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Abstract: In this paper, we present an impulsive pinning control algorithm for discrete-time complex
networks with different node dynamics, using a linear algebra approach and a neural network as
an identifier, to synthesize a learning control law. The model of the complex network used in the
analysis has unknown node self-dynamics, linear connections between nodes, where the impulsive
dynamics add feedback control input only to the pinned nodes. The proposed controller consists of
the linearization for the node dynamics and a reorder of the resulting quadratic Lyapunov function
using the Rayleigh quotient. The learning part of the control is done with a discrete-time recurrent
high order neural network used for identification of the pinned nodes, which is trained using an
extended Kalman filter algorithm. A numerical simulation is included in order to illustrate the
behavior of the system under the developed controller. For this simulation, a 20-node complex
network with 5 different node dynamics is used. The node dynamics consists of discretized versions
of well-known continuous chaotic attractors.

Keywords: complex networks; discrete-time impulsive systems; impulsive control; neural networks

1. Introduction

The study of complex networks is of great importance for the scientific community
due to the interconnected nature of the modern world and the wide range of meaningful
applications [1–4]. In the dynamical systems area, a complex network can be seen as a group
of interconnected systems, which have their own characteristics and dynamics. When
working with these systems, it is often desired that the system follows a reference signal by
an adequate controller. Methods and techniques in control theory used to drive the system
to stability around an equilibrium point are numerous and varied [5]. Selecting a particular
method to accomplish this goal depends solely on the designer or the considered system.
For complex networks, a technique named pinning control is often used, in which only a
fraction of the network nodes is controlled [6]. This control method for complex networks
has been intensively studied. In [7], for example, a complex network with different chaotic
node dynamics was controlled using inverse optimal control and V-stability; the latter
changes the problem to a linear algebra one. This change performs the gain selection
process more easily.

A control technique not exclusive to complex networks is the impulsive one, in
which the control input is applied at a defined time instant [8]. Published works on
synchronization and control of complex networks via impulsive control have previously
been carried out. In [9], the authors propose a control algorithm where the complex network
has the same node dynamics in all of its nodes, which is similar to the proposal in [10].
In [11], the algorithm considers different node dynamics in its nodes, without pinning
control. A previous study was undertaken where we examined the impulsive control of
discrete-time complex dynamical networks with an experimental approach rather than an
analytical one [12].
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Alternatively, learning control algorithms are capable of estimating unknown infor-
mation of a given system. This is particularly useful since we do not always have all
system information at our disposal. With an optimal learning technique, we can emulate
the performance of the deterministic approach. Neural networks have a wide range of
applications depending on their configuration [13], and one of them is the learning control
approach that recreates the dynamics of nonlinear systems using the corresponding mea-
surements as the neural identifiers [14,15]. The output of these neural identifiers can then
be used to compute the desired control input. Previous studies have used neural networks
for controlling complex networks, as in [16–18], focusing on continuous-time applications.

The aim of this research is pin control of a discrete-time complex network with different
node dynamics and an impulsive control input, introducing a linear algebra approach for
easy gain selection, which is the main contribution of this paper. Additionally, to synthesize
the control law a learning control methodology is used based on a neural identifier. Studies
of impulsive pin control of discrete-time complex networks with different nodes are scarce,
and the objective of this research is to fill that gap. Moreover, a priori knowledge of node
dynamics is not required because of the use of neural identifiers. The proposed scheme
was tested under stressful conditions, such as chaotic dynamics. Our previous work on
this topic did not include stability analysis of the whole network, so this study represents a
considerable advance.

This paper is organized as follows: Firstly, we summarize required mathematical pre-
liminaries where we establish the model used for the complex network, the concept of the
Rayleigh quotient and the model of the used neural network. Then, we present the analysis
for the proposed controller. Later, we introduce the recurrent high order neural network
and its parameters. After that, we include a numerical simulation in order to illustrate the
applicability of the proposed controller. Finally, we state the respective conclusions.

2. Preliminaries

In this section, we describe the mathematical tools used for analysis and simulations.

2.1. Complex Networks

The model for an impulsively controlled discrete-time complex network can be written
as [12]:

X(k + 1) = f (X(k)) + (G⊗ B)X(k) + U(k, X(k)), (1)

where X(k) =
[

x>1 (k) x>2 (k) . . . x>N(k)
]> is the state of the complex network with

N nodes, xi(k) ∈ Rn, for i = 1, . . . , N, is the state of each i-th node. The function

f (X(k)) =
[

f1(x1(k))
> f2(x2(k))

> . . . fN(xN(k))
>
]>

contains all of the nodes self-

dynamics fi(xi(k)). Matrix G =
[
gij
]
=
[
cij âij

]
represents the connections of the network

nodes, with cij as the connection strength between nodes i and j. Constant âij = 1 if there
is a connection between node i and node j, and â = 0 if there is no such connection. Matrix
B ∈ Rn×n represents the way the state components are connected between the different
nodes. Control input is U(k, X(k)) = K(k)X(k), where K(k) is a block diagonal matrix of
the form:

K(k) =


κ1(k)In

κ2(k)In
. . .

κN(k)In

, (2)

where In is an identity matrix of the n-th order, κi(k) is a real constant at k = tk, which is
the time instant defined for the control impulse, and κi(k) = 0 when k 6= tk. Furthermore,
in accord with pinning control, some κi(k) are always zero.

Equation (1) is obtained through a finite difference discretization of a first order time
derivative as:

dX
dt
≈ X(k + 1)− X(k)

T
, (3)
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where T is a sampling time. For notation simplicity, the corresponding summed term X(k)
and sampling time T are absorbed by the rest of the terms in (1).

2.2. The Rayleigh Quotient

The Rayleigh Quotient RA is defined as:

RA =
x∗Ax
x∗x

, (4)

where x is some vector and A is a square matrix of appropriate dimensions. The quoitent (4)
has a real value satisfying λmin ≤ RA ≤ λmax, with λmin and λmax as the minimum and
maximum eigenvalues of the Hermitian matrix A [19]. This means that for a real symmetric
matrix A, the quadratic form x>Ax is bounded as follows:

λminx>x ≤ x>Ax ≤ λmaxx>x. (5)

2.3. Discrete-Time Recurrent High Order Neural Network (RHONN) Model

The learning part of the control algorithm is done with the use of neural networks,
with a neural identifier using a discrete-time RHONN, which is described by [15]:

x̂i(k + 1) = w>i (k)zi(x(k), u(k)), i = 1, . . . , n, (6)

where x̂i(k) is the state of the i-th neuron at time-step k, n is the dimension of the state,
wi(k) is the adaptable weight vector, and z(x(k), u(k)) is a high order non-linear function
defined by the designer. This type of network can be trained by using the extended Kalman
filter (EKF) algorithm, implemented with the following equations [15,20]:

K(k) = P(k)H>(k)
[

R(k) + H(k)P(k)H>(k)
]−1

, (7)

w(k + 1) = w(k) + K(k)e(k), (8)

P(k + 1) = P(k)− K(k)H(k)P(k) + Q(k) (9)

where matrix K(k) is the Kalman gain, P(k) is the error covariance matrix, R(k) is the
measurement error covariance, Q(k) is the process error covariance, e(k) = [y(k)− ŷ(k)] is
the error signal between the desired output y(k) and the neural network output ŷ(k), and
we will define H>(k) = z(x(k), u(k)) [12,15].

3. Proposed Control Structure

Consider a complex network as the one described by (1). We can linearize the nodes
self-dynamics using the Jacobian, so Equation (1) is rewritten as:

X(k + 1) = FX(k) + (G⊗ B)X(k) + K(k)X(k), (10)

where F is a block diagonal matrix of the form:

F =


F1

F2
. . .

FN

, (11)

where matrix Fi ∈ Rn×n represents the linearized dynamics of node i.
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Theorem 1. The discrete-time complex network with pinning control described in (1) is stable at
equilibrium point zero if

lim
k→∞

k

∑
j=0

ln αj = −∞, (12)

where αk is the largest eigenvalue of matrix A>(k)A(k), with

A(k) = F + G⊗ B + K(k). (13)

Proof. By substituting with (13), linearized network dynamics in (10) can be written as:

X(k + 1) = A(k)X(k). (14)

Now, we propose the quadratic Lyapunov function V(X(k)) = X>(k)X(k), so we
have:

V(X(k + 1)) = X>(k)A>(k)A(k)X(k). (15)

Substituting (5) in (15) we obtain:

V(X(k + 1)) ≤ αkX>(k)X(k), (16)

where αk is the largest eigenvalue of matrix A(k)>A(k). Inequality (16) can be written as:

V(X(k + 1)) ≤ αkV(X(k)). (17)

By solving for V(X(k)) we get:

V(X(k)) ≤
k

∏
j=0

αjV(X(0)) = eln ∏k
j=0 αj V(X(0)) = e∑k

j=0 ln αj V(X(0)). (18)

Hence, if the sum ∑k
j=0 ln αj approaches −∞, V(X(k)) decreases, and the system (1) is

stable at the equilibrium point zero. This finishes the proof of Theorem. �

We can modify the eigenvalues of matrix A(k)>A(k) by varying the elements of the
design matrix K(k) until the condition stated in (12) is fulfilled for a desired impulsive
time scheme.

The proposed scheme for the neural control is as shown in Figure 1, where the
identified state X̂(k) is substituted in the control input U(k, X(k)) = K(k)X(k) in (1), so
the control input can be selected as:

U
(
k, X̂(k)

)
= K(k)X̂(k), (19)

where X̂(k) =
[

x̂>1 (k) x̂>2 (k) . . . x̂>N(k)
]>, and x̂i(k) is obtained with the equations

of Section 2.3 if node i is a pinned node and x̂i(k) = 0 if node i is not a pinned node.
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Figure 1. Proposed control scheme using a neural identifier for the pinned nodes.

4. Numerical Simulation and Discussion

To illustrate the proposed controller performance, we do a simulation following the
control scheme of Figure 1 using the 20-node complex network, illustrated in Figure 2, with
5 different discretized versions of known continuous chaotic attractors. These systems are
selected because of their apparent randomness which can be useful to test our learning
control scheme.

Figure 2. 20-node network used in the numerical simulation.

Using a sample time T = 0.001, the node self-dynamics are:

fi(xi(k)) =

 xi1(k) + T[a1xi2(k)− a1xi1(k)]
xi2(k) + T[c1xi1(k)− xi1(k)xi3(k)− xi2(k)]

xi3(k) + T[xi1(k)xi2(k)− b1xi3(k)]

, (20)

which is a discretized version of the Lorenz model with constants a1 = 10, b1 = 8
3 , and

c1 = 28, as in [21], for i = 1, 6, 11, 16. Additionally, we consider:

fi(xi(k)) =

 xi1(k) + T[a2xi2(k)− a2xi1(k)]
xi2(k) + T[(c2 − a2 − xi3(k))xi1(k)− c2xi2(k)]

xi3(k) + T[xi1(k)xi2(k)− b2xi3(k)]

, (21)
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which is a discretized version of the Chen model with constants a2 = 35, b2 = 3, and
c2 = 28, as in [22], for i = 2, 7, 12, 17. We include as well:

fi(xi(k)) =

 xi1(k) + T[a3xi2(k)− a3xi1(k)]
xi2(k) + T[c3xi2(k)− xi1(k)xi3(k)]
xi3(k) + T[xi1(k)xi2(k)− b3xi3(k)]

, (22)

which is a discretized version of the Lü model with constants a3 = 36, b3 = 3, and c3 = 15,
as in [23], for i = 3, 8, 13, 18. Furthermore, we use:

fi(xi(k)) =

 xi1(k) + T[a4xi2(k)− a4xi1(k) + xi2(k)xi3(k)]
xi2(k) + T[c4xi1(k)− xi1(k)xi3(k)− xi2(k)]

xi3(k) + T[xi1(k)xi2(k)− b4xi3(k)]

, (23)

which is a discretized version of the Qi model with constants a4 = 35, b4 = 7, and c4 = 25,
as in [24], for i = 4, 9, 14, 19. Finally, we include:

fi(xi(k)) =

 xi1(k) + T[a5xi2(k)− a5h(xi1(k))]
xi2(k) + T[xi1(k)− xi2(k) + xi3(k)]

xi3(k) + T[−b5xi2(k)]

, (24)

which is a discretized version of the Chua model with constants a5 = 9.35, b5 = 14.79, and:

h(xi1(k)) = m1xi1(k) + 0.5(m0 −m1)(|xi1(k) + 1| − |xi1(k)− 1|), (25)

with m0 = − 1
7 and m1 = 2

7 as in [25].
The network connections for the network in Figure 2 are described by the matrix:

G = c

[
Â1 Â12

Â>12 Â2

]
, (26)

where c = 100T is the connection strength, equal for all nodes, and:

ˆ
A1 =



−7 1 1 1 1 0 1 1 0 0
1 −9 1 1 0 1 1 0 0 0
1 1 −13 1 1 1 0 0 1 1
1 1 1 −12 1 1 0 0 1 1
1 0 1 1 −5 0 1 0 0 0
0 1 1 1 0 −5 0 1 0 0
1 1 0 0 1 0 −6 1 0 0
1 0 0 0 0 1 1 −7 1 1
0 0 1 1 0 0 0 1 −5 0
0 0 1 1 0 0 0 1 0 −5


, (27)

ˆ
A2 =



−4 1 0 0 0 0 0 0 0 0
1 −3 0 0 0 0 0 0 0 0
0 0 −4 0 1 0 0 0 0 0
0 0 0 −3 0 0 0 0 0 0
0 0 1 0 −3 0 0 0 0 0
0 0 0 0 0 −4 0 1 0 0
0 0 0 0 0 0 −3 0 0 0
0 0 0 0 0 1 0 −4 1 0
0 0 0 0 0 0 0 1 −3 0
0 0 0 0 0 0 0 0 0 −3


, (28)
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ˆ
A12 =



0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 1 0
0 0 1 1 1 0 1 1 1 0
1 0 1 1 0 1 0 0 0 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0 0 0
1 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 0 0 0


. (29)

Matrix B is an identity matrix, whose dimensions are equal to the state order.
Based on (6), we implement the next RHONN for identification of the pinned nodes

state elements:

x̂i1(k + 1) = wi11(k)ϕ(xi2(k)) + wi21(k)ϕ(xi1(k)) + wi31(k)ϕ(xi2(k))ϕ(xi3(k)), (30)

x̂i2(k + 1) = wi12(k)ϕ(xi1(k)) + wi22(k)ϕ(xi1(k))ϕ(xi3(k)) + wi32(k)ϕ(xi2(k)), (31)

x̂i3(k + 1) = wi13(k)ϕ(xi1(k))ϕ(xi2(k)) + wi23(k)ϕ(xi3(k)) + wi33(k)ϕ(xi2(k)), (32)

with
ϕ
(

xij(k)
)
= 0.1tanh

(
0.05xij(k)

)
. (33)

The weights are obtained using Equations (7)–(9), with:

Pi(0) =

 10 0 0
0 10 0
0 0 10

, (34)

H>i1 (k) =

 ϕ(xi2(k))
ϕ(xi1(k))

ϕ(xi2(k))ϕ(xi3(k))

, (35)

H>i2 (k) =

 ϕ(xi1(k))
ϕ(xi1(k))ϕ(xi3(k))

ϕ(xi2(k))

, (36)

H>i3 (k) =

 ϕ(xi1(k))ϕ(xi2(k))
ϕ(xi3(k))
ϕ(xi2(k))

, (37)

Ri(k) = Ri = 10, (38)

Qi(k) = Qi =

 0.1 0 0
0 0.1 0
0 0 0.1

. (39)

By doing the analysis described in Section 3, linearizing around equilibrium point
X = 0, for the uncontrolled system we get a maximum eigenvalue αk 6=tk

= 1.0326, and by
pinning nodes 3 and 4 with a control gain κi(k) = 500T we get a maximum eigenvalue
of αk=tk

= 0.9620, setting the time of the control impulse as tk = 2nT, for n = 1, 2, . . . , ∞,
we can stabilize the system at state zero. Additionally, we replace the node state with the
identified state for the pinned nodes as stated in (19). The simulation follows the next
outline, at the beginning of the simulation the nodes are not connected to each other and
they are also not controlled, at Tk = 2 the nodes are connected according to (26), and at
Tk = 4 pinned nodes 3 and 4 are controlled as previously described.
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Figure 3 shows the results of the numerical simulation done in MATLAB®. As can be
seen in Figure 3, the proposed control scheme drives all of the network node state variables
to zero. The control impulses can cause oscillation, being more noticeable for xi3(k) at
Tk = 4, nonetheless, the stabilization goal is achieved.

Figure 3. Complex network state variables where xij(k) for i = 1, . . . , N and j = 1, 2, 3 is the state
variable of the i-th node of dimension 3.

5. Conclusions

The linearization approach proves to be a viable solution for the pinned control
of complex networks as illustrated via simulations. The matrices resulting from such
linearization make it easier to select the respective control gains. The neural network
identifier for the pinned nodes dynamics is a powerful tool as illustrated by the included
simulations; the same identifier structure is used for all the pinned nodes.

Different meaningful applications may be controlled using the proposed approach,
such as robotic and biomedical systems.

Future work may center on using the passivity degree for the node dynamics as the
V-stability approach [12,26] and avoid the use of linearized dynamics. Furthermore, the
development of analysis for complex networks with time-varying connections is also an
important topic for future research.
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