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Abstract: In this paper, we define ordered vectorial quasi contractions. We show that ordered quasi
contractions are ordered vectorial quasi contractions, but the reverse is not true. We also define
ordered vectorial almost contractions and present fixed point theorems for this type of contractions.
Hence, we disclose many results in the literature. With the help of examples, we illustrate the
relationship between these two types of contractions and some others in the literature.
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1. Introduction

Classical Banach’s contraction principle [1] has a very important role in fixed point
theory. Despite its considerable importance, it has a weakness that the function needs
to be continuous if it satisfies this contraction condition. To remove continuity, many
generalizations have been made, such as [2–5]. Ćirić [2] provided some fixed point results
for functions satisfying the following contraction condition.

Definition 1. Let (X, d) be a metric space. A function T : X → X is called a quasi contraction if
there exists a constant h ∈ (0, 1) satisfying

d(T x, T y) ≤ h. max{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)}

for all x, y ∈ X.

Following this, Berinde presented weak contractive mappings, or (δ, L)-weak contrac-
tive mappings (later called almost contractive mappings), which are:

Definition 2 ([6]). Let (X, d) be a metric space. A function T : X → X is called (δ, L)-weak
contraction if there exists a constant δ ∈ (0, 1) and some L ≥ 0 satisfying

d(T x, T y) ≤ δd(x, y) + Ld(y, T x) (1)

for all x, y ∈ X.

He emphasized that any Kannan, Chatterjee, or Zamfirescu contraction, or any quasi
contraction with h ∈ (0, 1/2), is a weak contraction. In addition, he provided a fixed point
result for weak contractions.

Theorem 1 ([6]). Let (X, d) be a complete metric space and T : X → X be a weak contraction.
Then

(1) F(T ) = {x ∈ X : T x = x} is nonempty;
(2) For any x0 ∈ X, the Picard iteration (xn) converges to some x∗ ∈ F(T );
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(3) The following estimates

d(xn, x∗) ≤ δn

1− δ
d(x0, x1)

d(xn, x∗) ≤ δ

1− δ
d(xn−1, xn)

hold for all n ∈ N+.

Berinde remarked that this theorem can not guarantee the uniqueness of a fixed point,
and he stated that, in this theorem, if the weak contraction T also satisfies

d(T x, T y) ≤ θd(x, y) + L1d(y, T x)

for all x, y ∈ X and for some L1 ≥ 0 where θ ∈ (0, 1), the uniqueness of the fixed point is
attained. He gave more results and properties about weak contractive mappings in [6–9].
On the other hand, there is another tendency to extend the Banach contraction principle
with partial ordering. To our knowledge, it started with Ran and Reuring [10] and was
followed by many authors, notably Nieto and Lopez [11,12]. They presented some fixed
point results for nondecreasing, nonincreasing and even not monotone contractions. After
that, many fixed point results have been given on partially ordered metric spaces, such
as [13]. While in [14,15], the notion of partial metric is combined with partial ordering,
in [16], the notion of M-metric is combined with partial ordering. Moreover, in many
works such as [17–20], many fixed point results have been given on cone metric spaces.
On the other hand, a generalization of metric spaces was made by Cevik and Altun [21].
They presented vector metric space (E-metric space) and gave some fixed point results on
this space. According to this work, any metric is a vector metric, but the converse is not
true in general. In the last two decades, many extensions of the results in [21] have been
completed, such as [22–25]. In [23], the authors united the concept of partial ordering with
vector metric and provided some fixed point theorems on ordered vector metric space;
hence, they generalized the results of [11,12,21].

In this paper, we aim to combine the results in [2,6–8] with the notion of vector metric
introduced in [21] and partial ordering. Hence, we extend the results in these works as
well as the ones in [11,12,23]. We define ordered vectorial quasi contraction. According
to this definition, any ordered quasi contraction (extension of quasi contraction) is an
ordered vectorial quasi contraction, but the converse is not true. We also define ordered
vectorial almost contraction, which is an extension of (δ, L)-weak contraction and, we
present some fixed point theorems for this kind of family of contractions. In addition, we
provide some related examples that show the differences between our results and the ones
previously mentioned.

A partially ordered set, whose any two elements contain both supremum and infimum,
is called lattice. An ordered vector space E is a real vector space with an order relation
“6”, which is compatible with the algebraic structure of E. In other words, a 6 b implies
a + c 6 b + c and aλ 6 bλ for all c ∈ E , λ ∈ [0, ∞). An ordered vector space is called
Riesz space whenever it is a lattice. A Riesz space is labelled Archimedean if 1

n a ↓ 0 for
all a ∈ E+. By the notation an ↓ a, we mean the sequence (an) is order-reversing and the
infimum of the set {an : n ∈ N} is a. For other facts and concepts related to Riesz space,
we refer [26,27]. Now, let us recall some concepts from [21], especially the definition of
vector metric space. A map d : X2 → E is named vector metric (E-metric) if it satisfies
the conditions

(1) d(x, y) = 0⇔ x = y, for all x, y ∈ X

(2) d(x, y) 6 d(x, z) + d(y, z) for all x, y, z ∈ X

where X is a nonempty set and (E,6) is a Riesz space. Hence, (X, d, E) (briefly X) is called
vector metric space (E-metric space). A sequence (xn) of X vectorially converges (E-converges)
to x ∈ X if there is a sequence (bn) in E such that bn ↓ 0 and d(xn, x) 6 bn for all n.
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The sequence (xn) is labelled E-Cauchy if there is a sequence (bn) in E such that bn ↓ 0
and d(xn+p, xn) 6 bn for all n and p. Additionally, if every E-Cauchy sequence in X is
E-convergent, then X is said to be E-complete.

Note that a function f : X → Y is called vectorial continuous if f (xn)
ρ,E2→ f (x) whenever

xn
d,E1→ x where (X, d, E1) and (Y, ρ, E2) are two vector metric spaces [28].

2. Ordered Vectorial Quasi and Almost Contractions

Initially, we present the definitions of ordered vectorial quasi contractions and ordered
vectorial almost contractions in this part. Unless otherwise stated, we assume that (X, ρ, E)
(shortly X) is a vector metric space, and it is equipped with the ordering “�”. We also use
the notations My

x and Sy
x, respectively, for the maximum (if exists) and the supremum of

the set {ρ(x, y), ρ(x, T x), ρ(y, T y), ρ(x, T y), ρ(y, T x)}.

Definition 3. A function T on an ordered vector metric space X to itself is named ordered vectorial
quasi contraction if there is a number h ∈ (0, 1) satisfying

ρ(T x, T y) 6 h.Sy
x (2)

for all x � y where x, y ∈ X.

In general, according to a given partial ordering, the concepts of supremum and
maximum do not coincide, even on finite sets. In case any two elements of a finite subset of
a Riesz space are not comparable, this set has a supremum but may not have a maximum.
On the other hand, a finite set whose elements are taken from a Riesz space has a maximum
when all the elements are comparable. For instance, if we assume E = R endowed with
usual ordering, it can be clearly understood that My

x and Sy
x coincide. Hence, every ordered

quasi contraction is an ordered vectorial quasi contraction, but the reverse is not true
(see Example 1). Since any ordered Kannan, Chattarjee and Zamfirescu contraction is an
ordered quasi contraction, similar deductions can be made for this type of contractions.

Example 1. Let X = {(0, 0), (0, 1), (1, 0), (2, 2)} and

β = {((0, 0), (0, 0)), ((0, 0), (2, 2)), ((0, 1), (0, 1)), ((0, 1), (2, 2)),
((1, 0), (1, 0)), ((1, 0), (2, 2)), ((2, 2), (2, 2))}.

It is clear that the relation � defined as

x � y⇔ (x, y) ∈ β

is a partial ordering on X. Let X be equipped with this relation and E = R2 be equipped with
coordinatewise ordering. Then E is a Riesz space and X is a vector metric space with the map
ρ : X2 → E defined as ρ((x1, y1), (x2, y2)) = (|x1 − x2|, |y1 − y2|). Suppose the function
T : X → Xis defined as

T ((0, 0)) = T ((1, 0)) = (0, 1) and

T ((0, 1)) = T ((2, 2)) = (1, 0). (3)

It is clear that, for all x, y ∈ X with x � y, the function T assures

ρ(T x, T y) 6 h.Sy
x

for h = 1/2. That is T is an ordered vectorial quasi contraction. However, T is neither a quasi
contraction nor an ordered quasi contraction; hence, the results for quasi contractions and ordered
quasi contractions can not be applicable to this example. In particular, if we assume x = (0, 1) and
y = (2, 2), we see that
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{ρ(x, y), ρ(x, T x), ρ(y, T y), ρ(x, T y), ρ(y, T x)} = {(2, 1), (1, 1), (1, 2)}. (4)

As a result, My
x does not exist while Sy

x = (2, 2).

As already mentioned, an ordered quasi contraction is an extension of a quasi con-
traction. Likewise, an ordered vectorial quasi contraction is an extension of an ordered
quasi contraction. However, we do not give fixed point results for this type of contraction
because the contraction we focused on, which is ordered vectorial almost contraction, is a
generalization of ordered vectorial quasi contraction.

Definition 4. A function T on an ordered vector metric space X to itself is named ordered vectorial
almost contraction if there is a real number δ ∈ (0, 1) and some L ≥ 0 satisfying

ρ(T (x), T (y)) 6 δ.ρ(x, y) + Lρ(y, T (x)) (5)

for all x � y where x, y ∈ X.

The following proposition gives us a relationship between ordered vectorial quasi
contractions and ordered vectorial almost contractions.

Proposition 1. Let Sy
x be an element of the set

{ρ(x, y), ρ(x, T x), ρ(y, T y), ρ(x, T y), ρ(y, T x)}.

Then any ordered vectorial quasi contraction with h ∈ (0, 1/2) is an ordered vectorial
almost contraction.

Since the proof can be made in a similar way as in Proposition 3 in [6], it is omitted.
This proposition is not a necessary condition for an ordered vectorial quasi contraction to be
an ordered vectorial almost contraction. In Example 1 for x = (0, 1) and y = (2, 2), we have
Sy

x = (2, 2), which is not a member of the set {ρ(x, y), ρ(x, T x), ρ(y, T y), ρ(x, T y), ρ(y, T x)}
and h /∈ (0, 1/2) since h = 1/2. However, if we take δ = 1/2 and L ≥ 1/2, then we see
that T is an ordered vectorial almost contraction.

Now, we give a fixed point theorem for ordered vectorial almost contractions. Through-
out the rest of the work, unless otherwise stated, we assume that X is E-complete vector
metric space and it is endowed with an order relation “�”, and (E,6) is an Archimedean
Riesz space.

Theorem 2. Let T : X → X is an ordered vectorial almost contraction where δ ∈ (0, 1) and
L ≥ 0. Suppose that T is order-preserving, and one of the following is satisfied

(i) T is vectorial continuous;

(ii) For any order-preserving sequence (xn) in X, if xn
ρ,E→ x then xn � x for all n ∈ N+.

If there exists x0 ∈ X with x0 � T (x0), then T has a fixed point.

Proof. Let us define a sequence (xn) as xn = T (xn−1) for all n ≥ 1. Since T is order-
preserving, we obtain x0 � T (x0). Following this process leads us to the result

x0 � x1 = T (x0) � . . . � xn+1 = T (xn) = T n(x0)

for all n ∈ N+. It is clear that (xn) is an order-preserving sequence. The function T is an
ordered vectorial almost contraction; hence, for a real number δ ∈ (0, 1) and some L ≥ 0

ρ(xn, xn+1) = ρ(T (xn−1), T (xn)) 6 δ.ρ(xn−1, xn) + Lρ(xn, T (xn−1)).
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Since xn = T (xn−1), we have

ρ(xn, xn+1) = ρ(T (xn−1), T (xn)) 6 δ.ρ(xn−1, xn)

and we obtain
ρ(xn, xn+1) 6 δn.ρ(x1, x0)

for all n ∈ N+. Hence, for any n, p ∈ X, we deduce that

ρ
(
xn, xn+p

)
6 ρ(xn, xn+1) + · · ·+ ρ

(
xn+p−1, xn+p

)
6

(
δn + · · ·+ δn+p−1

)
ρ(x1, x0)

6
δn

1− δ
ρ(x1, x0).

Due to the fact that (δn/(1− δ))ρ(x1, x0) ↓ 0 and E is an Archimedean Riesz space,
it is clear that (xn) is E-Cauchy sequence. By E-completeness of X, we deduce that there

exists an element x in X such that xn
ρ,E→ x. That is, there exists a sequence (an) such that

ρ(xn, x) 6 an for all n and an ↓ 0. For the rest, we investigate two cases separately.
(i) In case T is vectorial continuous, there exists a sequence (bn) such that bn ↓ 0 and

ρ(T (xn), T (x)) 6 bn for all n where (xn) is a sequence in X and xn
ρ,E→ x. So

ρ(x, T (x)) 6 ρ(x, T (xn)) + ρ(T (xn), T (x))
6 ρ(x, xn+1) + ρ(T (xn), T (x))
6 an+1 + bn

6 an + bn

for all n ∈ N+. Since an + bn ↓ 0, we have T (x) = x.

(ii) For any order-preserving sequence (xn) in X, let xn � x for all n whenever xn
d,E→ x.

Then, we have

ρ(x, T (x)) 6 ρ(x, xn+1) + ρ(xn+1, T (x))
= ρ(x, xn+1) + ρ(T (xn), T (x))
6 ρ(x, xn+1) + δ.ρ(xn, x) + Lρ(x, T (xn))

= ρ(x, xn+1) + δ.ρ(xn, x) + Lρ(x, xn+1)

6 (1 + L).ρ(x, xn+1) + δ.ρ(xn, x)
= (1 + L).an+1 + δ.an

6 (1 + L + δ).an

for all n ∈ N+. Since an ↓ 0, so (1 + L + δ).an does. Thus T (x) = x, that is, x is a fixed
point of T .

Although this theorem presents the existence of a fixed point, it is not sufficient to say
that the fixed point is unique.

Example 2. Let X = C[0, 1], and it is equipped with an ordering � defined for any f , g ∈ X as

f � g⇔ f (x) ≤ g(x)

for all x ∈ [0, 1] where “≤” is usual ordering on [0, 1]. Let also E = R2 be equipped with
coordinatewise ordering, and the map ρ : X2 → E is defined as

ρ( f , g) =

(
sup

x∈[0,1]
| f (x)− g(x)|, 2 sup

x∈[0,1]
| f (x)− g(x)|

)
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for all f , g ∈ X. Suppose T : X → X be the identity map. That is, T f = f for all f ∈ X. It is clear
that T is an ordered vectorial almost contraction with a positive δ ∈ (0, 1) and some L ≥ 1− δ.
All hypotheses of Theorem 2 are satisfied, but T has infinitely many fixed points.

Another important role of this example is showing us that any ordered vectorial almost
contraction need not to be an ordered vectorial quasi contraction. Indeed, since T is the identity
map, ρ(T f , T g) = ρ( f , g) and for any f , g ∈ X with f � g, we have

Sg
f = sup{ρ( f , g), ρ( f , T f ), ρ(g, T g), ρ( f , T g), ρ(g, T f )}

= sup{ρ( f , g), ρ( f , f ), ρ(g, g), ρ( f , g), ρ(g, f )}
= ρ( f , g).

Hence, there is not at least one h ∈ (0, 1) satisfying

ρ(T f , T g) ≤ h.Sg
f . (6)

That is, T is not an ordered vectorial quasi contraction.

By applying an additional condition to Theorem 2, we can obtain the uniqueness of
the fixed point.

Theorem 3. Let all hypotheses of Theorem 2 be satisfied. Let the function T satisfy the property

ρ(T (x), T (y)) 6 δ1.ρ(x, y) + L1ρ(x, T (x)) (7)

for all x � y where x, y ∈ X, a δ1 ∈ (0, 1) and some L1 ≥ 0. If there exists a comparable element
for any two elements in X, then T has a unique fixed point.

Proof. Let x and y be two fixed points of T . We have to investigate two cases sepa-
rately again.

(i) Let x and y be comparable elements. Since

ρ(x, y) = ρ(T (x), T (y)) 6 δ1.ρ(x, y) + L1ρ(x, T (x))

we obtain (1− δ1).ρ(x, y) 6 0. That is x = y.
(ii) Let x and y be incomparable elements. Then there exists an element w comparable

with x and y. Since T is order-preserving, T n(w) is comparable with w and as a result with
x and y for any n. Hence, we have

ρ(x, y) 6 ρ(x, T n(w)) + ρ(T n(w), y)
= ρ(T (x), T n(w)) + ρ(T n(w), T (y))

6 δ1.ρ
(

x, T n−1(w)
)
+ L1ρ(x, T (x)) + δ1.ρ

(
y, T n−1(w)

)
+ L1ρ(y, T (y))

6 δ1.
[
ρ
(

x, T n−1(w)
)
+ ρ
(

y, T n−1(w)
)]

...

6 δn
1 .[ρ(x, w) + ρ(y, w)]

for all n. Since δ1 ∈ (0, 1) and E is an Archimedean Riesz space, δn
1 .[ρ(x, w) + ρ(y, w)] ↓ 0.

Thus, we have x = y. By (i) and (ii), we say that the fixed point of T is unique.

Example 3. Let X = {0, 1, 2} and β = {(0, 0), (1, 1), (2, 2), (0, 1)}. It is clear that the relation
� defined as

x � y⇔ (x, y) ∈ β
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is a partial ordering on X. Let X be equipped with this relation and E = R2 be equipped with
coordinatewise ordering. E is an Archimedean Riesz space, and X is an E-complete vector metric
space with the map ρ : X2 → E defined as ρ(x, y) = (|x− y|, |x− y|). Suppose that the function
T : X → X is defined as

T (0) = T (1) = 0 and T (2) = 1.

It is clear that T is order-preserving, and for all x, y ∈ X with x � y, T satisfies

ρ(T (x), T (y)) 6 δ.ρ(x, y) + Lρ(x, T (y))

for δ = 1/3 and any L ≥ 0. In addition to that, T satisfies

ρ(x, y) = ρ(T (x), T (y)) 6 δ1.ρ(x, y) + L1ρ(x, T (x))

for δ1 = 1/2 and any L1 ≥ 0. Additionally, if a sequence (xn) in X is order-preserving, then
xn � x for all n ∈ N+. Hence, we see that all hypotheses of Theorem 3 are satisfied, and 0
is the only fixed point of T . On the other hand, if we take x = 2 and y = 1, we see that
ρ(T (x), T (y)) = (1, 1), while ρ(x, y) = (1, 1) and ρ(y, T (x)) = (0, 0). As a result, we could
not find at least one L ≥ 0 satisfying (1). That is, we can not apply Theorem 1 to this example.
Another important aspect of this example is the function T is an ordered vectorial quasi contraction
for any h ∈ (0, 1). However, again if we assume x = 2 and y = 1, we see that there is no such a
h ∈ (0, 1) satisfying (2). So, the results for quasi contraction on metric spaces can not be applicable
to this example.

3. Conclusions

In this paper, by combining the notion vector metric and partial ordering with the
notion quasi contraction and almost contraction, the ordered vectorial quasi and almost
contractions were defined. Additionally, it was showed that every ordered quasi contrac-
tion is an ordered vectorial quasi contraction, but the reverse may not be true in general.
Moreover, some fixed point results for ordered vectorial almost contractions were pre-
sented. Furthermore, it was emphasized that, since in some cases ordered vectorial quasi
contractions are ordered vectorial almost contractions, our results are extensions of not
only the ones made for ordered almost contractions but also the ones made for ordered
quasi contractions.
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