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Abstract: This article considers the mathematical aspects of the problem of the optimal interception of
a mobile search vehicle moving along random tacks on a given route and searching for a target, which
travels parallel to this route. Interception begins when the probability of the target being detected by
the search vehicle exceeds a certain threshold value. Interception was carried out by a controlled
vehicle (defender) protecting the target. An analytical estimation of this detection probability is
proposed. The interception problem was formulated as an optimal stochastic control problem, which
was transformed to a deterministic optimization problem. As a result, the optimal control law of the
defender was found, and the optimal interception time was estimated. The deterministic problem is
a simplified version of the problem whose optimal solution provides a suboptimal solution to the
stochastic problem. The obtained control law was compared with classic guidance methods. All the
results were obtained analytically and validated with a computer simulation.

Keywords: optimal stochastic control; path planning; 2D random search; interception

1. Introduction

Search problems have become increasingly popular recently and have attracted a
significant number of researchers [1–5]. The search process is considered to be that of
exploring a certain area of a physical space in order to detect a searched object (SO) in this
area with the search vehicle (SV) using various types of physical sensors. The basis for
solving these problems is a symbiosis of models and methods from multiple branches of
science, which allows establishing causal relationships among the search conditions, the
physical characteristics of the SOs, and the search results.

Mathematical formulations of search problems can include various criteria [6,7] with
the goal of the minimization or maximization of these criteria. All search problems can
be divided into two groups according to the SO’s type: it can be stationary or mobile.
The problems of the first type (Chapter 2 of [1]) are easier to solve than the problems of
mobile SOs (Chapter 3 of [1,5]), since the parameters of their movement may be unknown
to the SV. The problems of the second type have become popular in recent years due
to the development of unmanned vehicles such as unmanned aerial vehicles (UAVs) or
unmanned underwater vehicles (UUVs), operating in a largely unpredictable and uncertain
marine environment [1,8].

The practical applications of such autonomous vehicles and search problems can vary
from environmental monitoring and geological exploration to combat and reconnaissance
tasks. Therefore, the parameters of the mathematical models can vary greatly depending
on the different characteristics of real-world objects and their operating conditions. The
problem considered in this article can be applied to objects in the marine environment such
as UUVs or autonomous surface vehicles (ASVs), which can serve as both the SO and SV
in the model under discussion.

The search can be performed by one [3,5] or several SVs [9,10]. If the SV and SO are
on conflicting sides and the search itself is undesirable for the SO [11,12], then we can talk

Mathematics 2021, 9, 2386. https://doi.org/10.3390/math9192386 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6494-6880
https://orcid.org/0000-0002-2418-6802
https://orcid.org/0000-0002-2949-0440
https://doi.org/10.3390/math9192386
https://doi.org/10.3390/math9192386
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9192386
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9192386?type=check_update&version=2


Mathematics 2021, 9, 2386 2 of 15

about the so-called threat environment [13,14]. Several SVs can be connected in a network
structure and form a dynamically changing threat map [10,15]. The task of the SO (UUV or
UAV) in this case is to avoid these threats while moving. The trajectory planning problem
can be formulated for the SO when the threat mapping is known. If the dynamics of the SO
is also known, then these problems are classical problems of deterministic optimal control.

If the SV presents a danger to the SO, the problem of interception can be consid-
ered. There is a vast class of such problems with various formulations and models of the
moving vehicles. These models may include restrictions on the maneuverability of the
vehicles [16–18]. Moreover, the problem can be considered optimal if any criterion, as
for example, the intercept time, must be minimized [19–21]. In most problems studied in
the literature, the intercepted vehicle moves along a given programmed trajectory [22].
Meanwhile, real vehicles as a rule move in a stochastic way, and this case is considered in
the presented article.

The article relates to various branches of mathematics, such as stochastic control,
guidance, information processing and search, and optimization, and is devoted to the
problem of the optimal interception of an SV that moves randomly on tacks along a
given course and searches for a target SO. The interception is carried out by a controlled
mobile vehicle protecting the target SO. The presence of an arbitrarily maneuvering search
vehicle requires an adequate mathematical formalization in the form of a stochastic control
problem. The maneuvering process can be conveniently formalized using a jump-like
Markov process with a given state vector and a given matrix of the transition intensities
between these states. Such a model allows us to describe the trajectory of the SV in the form
of a linear stochastic differential equation, which makes it possible to obtain the equations
of the evolution of the mathematical expectation and variance. These equations allow us to
formulate the problem of SV interception by the controlled vehicle with the criterion of
a predicted miss or with a given mathematical expectation of a miss at the final position
of the SV [16–21]. The purpose of the article is to find an interception trajectory of the
controlled defender vehicle as a result of solving the optimal stochastic control problem and
comparing this trajectory with classical guidance algorithms such as the pursuit guidance
method and the method of proportional navigation guidance [23–25].

The considered problem belongs to the “attacker–target–defender” type [26–28], the
essence of which is a counteraction to the SV (attacker) from the SO (target), which can be
a certain strategically important mobile vehicle, by using an autonomous attacking robotic
complex (defender), for example an UAV or UUV.

In this article, by SV, we mean a vehicle moving programmatically or randomly on
a plane equipped with a circular detection zone of a fixed radius. The goal of the SV is
to detect the SO, i.e., to cover the point of the plane depicting the SO with its detection
zone and maximize some functional that characterizes the reliability of detecting the SO
in this zone. The reliability of the detection (probability of correct classification) of the SV
may depend on various physical factors, in particular on the time spent by the SO in the
detection zone, its current distance from the SV, the direction of the velocity vector of the
SO, etc. [29].

We considered the SO to be able to observe the real trajectory of the SV and evalu-
ate the characteristics of its movement, i.e., current coordinates and components of the
velocity vector. At some point in time, the SO releases a mobile defender, which moves
autonomously and stealthily and does not have a communication channel with the SO.
It was also assumed that the defender can evaluate the current motion characteristics of
the SV using its passive onboard sensors. The stealthiness of the defender is provided, in
particular, with its low velocity.

The proposed work has the following structure. In Section 2, the model of the SV
with a given detection zone is considered. Section 3 contains a statistic description of the
detection probability of the SO moving along a straight-line trajectory. In Section 4, the
interception problem is formulated as an optimal stochastic control problem. This problem
is analytically solved in Section 5, and the obtained results are discussed and illustrated
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with simulation examples in Section 6. Section 7 concludes the article and suggests the
direction for future work.

2. Model of the SV’s Movement on Tacks

The search system consists of one SV, which has a circle detection zone of radius R.
The SV moves piecewise-rectilinearly on a plane, tacking randomly around the line of the
general course. The origin O of the stationary Cartesian coordinate system XOY is situated
in the initial position of the SV, as shown in Figure 1. This coordinate system is oriented in
such a way that its OX axis coincides with the line of the general course of the SV.

O
Xgeneral course

Y

R

SV’s path

v

Figure 1. The SV’s trajectory.

The SV moves on tacks in accordance with the following law:{
ẋSV = vx = v cos α,
ẏSV = vy = θtv sin α,

(1)

where α is the specified tacking angle, v is the SV’s search speed, and θt is a random
jump-like Markov process. The component of the SV’s velocity vector ~v along the line of
the general course is constant:

vx = const.

Figure 2 shows a velocity diagram of the SV. As follows from (1), tacking was per-
formed by periodically changing the velocity component vy according to a random Markov
process θt with a finite vector of states J = (j1, j2, . . . , jn) and a given matrix of the transition
intensities between these states Λ. This article discusses the case of processes with three
states J = (−1, 0, 1). This means that the SV’s velocity vector can coincide with the general
course line (θt = 0) or deviate from it by a constant angle equal to ±α (when θt = ±1), as
shown in Figure 2.

SV vx

~v vy

α

vy

-α

Figure 2. Velocity diagram of the SV.

We considered transitions between process states equally possible with transition
intensity matrix:
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Λ = λ

 −2 1 1
1 −2 1
1 1 −2

, (2)

corresponding to the state vector J. The variable λ here is λ = 1/τ0, where τ0 is the average
time of the SV being on one tack. This model generates random trajectories that have the
approximate shape shown in Figure 1.

For the mathematical formulation of the stochastic optimization problem, it is con-
venient to study the Gaussian Markov analog instead of the jump-like process θt. This
diffusion process Θt has the same mathematical expectation and correlation function as
the process θt. It follows from the theory of jump-like Markov processes that Θt allows the
stochastic Ito differential [30]:

dΘt = −DΘtdt + σdwt, (3)

where wt is a standard Wiener process and D, σ are constants related to the original Markov
process θt: D , 3λ and σ , 2 tan α

√
λ.

3. Detection Probability of the SO Moving at a Constant Velocity

Firstly, let us consider the task of detecting a target SO (target) with the SV, whose
dynamics is described in Section 2. The following model was investigated. The target
moves at a constant speed parallel to the general course line of the SV at a distance l from
it.

The initial distance between the vehicles along the general course is L, so the initial
Cartesian distance is

√
L2 + l2. The SV is moving according to (1), where θt is a random

Markov process with the state vector J and the transition matrix Λ from (2). The target
moves according to the law: {

ẋ = −u,
ẏ = 0,

(4)

where u is its constant velocity.
The target will be detected if the distance between it and the SV becomes less than R.

To simplify the model, let us assume that the detection is successful when the target’s and
SV’s x-coordinates become equal at some point in time: xSV(ϑ) = x(ϑ), and the inequality
|ySV(ϑ)− y(ϑ)| ≤ R is satisfied for the y coordinates.

The rendezvous instant ϑ is defined as:

ϑ =
L

v cos α + u
. (5)

The probability of detection will be determined by including the ySV coordinate in the
interval [l − R, l + R], namely:

Pdet = P{l − R ≤ ySV(ϑ) ≤ l + R} = P
{

l − R
v sin α

≤
∫ ϑ

0
θs ds ≤ l + R

v sin α

}
. (6)

As mentioned in (3), the random jump-like Markov process θt can be replaced with its
Gaussian Markov analog Θt, which has the same mathematical expectation and correlation
function as the process θt.

Further, instead of calculating the random integral (6), we estimated the target detec-
tion probability by the SV through the analytical approximation of probability histograms,
obtained in the numerical simulation. We assumed that at the instant t0 = 0, the target is
situated in the position E0 = (L, l) and L � 1 (as shown in Figure 3) and the velocity of
the target u < 1.
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SV

v
R

O
X

Y

SO
u

l

L
Figure 3. Relative positions of the SV and SO.

Due to the latter assumption, the SV’s detection zone can be considered as a flat-line
segment with the length of the diameter instead of the circle. Thus, the detection probability
can be estimated as the probability of meeting the target with this segment.

The histograms of the distribution density of the ySV coordinate obtained in the
interval [l − ∆l, l + ∆l] for some small ∆l are well approximated by the symmetric density
of the Gaussian distribution. Figure 4 depicts the histogram of the probability of meeting
between the target and SV and the corresponding density of the Gaussian distributions:
N (0, σ2

1 ) for σ1 = 0.705 for the case L = L1 = 5 (Figure 4a) and N (0, σ2
2 ) for σ2 = 0.993 for

the case L = L2 = 10 (Figure 4b). The histograms were constructed as a result of computer
simulation of the movement of the target and SV for 10,000 implementations of the SV
trajectory corresponding to λ = 5/3.

−2 −1 0 1 2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

(a) Case of σ1

−3 −2 −1 0 1 2 3
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(b) Case of σ2

Figure 4. Histograms of the probability detection distribution density of the target moving at a constant velocity.

These graphs allowed us to estimate the SV’s detection probability Pdet at its various
initial positions. Now, Equation (6) may be approximated as:

Pdet = P{l − R ≤ ySV(ϑ) ≤ l + R} = 1√
2πσi

∫ l+R

l−R
exp

(
−y2/(2σ2

i )
)

dy, (7)
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where σi corresponds to various parameters (Li, li, ui). In particular, when l = l1 = 1.5 and
l = l2 = 2.5 for L1 and L2, respectively, these probabilities are presented in Table 1. In all
cases, the velocity of the target is u = 0.3. All values are given in a normalized scale.

Table 1. The detection probability of the target Pdet at its various initial positions E0 = (L, l).

L l Pdet

5 1.5 0.238
5 2.5 0.017

10 1.5 0.304
10 2.5 0.065

Next, we introduced a certain threshold value (security threshold) h < 1 of the
permissible detection probability of Pdet, for example h = 0.07. The situation with Pdet ≤ h
is considered safe. In this case, the target continues to move in a straight line without
changing its course and speed. If Pdet > h, then the situation is considered dangerous. It
was assumed that in the case of a dangerous situation, the target (to prevent the negative
consequences of possible detection) uses the mobile defender mentioned in the Introduction,
whose task is to intercept the SV with a minimum standard error at a given point in the
plane relative to the SV.

The minimization of this miss is associated with the solution of the following optimal
stochastic control problem.

4. Optimal Stochastic Control Problem

The problem was considered in a moving Cartesian coordinate system XtOtYt, where
the origin Ot is associated with the current position Pt of the SV and the axis OtXt is
directed parallel to the SV’s general course. The current position of the defender Et

2 is given
by a two-dimensional vector Zt

2 directed from Ot , Pt to Et
2.

Terminal position Eϑ
2 of the defender is defined by a given two-dimensional vector d,

as shown in Figure 5. An auxiliary vector ηt , Zt
2− d was introduced for a more convenient

formulation of the defender’s optimal control problem.

Ot

XtPt

Yt

R

d

Eϑ
2

ηt

Zt
2

Et
2

Figure 5. Geometry of the problem.

In the selected coordinate system, the equations of the relative motion of the defender–
SV system have the form:

Żt
2 = ut −

(
1

Θt

)
, ut =

(
ut

x
ut

y

)
, (8)
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where Θt is from (3) and the initial position of Z0
2 were set. The two-dimensional velocity

vector ut of the defender plays the role of the control and is subject to the restrictions:

|ut| ≤ β < 1 (9)

with the specified constant β.
In terms of the auxiliary vector ηt introduced above, the equations of motion (8) take

the compact form:
η̇t = ut + A + BΘt, η0 , Z0

2 , (10)

where:

A =

( −1
0

)
, B =

(
0
−1

)
. (11)

At the terminal moment ϑ, the following condition must be met:

Eηϑ = 0, (12)

where E is the sign of the mathematical expectation. As a criterion, we took the terminal
functional:

EG(ηϑ, Θϑ)→ min
ut

, (13)

where:
G(ηϑ, Θϑ) = η2

ϑ + γΘϑ. (14)

In (13) and (14), the summand η2
ϑ characterizes the standard deviation of the defender

from the end of the vector d at the terminal moment ϑ. The term γE Θϑ, where γ is
a given constant, plays the role of an additional terminal penalty for the “convenient”
or “inconvenient” tack of the SV at the time of ϑ. Here, the words “convenient” or
“inconvenient” are used in the following sense. The tack of the SV at the time of ϑ is
considered “convenient” if Θϑ < 0, i.e., the component of the velocity of the SV along the
OY axis is negative (the SV is moving away from the line of the movement of the target E1).
Otherwise, we considered the tack of the SV “inconvenient”.

5. Optimal Stochastic Control
5.1. Reduction of the Optimal Stochastic Control Problem to the Deterministic One

It is known that solving stochastic optimization problems in real time is associated
with certain difficulties [30]. For this reason, instead of the original stochastic problem (3),
(9)–(14), we solved its deterministic analog. To construct this analog, we need the following
auxiliary results.

The solution of Equation (3) has the form:

Θt = e−DtΘ0 + σ
∫ t

0
e−D(t−s)dws. (15)

Integration (15) leads to the equation:∫ t

0
Θsds =

Θ0

D
(
1− e−Dt)+ σ

D

∫ t

0

(
1− e−D(t−s))dws. (16)

Now, let us calculate the value of the criterion (13) with an arbitrary permissible
program control ut and the parameter ϑ fixed at the moment t0 = 0. To this end, we
integrated the equations of motion (10) taking into account (16). We have:

ηϑ = η0 + Aϑ + B
θ0

D
(
1− e−Dϑ

)
+ B

σ

D

∫ ϑ

0

(
1− e−D(ϑ−s))dws +

∫ ϑ

0
usds. (17)
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From (12) and (17) follows:

Eηϑ = η0 + Aϑ + B
Θ0

D
(
1− e−Dϑ

)
+
∫ ϑ

0
usds = 0. (18)

Finally, from (17) and (18), we obtain:

E η2
ϑ =

σ2

D2

[
ϑ− 2

D
(
1− e−Dϑ

)
+

1
2D
(
1− e−2Dϑ

)]
. (19)

Thus, the (13) criterion takes the form:

EG =
σ2

D2

[
ϑ− 2

D
(
1− e−Dϑ

)
+

1
2D
(
1− e−2Dϑ

)]
+ γe−DϑΘ0 → min

ut
. (20)

Now, we transformed (18) by introducing a two-dimensional vector ξt subordinate to
the equation:

ξ̇t = A + BΘ0e−Dt + ut (21)

with boundary conditions:
ξ0 = η0, ξϑ = 0. (22)

In terms of the vector ξt, the desired deterministic analog is the following auxiliary
problem of optimal (deterministic) control, which includes the equations of motion (21),
boundary conditions (22), control constraints (9), and terminal criterion F(ϑ)→ min

ut
, where

F(ϑ) denotes the right-hand side of (20) with the excluded additive constants −2σ2/D3

and σ2/(2D3):

F(ϑ) ,
σ2

D2

[
ϑ +

2
D

e−Dϑ − 1
2D

e−2Dϑ
]
+ γe−DϑΘ0 → min

ut
. (23)

5.2. Pontryagin’s Maximum Principle in the Auxiliary Optimal Problem (23)

To solve the auxiliary problem, we used Pontryagin maximum principle (PMP) [31].
According to the procedure of PMP, firstly, we constructed the Hamiltonian:

H = λξ ·
(

A + Bθ0e−Dt)+ λξ · ut → max
ut

. (24)

Here, the dot between the two-dimensional vectors means a scalar product, and
λξ = λξ(t) is a conjugate variable corresponding to the phase variable ξt. From (24), we
found the explicit form of the optimal control (here and further, the * symbol indicates the
optimal controls):

u∗t = β
λξ(t)
|λξ(t)|

. (25)

The conjugate variable satisfies [31]:

λ̇ξ(t) = −
∂H
∂ξ

(t) = 0; (26)

hence λξ(t) = λξ = const, which leads to u∗t = u∗ = const with |u∗| = β. In other words,
the program motion of the controlled object is implemented in a straight line with the
maximum possible speed. The transversality conditions at instant ϑ are given by:

δF(ϑ) + λξ · δξ − Hδϑ = 0, (27)

where according to (23):

δF(ϑ) =
∂F(ϑ)

∂ϑ
δϑ =

σ2

D2

[
1− 2e−Dϑ + e−2Dϑ

]
δϑ− γDe−Dϑθ0 δϑ. (28)
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Following (27), (28):

H(ϑ) =
σ2

D2

[
1− 2e−Dϑ + e−2Dϑ

]
− γDe−Dϑθ0. (29)

Integrating (21), taking into account (22), gives:

η0 + Aϑ + B
θ0

D
(
1− e−Dϑ

)
+ u∗ϑ = 0 (30)

that naturally coincides with (18) under ut = u∗.
Next, we put  u∗ , β(cos ϕ, sin ϕ), with ϕ = const,

η0 , (x0, y0).
(31)

Then, from (30) and (31), we have in a componentwise form of the system of two
equations with respect to ϕ and ϑ:

x0 − ϑ + βϑ cos ϕ = 0,

y0 + βϑ sin ϕ− θ0

D

(
1− e−Dϑ

)
= 0.

(32)

From (32) follows:
cos ϕ = (ϑ− x0)(βϑ)−1,

sin ϕ =
[Θ0

D

(
1− e−Dϑ

)
− y0

]
(βϑ)−1,

(33)

where ϑ can be found as the least-positive root of the equation, following from the identical
equality cos2 ϕ + sin2 ϕ = 1 with respect to the right parts of (33), namely:

(ϑ− x0)
2 +

[
Θ0

D

(
1− e−Dϑ

)
− y0

]2
= β2ϑ2. (34)

Formulas (33) and (34) allow us to find the velocity components of the controlled
object and the time interval [0, ϑ] of its motion from the initial position to the end of the
vector d.

If Dϑ in (34) is sufficiently large, then the term e−Dϑ is close to zero and can be omitted.
In this case, (34) takes the form:

(ϑ− x0)
2 +

(
Θ0

D
− y0

)2
= β2ϑ2. (35)

Then, the instant ϑ can be found as the least root of the square Equation (35):

ϑ =

x0 −

√√√√x2
0 − (1− β2)

(
x2

0 +

(
Θ0

D
− y0

)2
)

1− β2 . (36)

To construct a positional optimal control (feedback control) of the defender, the current
moment t was taken as the initial t0, the current position (xt, yt) was taken as the initial
(x0, y0), and the current value of Θt—for the initial Θ0; after that, the instantaneous
direction of the vector u∗t of the defender’s velocity was calculated using the formulas (31)
taking into account (33) and (36). Next, u∗t was recalculated at the rate of updating the
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current information. Note that at a high rate of updating this information, it may be
quite justified to use the piecewise program control of the defender, in which its control is
recalculated only at certain moments called correction moments with intervals between
them ∆tu. During these intervals, the defender moves programmatically according to
control u∗t , calculated in the previous step.

6. Examples

To demonstrate the effectiveness of the obtained optimal control, a numerical simula-
tion was performed for two approaches for studying the interaction between the defender
and SV. These approaches differ in the mathematical description of the evolution of the y-
component of the SV’s velocity. In the first (discrete) approach, this component is piecewise
constant and its evolution is described as a jump-like Markov process θt with three states
(1, 0,−1) and the transition intensity matrix Λ from (2). The description of this process is
given in the beginning of Section 2. In the second (continuous) approach, an evolution of
the y-component of the SV’s velocity vector is set by Gaussian process Θt, i.e., continuous
diffusion process (3).

In both approaches, the control of the defender was obtained through Equations (31),
(33), and (36). In other words, the control of the defender is always calculated according to
the continuous diffusive model (3) of the evolution of the y-component of the SV’s velocity
vector. Strictly speaking, as this control law is the result of the solution of the continuous
problem, it should not always successfully solve the discrete problem, simulated in the
first approach. The idea of these experiments is to apply the solution of the continuous
problem, which can be solved analytically, to the similar discrete practical model, which
cannot be studied in the same convenient way. In all experiments, vector d was considered
to be null, i.e., the defender has to intercept the SV.

Both approaches to the simulation are shown in further examples, which were devoted
to two different applications of the studied interception problem.

The realization of diffusive process Θt was acquired in Maple with the package for
stochastic equations. An approximate formula for ϑ (36) was used for the stochastic
differential Equation (15). Thus, Maple allows integrating this equation numerically and
obtaining the optimal trajectory of the defender, as well as the random trajectory of the
SV corresponding to the process with the appropriate mathematical expectation and
dispersion.

A more practical discrete jump-like process θt was simulated in Python script. The
movement of the SV and defender was computed with a very small discretization step
∆t, which is the quality of the simulation. At each step, the SV, according to the model
from Section 3, can change the direction of its vy velocity component with probability
2λ∆t or not change it with probability (1− 2λ∆t). However, in practice, this model is not
very useful. This process is identical to a Gaussian process: the time of another SV tack is
sampled exponentially with mathematical expectation 1/λ, and the direction of the vertical
velocity for this tack is chosen from two directions, different from the current one with
probability 1/2. The defender, on the other hand, has its own parameter ∆tu and corrects
its control law according to (36) every interval ∆tu, considering the current positions to
be initial.

6.1. Intrusion in the Detection Zone

The first application is the intrusion of the SV’s detection zone by the defender to
distract the SV from the target. In normalized scale, these parameters are:

R = 1, vx = 1, τo = 0.6.

Let tan α = 0.5. Then, the parameters for Gauss process Θt are:

λ =
1
τ0
≈ 1.67, D = 3λ ≈ 5, σ = 2 tan α

√
λ = 1.29.
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In the coordinate system associated with the initial position of the SV, the initial
coordinates of the defender’s position are (10, 1) in the normalized scale. The velocity of
the defender was chosen as β = 0.5. The probability of the detection of the target following
a parallel course from this coordinates equals Pdet = 0.5, which is higher than the accepted
security threshold h = 0.07. Thus, according to the above-described security concept, the
target must use a mobile defender.

The results of this experiment are shown in Figure 6. The red line depicts the trajectory
of the defender, whereas the blue one, that of the SV. Figure 6a shows the evolution of
the y-component of the SV’s velocity according to Markov jump-like process θt. Figure 6b
shows the trajectories of the vehicles for the diffusion approximation Θt of the process θt.
In Figure 6a, the black ellipse depicts the circular detection zone of radius R, which looks
ellipsoidal due to the different scale of the OX and OY axes. In the case of the discrete
model, the parameter ∆tu is equal to τ0. In the case of the continuous model, the calculation
of the defender’s optimal control is performed in time with the SV’s information updating,
i.e., almost continuously (∆tu equals the simulation discretization step).

0 2 4 6 8 10

−1.0

−0.5

0.0

0.5

1.0

(a) (b)

Figure 6. Intrusion of the SV’s detection zone. (a) SV and defender trajectories corresponding to the
path of θt; (b) SV and defender trajectories corresponding to the path of Θt.

For the estimation of time ϑ, Equation (36) was used. According to (36), interception time
ϑ = 7, which means e−Dϑ ≈ 0, i.e., 1− e−Dϑ ≈ 1, so ut can be found from Equations (31), (33),
and (36). One can see in Figure 6 that the trajectories of the defender for the discrete and
continuous models of the SV’s movement were quite close. The difference of the trajectories
in the final sections was due to the significant duration of the interval ∆tu between the
updates of the information about the SV and, thereby, the corrections of the defender’s
program control in the discrete approach.

As one can see, the problem of interception was solved successfully, as the defender
moving from the initial position with the found u control finally occurred in the close
vicinity of the SV.

6.2. Destruction of the SV

The second application is the task of the destruction of the SV using the defender. To
complete this task, the defender must come close enough to the SV. In the normalized scale:

R = 1, vx = 1, τo ≈ 60.
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Let tan α = 0.5. Therefore:

λ = 0.017, D = 0.05, σ = 0.13.

In the coordinate system associated with the initial position of the SV, the initial
coordinates of the defender are (300, 20) in the normalized scale. The velocity of the
defender was chosen as β = 0.5. As the target moves parallel to the general course of
the SV, then the detection probability Pdet equals Pdet = 0.37 > h = 0.07; thus, using the
defender is justified.

The results of the modeling are presented in Figure 7. As in the first example, Figure 7a
corresponds to the discrete approach to the simulation and the process θt, and Figure 7b
relates to the continuous approach and the process Θt.

0 50 100 150 200 250 300

−30

−20

−10

0

10

20

(a) (b)

Figure 7. Destruction of the SV. (a) SV and defender trajectories corresponding to the path of θt;
(b) SV and defender trajectories corresponding to the path of Θt.

The accuracy of the interception of the SV by the defender or the so-called terminal
miss obviously depends on the parameter ∆tu—the time interval between corrections of the
defender’s control. Figure 8 presents the results of different simulations of the interception
of the SV by the defender for the discrete approach. Figure 8a corresponds to the case of
∆tu = τ0. A sufficient miss of the defender can be explained by the relatively significant
duration ∆tu of its movement without control correction and the “inconvenient” realization
of the tack, which combined with the velocity advantage (β < 1) allowed the SV to avoid
interception by the defender. However, decreasing the parameter ∆tu helped achieve more
satisfactory results, as shown in Figure 8b. For two similar realizations of process θt (blue
lines), the trajectories of the controlled defender (red lines) were clearly very different with
dependence on the parameter ∆tu (τ0 and τ0/10, respectively).
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(a) ∆tu = τ0
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(b) ∆tu = τ0/10

Figure 8. Interception trajectories with different values of ∆tu.

6.3. Comparison with Classic Guidance Methods

The optimal control law of the defender obtained here was compared with classic
guidance methods, mentioned in the Introduction, such as the pursuit guidance method
and parallel guidance, which is a specific case of the proportional navigation guidance
method. On average, our method gave better results than the others. In Figure 9, a
typical realization of different simulated guidance methods is presented. The orange line
designates the trajectory of the defender, acting according to the pursuit guidance method;
the red line denotes the trajectory generated by the parallel guidance algorithm; the blue
graph shows the SV’s movement. The defender, controlled according to Equations (31), (33)
and (36), has a green trajectory. Dashed lines illustrate the distances on the Y axis between
the SV and defender at instant ϑ when their X-coordinates coincide.

Figure 9. Comparison of different guidance methods.

As one can see, the green defender was closer to the SV than the others. Classic
guidance methods are effective when the pursuer velocity is higher than the one of the
evader. That is not the case in the current study, because the defender’s velocity β was less
than the velocity of the SV. Moreover, the classic guidance methods are not intended to be
use for intercepting stochastic targets, unlike the control law obtained in this article as a
solution of the stochastic optimal control problem.
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7. Conclusions

The article considered one “attacker–target–defender”-type problem of the interaction
on a plane between the search system, consisting of one search vehicle with the circle
detection zone, and the mobile searched object. The search vehicle tacked randomly along
a given general course towards the searched object, and its movement was described
using a Markov jump-like process. The searched object had a mobile defender onboard,
which can be used for the distraction and destruction of the search vehicle, if it presents a
danger to the searched object in the sense of its detection. The feature of this problem is
that the defender has lower dynamic capabilities in comparison to the searching vehicle
being intercepted.

It was shown that, being stochastic in nature, the optimal control problem of the
interception of a search vehicle can be transformed into the classic deterministic problem
of optimal control in the class of piecewise-programmatic controls. The optimal time of
interception was estimated, and an optimal control law was found. The examples of the
numerical simulations for both the discrete and continuous (stochastic and deterministic)
problems were presented to reveal the efficiency of the designed results. Furthermore, a
comparison with the interception solutions, based on classic guidance laws, was presented.

In the future, it is planned to consider a similar problem statement with a group of
search vehicles instead of one.
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