperturbed case. By analyzing Figure 9b, it
is evident the reachability of the control commands which benefits the non-saturation of
the actuators. It is also important to mention that similarly as the oscillations due to the
control compensation action, in Figure 6 it is appreciated the compensation of the vibrating
disturbance forces affecting translational dynamics since are related with the rotational
trajectory tracking trough the under-actuation property.

According to the results, the proposed control method is robust and able to efficiently
reduce induced oscillations. Additionally, it is demonstrated that Bézier polynomial inter-
polation can be widely and satisfactorily exploited in quadrotor motion control systems:
path and trajectory tracking. The experiment presented in this section illustrates that the
complex quadrotor non-linear system is motion controlled in an acceptable way. As no
information is required about derivatives of the trajectory references and from the external
disturbances the control process is simplified significantly.
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Figure 9. Computed control inputs in experiment 1. (a) Unperturbed. (b) Perturbed.

4.2. Improved Robust Quadrotor Autonomous Landing

One of the most essential requirements for a VTOL vehicle is to ensuring a safe
landing flight phase. Rotorcraft are subjected to significant variations in motion control
during take-off and landing stages due to the increase in lift force when they are close
to the ground. Such phenomena are known as the ground effect [34]. The aim of this
experiment is to assess the capabilities of the proposed controller for dealing with the
ground effect in simulation. Therefore, the Cheeseman and Bennett modified ground effect
model, proposed for quadrotors by authors in [35], are used, which state the following:
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u
ur

= 1− ρ

(
r

4zr

)2
(35)

where the ratio u
ur

is equal to one outside of the ground-effect. In addition, r is the propeller
radius, zr represents the distance from the rotor to the ground, u and ur is the input thrust
commanded and the generated real thrust, respectively. Notice, the third expression of
equations set (4) is affected by the introduced model representation of the ground effect
phenomenon, where it is evident that

ur = u + urρ

(
r

4zr

)2
(36)

and referring to the above equation and using the real generated input thrust in the nominal
mathematical model it yields the following

mz̈ = ur cos θ cos φ−mg (37)

or

mz̈ = u cos θ cos φ + urρ cos θ cos φ

(
r

4zr

)2
−mg (38)

Thereafter, without loss of generality

mz̈ = u cos θ cos φ−mg + ξz (39)

with

ξz = urρ cos θ cos φ

(
r

4zr

)2
(40)

where ξz should be compensated by the adaptive robust motion control approach. In
addition, the following data have been used during the simulation: ρ = 10, r = 0.1 m, and
zr = 0.1 m.

On the other hand, in Figure 10 the quadrotor landing is illustrated. Here, it is used
two different values for the learning rate ` and for the weighting vector for vertical motion
wz = [w1,z , w2,z , w3,z , w4,z], in order to illustrate two cases where the effect of increasing
or decreasing the parameter values within the adaptive framework defines the quadrotor
operation. Moreover, it is observed that a better tracking performance of the closed-loop
system is achieved when a suitably selection of the parameters is done. In Table 3 are
showcased the respective values for the aforementioned parameters in each case.

It is relevant to mention that in this experiment it is adopted the same set up outlined
by expressions (33) and (34) defined in the previous section. Thus, as corroborated by
the dynamic behavior of γz in Figure 10, online computation of the control parameters
is accomplished dynamically by the adaptive framework. From the same figure, it is
also appreciated that the magnitude of the control effort is modified in function of the
disturbance force exerted as a consequence of the ground effect. Nevertheless, a significant
deviation of the actual motion from the planned reference is observed in the first case. In
contrast, in the second case, acceptable attenuation levels of induced oscillations is attained
by a proper selection of the parameters presented in Table 3.
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Figure 10. Quadrotor autonomous landing under the ground effect phenomenon: (a) First case.
(b) Second case.

The key for a successfully performance of the adaptive scheme depends on a properly
selection of the adaptive parameters during the design process. Note that the selection of
the initial weights within the offline training procedure, different operational conditions
can be take into account for improving the initial system response, and, in this way,
leading the quadrotor non-linear system to stable scenarios. In the next section, a different
setup is introduced for selection of the control parameters: a desired Hurwitz polynomial
where three parameters will be computed and a optimized selection by means of particle
swarm theory.

Table 3. Parameters for the adaptive framework in experiment 2.

Case `z w1,z w2,z w3,z w4,z

First 5 × 10−9 1 1 2 1
Second 5 × 10−4 30 20 3 3
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4.3. Bs-ANN Offline Training by Particle Swarm Optimization

Inspired by the social behavior observed in fish schools and bird flocks, particle
swarm optimization (PSO) has been proposed as an effective solution for solving a wide
range of optimization problems [36]. The use of intelligent agents, called particles, allows
this algorithm to iteratively find the best solution on a defined space of searching. For
this reason, potentials of PSO has been properly exploited in different engineering and
researching applications, such as tuning of automatic controllers [37] and artificial neural
networks training [38]. In the second experiment, the PSO is used for the offline training of
the BsNN (selection of the initial weights). The training process is performed while the
system is commanded to reach a step reference for vertical translational motion, where
the closed-loop response information is used for designing the objective function fo to
be minimized.

Figure 11 portrays the closed-loop response of a second order system. Here, it can
be observed that there exist several parameters can be used in the design of the objective
function in order to minimize the tracking error and the control efforts: tr, ts, Mp, and
tp stand for the rise time, settling time, maximum peak, or overshoot and peak time,
respectively.

0 0.2 0.4 0.6 0.8 1

-1

0

1

2

3

Figure 11. Time response of a closed-loop controlled second order dynamical system.

In this study, only the overshoot data are used as design parameter of the following
objective function

fo = ε
(

Mp + ITAE
)
+ κ(ISCI) (41)

where the coefficients ε = 0.5 and κ = 0.1 penalize the error and the magnitude of the
control inputs, respectively. On the other hand, the integral time absolute error (ITAE)
index is computed as follows

ITAE =
∫ t

0
t|ez| dt (42)

here ez is the tracking vertical error and t is the time variable. Additionally, the integral
squared control input (ISCI) term is introduced in Equation (43).

ISCI =
∫ t

0
u2 dt (43)

In contrast with the previous experiments, it has been selected the following
Hurwitz polynomial:

Pd(s) = (s2 + 2ζcωcs + ω2
c )

2(s + Pc) (44)
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here ωnc , ζc, Pc > 0, are the controller adjustment parameters. Therefore, concerning
Equation (22), the control gains can be selected as follows for ensuring closed-loop stability
and the properly tracking of the planned trajectory

β4z = 4ζcωc + Pc

β3z = 2ω2
c + 4ζ2

c ω2
c + 4Pcζcωc

β2z = 4ω3
c ζc + 2Pω2

c + 4Pcζ2
c ω2

c

β1z = 4Pcω3ζc + ω4
c

β0z = Pcω4
c (45)

For the third experiment, the quadrotor take-off stage is analyzed. In order to improve
and ease the tuning process, the control parameters are properly computed online by using
artificial neural networks which trained offline by a PSO framework.

In the Algorithm 1, it is presented the pseudocode for the training process, where a
simulation time of 10 seconds is adopted.

Algorithm 1: Evaluation of the objective function fo.

Input: wz = 0 // 1 × 4 weight vector
Output: fo

1 ε = 0.5, κ = 0.1, ∆t = 0.001 // constants
2 z(0) = 0, ż(0) = 0, ts = 0 // initial conditions
3 for k = 1 to s do // s = ts

∆t, ts = 10
4 Calculus of ζc ωc and Pc
5 Solution of system dynamics // by Runge-Kutta Fehlberg Numerical

method
6 ts = ts + ∆t
7 Storing e[k] = ez, u[k] = u, t[k] = ts
8 end
9 n = s

10 Get Mp // by means of stepinfo MATLAB function
11 Calculus ITAE = ∑n

1 t|e|2 ∆t
12 Calculus ISCI = ∑n

1 |u|
2 ∆t

13 Evaluation of fo

The MATLAB optimization toolbox is used for the execution of the PSO algorithm.
It is worthwhile to note that the procedure in Algorithm 1 is evaluated in each iteration
of the optimization process, in order to determine the best set of control parameters who
minimizes the objective function, which has been designed in function to the vertical
motion tracking error, as well as the control input effort. Moreover, for this simulation
experiment the PSO algorithm is configured with the dimensions of the search space
defined by the low and upper boundaries lb = −5 and ub = 5, respectively, and a swarm
size of 50 particles.

Additionally, in order to highlight the performance of the introduced novel adaptive
robust control strategy, in this section it is illustrated the applicability of offline training of
Bs-ANN neural networks by description of two relevant scenarios: in the first the offline
training is carried out for determining initial values of control parameters ζc ωc and Pc
without using the online learning. On the other hand, online training is considered for
computation of the parameters values throughout second scenario. Henceforth, we identi-
fied the scenarios, respectively, as fixed and adaptive. The yielded results are portrayed in
Figures 12 and 13.

It is worth to mention that from Figure 12 it is observed that the performance for
both scenarios looks similar. Nevertheless, the control signal efforts and the error are
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significantly decreased by using the adaptive strategy. The ISCI and the ITAE indexes are
used also for a quantitative comparison and is summarized in Table 4 for both cases in
experiment 3.
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Figure 12. Tracking motion for experiment 3: (a) First scenario. (b) Second scenario.

Table 4. Computed ISCI in experiment 3.

Gain Case ISCI ITAE

Fixed 6.4181 × 103 423.9004
Adaptive 6.4140 × 103 422.9049

It is important to point out that in first scenario it is also achieved an acceptable
performance of the introduced control approach. The tuning procedure of the control gains
in automatic control systems is not always an easy tasks since it depends on the designer
experience for selecting the control gains. Thus, after a properly setup of the PSO scheme,
it is possible to ease the tuning process where several control gains or parameters need
to be selected: five gains in the present study. Moreover, in Figure 12, we highlighted the
useful of the offline and online training process in the quadrotor motion control. Here,
large overshoot and oscillation is avoided from the the closed-loop response by an efficient
implementation of the adaptive robust motion control strategy.

On the other hand, in Figure 13, it can be appreciated the effects for using the online
training of the Bs-ANN in contrast with the fixed case utilized in the first scenario of third
experiment. According to the information presented in this figure, it is corroborated that
by using the full adaptive scheme it is possible to improve the closed-loop response of the
quadrotor system by suitably adjusting the control parameters. Notice that the introduced
control scheme, it is able to perform efficiently regulation and trajectory tracking tasks even
though there is not full knowledge of the non-linear quadrotor mathematical model, as
well as the external vibrating disturbances.



Mathematics 2021, 9, 2367 20 of 28

0 20 40 60
0.021

0.023

0.025

0.027

0 20 40 60
0.021

0.023

0.025

0.027

0 20 40 60

25

25.1

25.2

0 20 40 60

25

25.1

25.2

0 20 40 60
-1

-0.5

0

0.5

1
10-3

0 20 40 60
-1

-0.5

0

0.5

1
10-3

(a) (b)

Figure 13. Fixed and adaptive control parameters used in experiment 3: (a) First scenario. (b) Second
scenario.

4.4. Quadrotor Subjected to Wind Gust Disturbances

In this section, a Dryden wind gust model is used for the assessment of control robust-
ness. From the set of Equation (4), it is evident that in presence of induced disturbance
torques, the angular, as well as the translational trajectory tracking, will be deteriorated.
Therefore, in this experiment, the quadrotor is disturbed while it is hovering and path
following in order to simulate different scenarios which it would usually face within a
wide range of applications. Consider the wind gust mathematical model [39] given by

ξη(t) = ds
w +

n

∑
σ=1
Aσ sin(vσt + ϕσ) (46)

for η = φ, θ, ψ. Expression (46) considers that the disturbance caused by wind field
is proportional to the wind speed [39], which is described as a family of time-varying
excitations. On the other hand, vσ and ϕσ are randomly selected frequencies and phase
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shifts, respectively; n is the number of sinusoids, Aσ is the amplitude, and ds
w is a static

term for wind disturbance. Thus, the mathematical expression in (46) can be integrated in
(5) for this simulation experiment as torque disturbances ξφ, ξθ and ξψ, with n = 6 for φ
and θ, and n = 7 for ψ. Disturbance parameters are summarized in Table 5.

Table 5. Values for simulated torque disturbances.

ξη ds
w A1 . . .An v1 . . . vn ϕ1 . . .ϕn

ξφ 0.3 0.27, 0.45, 0.06, 0.45, 0.3, 0.15 π(2.5, 2, 0.4, 0.08, 0.07, 0.05) −1.2, 2.7, −9.5, 1, 0.5, 2
ξθ 0.6 0.2, 0.1, 0.4, 0.1, 0.2, 0.1 π(1.5, 2, 0.4, 0.03, 0.07, 0.05) −0.3, 1.7, −1.5, 1, 1.5, 0.3
ξψ 2 0.5, 0.725, 1, 0.5, 0.25, 0.5, 0.25 π(2.5, 2, 0.4, 0.2, 0.008, 0.07, 0.05) −3, 7, −9.5, 0, 1, 1.5, 2

Consider the following planned references for lateral and longitudinal quadrotor
motion in this experiment,

x? = 5 cos(T) + cos(3T) cos(T)

y? = 5 sin(T) + cos(3T) sin(T) (47)

with T = 0.1t, and the Bézier based motion profile for vertical motion defined by Equations (30)
and (52) with the following data: Γ0 = 0, Γ f = 5, T1 = 2, T2 = 10, T3 = 57 and T4 = 65.
Additionally, the yaw motion is regulated about a constant angle ψ? = 0 rad. Soft transition
between initial condition and the regulation point is accomplished by a Bézier polynomial.

Figures 14 and 15 describes the effective performance of the adaptive robust motion
control scheme (20), which compensates the disturbance forces induced by the wind gust
model introduced in (46). Moreover, it is evident excellent levels of oscillations attenuation
by using our control approach.

0

-5

2

4

0 5

6

05
-5

Navigation Path

0

-5

2

4

0 5

6

05
-5

Reference

Figure 14. Trajectory tracking for the experiment 4.
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Figure 15. Path following on the plane for the experiment 4.
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From Figure 16, it is observed that the quadrotor is able to efficiently perform trajectory
tracking tasks in spite of there is not previous information of the disturbance torques while
tracking the planned references introduced in (47). On the other hand, the control input
forces and torques generated by the proposed controller are presented in Figure 17. Here, it
is appreciated a properly compensation of the disturbance effects which by the computed
control inputs. The closed-loop system response for rotational dynamics is plotted in
Figure 18, where it is corroborated an efficient performance of the introduced adaptive
robust control approach, as done in previous experiments. It is important to mention that
during experiment 4 it is adopted the same process for the computation of the control gains
in the first experiment.
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Figure 16. Translational motion tracking for experiment 4.
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Figure 17. Computed control inputs in experiment 4.

Finally, in Figure 18, it can be seen the control parameters for rotational motions,
which are computed online by means of the adaptive BS-ANN scheme. In addition, it is
corroborated that even though there is not available information from derivatives of the
angular references, the under-actuation problem is properly solved by the use of the neural
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networks and the integral reconstructors, thereby a good tracking of the online computed
references φ? and θ? is achieved.
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Figure 18. Dynamic rotational closed-loop response for the experiment 4: (a) Computed rotational
adaptive control parameters. (b) Angular tracking motion.

4.5. Robustness against Uncertainty of Quadrotor Mass

Another important issue for controlling a quadrotor is the variations of the nominal
mass. Notice that the online computed references in (8) which define a proper motion on
the plane depends on the nominal mass. Therefore, the quadrotor is supposed to follow the
references considering the nominal mass value. Thus, during this experiment, it is probed
if the vehicle flight may be deteriorate significantly when an extra mass is added.

Consider the following mass variation for this experiment

m = mn +M∆(t) (48)

where mn = 0.973 stands for the nominal quadrotor mass in kg, andM∆(t) is an abrupt
change of the mass quadrotor described by a modified impulse function given by
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M∆(t) =


(

1√
2πσ2

∆

)
e
−
(

(t−a)2

2σ2
∆

)
+ b 0 ≤ t < 20.4(

1√
2πσ2

∆

)
e
−
(

(t−c)2

2σ2
∆

)
+ d t ≥ 20.4

(49)

with a = 20.25, b = 0, c = 19.55, d = 0.7, and σ∆ = 0.4. During the experiment it is adopted
a spiral shape planned reference given by the next parametric equations

x? = r cos(T)

y? = r sin(T) (50)

where

r = 5 + 0.2 cos(t) (51)

and T = t
6 . Inspecting Figure 19, it is appreciated that the abrupt variation in the quadrotor

mass does not affect significantly the following of the planned reference. In Figure 20,
it is observed a slightly deviation of the quadrotor angular tracking in contrast with the
nominal references θ?n and φ?

n, computed with the nominal mass. Moreover, it is evident
that after a brief period of time the quadrotor is able to recover from the perturbation
and perform a proper tracking of the desired references thanks to the robustness of the
proposed control scheme.

-5 0 5

-5

0

5

Path following

Reference

0 10 20 30

0.8

1

1.2

1.4

1.6

1.8

2

(a) (b)

Figure 19. Simulation results for experiment 5. (a) Path following. (b) Mass variation given by
Equation (48).

In Figure 21a, it is presented the compensation to the mass variation at 20.4 s by the
control input u. Figure 21b portrays the vertical motion which is performed before the path
following, and is given by the following Bézier polynomial

z? =


Γ0 0 ≤ t < T1

Γ0 +
(

Γ f − Γ0

)
Bz(t, T1, T2) T1 ≤ t < T2

Γ f t ≥ T2

(52)

where Γ0 = 0 and Γ f = 5, given in meters, stand for the desired initial and maximum
vertical positions. The time values given in seconds are as follows: T1 = 2, T2 = 10. In
addition, Bz is the Bézier polynomial introduced in (30) with Ti and Tf as the initial and
final transition times. Moreover, n = 6, and r1 = 252, r2 = 1050, r3 = 1800, r4 = 1575,
r5 = 700, r6 = 126.
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Figure 20. Reference tracking results for experiment 5.
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Figure 21. Simulation results for experiment 5. (a) Main force control input. (b) Controlled verti-
cal motion.

Future studies will address other methodologies for trajectory generation. Interested
readers are referred to [40,41] and references therein for further information on trajectory
generation. Moreover, algebraic estimators [42] will be explored for determining variation
in the quadrotor nominal mass due to unknown payload and damage or failure in the
quadrotor frame.

4.6. Discussion of Results

Throughout the presented experiments in this work, it is corroborated that the in-
troduced control scheme is able to properly leads the quadrotor to stable scenarios in
spite of the presence of external forces and torque disturbances, as well as mass uncer-
tainty. Different from the important adaptive robust contributions proposed in [21–23],
in our approach disturbance observers are unnecessary, only positions measurements are
required for motion control, and the use of high frequency discontinuous control actions,
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as a consequence of the use of signum functions, is avoided. Additionally, due to the low
dependency of the quadrotor non-linear mathematical model, the robustness against exter-
nal disturbances and since it is not required the error derivatives for the implementation of
our control scheme, we widely recommend this as an viable strategy for controlling other
autonomous systems.

5. Conclusions

A novel adaptive robust neural motion control scheme for quadrotor systems has been
introduced in this study. The proposed controller guarantees that the desired trajectory
can be tracking by the quadrotor vehicle. The control framework is composited by using
dynamic compensators along with an adaptive strategy based on B-spline artificial neural
networks. Moreover, an artificial intelligence mechanism based on PSO theory was properly
employed for improving the design of the control strategy, as well as the dynamic closed-
loop response of the quadrotor system, where ITAE and ISCI metric indexes have been
used for measuring the control performance. The introduced research is particularly
important because of its potential application in motion tracking control of quadrotor
systems, where the use of neither tracking error derivatives nor disturbance observers is
required. Several simulation experiments were proposed for purposes of performance and
robustness assessment. It was corroborated that, by using the introduced control scheme,
the quadrotor dynamic response is sufficiently robust for driving the system to stable
scenarios. Vibrating disturbance forces and torques, uncertainty of the quadrotor mass, and
wind gusts affecting the quadrotor stable motion were used for testing the control scheme
robustness. The suitable integration of adaptive and robust control allows to compensate
external disturbances during the quadrotor navigation and soft-motion during take-off
and landing. Additionally, the quadrotor performance is improved significantly in contrast
when it is adopted fixed values for the control gains. The obtained results, thus, prove
that the controlled quadrotor system is able to achieve acceptable control accuracy levels
for both trajectory tracking and path following in spite of been subjected to undesired
disturbances. Finally, it is worth pointing out that the proposed control strategy can be
further extended for the motion control of different autonomous systems subjected to
external vibrating disturbances, which will be addressed in future works.
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