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Abstract: Renewable energy (RE) power plants are deployed globally because the renewable energy
sources (RESs) are sustainable, clean, and environmentally friendly. However, the demand for power
increases on a daily basis due to population growth, technology, marketing, and the number of
installed industries. This challenge has raised a critical issue of how to intelligently match the power
generation with the consumption for efficient energy management. To handle this issue, we propose
a novel architecture called ‘AB-Net’: a one-step forecast of RE generation for short-term horizons
by incorporating an autoencoder (AE) with bidirectional long short-term memory (BiLSTM). Firstly,
the data acquisition step is applied, where the data are acquired from various RESs such as wind
and solar. The second step performs deep preprocessing of the acquired data via several de-noising
and cleansing filters to clean the data and normalize them prior to actual processing. Thirdly, an
AE is employed to extract the discriminative features from the cleaned data sequence through its
encoder part. BiLSTM is used to learn these features to provide a final forecast of power generation.
The proposed AB-Net was evaluated using two publicly available benchmark datasets where the
proposed method obtains state-of-the-art results in terms of the error metrics.

Keywords: energy resources; wind power; power generation; power consumption; renewable energy;
solar power; machine learning; deep learning

1. Introduction

In recent years, an exponential increase in power consumption has been noted due
to the growth of the population and economy, which requires a continual demand for
energy resources [1]. Globally, fossil fuels have been utilized as a primary and vital source
of power generation throughout the years. The extensive usage of fossil fuels for energy
production has instigated their shortage and many other serious environmental issues that
cause living health threats as well as an alarming case for global climate change [2]. Further,
it takes several decades for fossil fuels to be developed, while the existing supplied energy
is consumed faster than the new fossil fuels. For this reason, power generation industries
are showing a keen interest in RESs for energy generation [3]. The main resources of RE are
photovoltaics (PV), wind power, hydropower, and geothermal power [4]. These RESs are
plentiful, inexhaustible, and renewable in the real world and are clean, efficient, and helpful
for the protection of the natural environment by decreasing the threat of atmospheric
contamination and the greenhouse effect [5]. Similarly, the usage of RESs helps to reduce
the burden on power stations and the demand for natural fossil fuels. These resources
contribute to reducing carbon emissions as well as natural energy resource conservation.
In recent years, power generation from renewable resources has been developed on a
large scale. In 2016, the total production of RE accounted for 24.5% of the electric power
generation and 19.3% of the overall global energy consumption [6].

RESs are considered as the most promising replacements for fossil fuels since they
are naturally replenished over a huge geographical region, and their energy conversion
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is possible [7]. However, their use also involves unpredictable uncertainty that adversely
affects the stability and reliability of large-scale RE power plants [8]. Forecasting energy
production at RE generation plants is a key factor towards future settlement and enhance-
ment [9]. Due to the inconsistent, unpredictable, and irregular character of RE data, precise
energy generation and consumption forecasting remains a difficult challenge. On this
account, RE forecasting has been investigated in recent decades to address the issues that
have arisen due to the significant increase in RES power plants around the world [10]. Dif-
ferent techniques for RE forecasting such as the future short- and long-term time intervals
have been documented in the literature. Future prediction techniques for RE are generally
based on physical models which estimate the energy using weather and power station
information [11]. Physical techniques are mostly based on numerical weather simulation of
atmospheric phenomena using scientific parameters and geographic conditions to simulate
atmospheric dynamics [12]. For short-term intervals of forecasting demands, physical
techniques are ineffective and not suitable for efficient and accurate predictions [13]. In the
literature, different statistical approaches such as the Bayesian-based adaptive model, au-
toregressive moving average technique, Kalman filter (KF), Hammerstein model, Markov
chain model, and other regression models are frequently incorporated for the prediction of
future power generation [14–16]. The statistical approaches yield the most accurate predic-
tions; however, most of them are linear in nature and are unable to handle the predictions
with long-term forecasting demands [13].

Due to the development and enhancement in the field of artificial intelligence (AI)-
based prediction models, machine learning (ML) and deep learning (DL) have proven to
be successful tools for RE prediction. Research reveals that various ML and DL algorithms
have been used for the purpose of RE forecasting [10]. Different assembled AI-based models
have been developed to enhance the RE forecast accuracy [17]. To predict RE generation,
several time horizons have been investigated such as minutely, hourly, daily, weekly, and
monthly depending on the objective of the forecast [18]. Data-driven prediction models
based on ML techniques including support vector machines (SVMs), k-nearest neighbors
(k-NNs), support vector regression (SVR), multiple linear regression (LR), regression tree,
gradient boosting (GB), and random forest (RF) are frequently utilized for the RE prediction
domain. Deep neural networks (DNNs), long short-term memory (LSTM), and gated
recurrent units (GRUs) are DL-based models that have been utilized for the prediction of
power consumption and RE generation for different horizons with adequate results [8,19];
further, LSTM along with AE has been incorporated with satisfactory results [20].

Due to the large-scale applications and prominent role of RE, there is a wide range
of literature published on RE forecasting [21,22]. However, there exist several challenges
in artificial neural networks (ANNs) and traditional ML methods that work with only a
fixed length of input data. Similarly, DL models such as convolutional neural networks
(CNNs) are limited to extract meaningful and suitable features from time series data.
However, AI-based ML and DL models have shown satisfactory performance for real-time
expected power generation predictions, particularly when learning from dynamic changes
in environmental circumstances is crucial to improve the forecasting accuracy [23]. Thus,
our study aimed to use a DL ensemble approach based on an AE and BiLSTM to improve
the one-step forecast accuracy of RE systems for short-term horizons. The proposed AB-Net
network possesses the ability to extract the complex and most discriminative features from
sequential data with the AE and feed it to the BiLSTM to learn the sequence for prediction
via the internal memory concept. Following are the main contributions of our research:

• Initially, acquiring power generation data through meters introduces different abnor-
malities and noise in the data such as missing values, outliers, and redundancy, due to
the environmental conditions. Processing such a type of data yields incorrect energy
generation forecasting. To overcome this issue, the raw data are passed through the
preprocessing layer where they are cleaned, normalized, and de-noised to make them
suitable for effective processing.
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• The established literature reveals that the sequential learning approaches have a
strong performance in time series prediction data. Inspired by their reasonable and
accurate performances for prediction problems, for the first time, a novel hybrid
network composed of an AE and BiLSTM is proposed for single-step forecasting of
RE power generation.

• Short-term RES power production forecasting is very useful, and this information
can improve the performance of existing energy systems. Furthermore, short-term
forecasting of power allows for efficient integration, trading, storage unit management,
and control systems of energy. Therefore, in this paper, we propose a model that has
the ability to forecast short-term horizons for one-step RE forecasting.

• To confirm and verify the effectiveness of the proposed method, we conduct an
extensive set of experiments on publicly available power generation datasets. We
experimentally prove that the proposed method outperforms state-of-the-art methods
by comparing it with competitive models including BiLSTM, CNN-BiLSTM, and an
encoder–decoder (ED) via basic evaluation metrics such as mean absolute error (MAE),
mean squared error (MSE), and root mean square error (RMSE), where the proposed
AB-Net obtains the lowest error rate.

The remaining part of this paper is structured as follows: Briefly, the literature on RE
forecasting is discussed in Section 2. Section 3 provides the detailed research methodology
and its full overview. Section 4 discusses the experiments and visual representation of the
results, while Section 5 concludes the paper along with further research directions.

2. Literature Review

In recent years, researchers have switched their attentions towards RESs for estimating
power generation. These sources have been widely utilized for power generation due to the
ease of their availability and renewable nature. One of the challenges in power production
from RESs is its sustainability. Prediction of power generation from RESs mainly depends
on environmental variables such as wind speed, wind direction, and weather conditions.
These non-human controllable parameters make the prediction problem more challenging.
Different types of prediction techniques have been utilized for estimating power generation
from the renewable sources that are discussed in the following subsections.

2.1. Wind Power Generation

In the domain of wind power generation forecasting, different statistical, DL, and ML
methods have traditionally been used. For instance, Liu et al. [24] proposed a combined
model for short-term wind speed forecasting that utilized a multi-objective optimization
algorithm to tackle wind speed issues such as nonlinearity, irregularity, and non-stationarity.
Similarly, Sun et al. [25] introduced a hybrid approach by incorporating various techniques
such as LSTM principle computing, secondary decomposition, and random forest to tackle
issues related to wind energy generation such as sustainability and sanitation. Next, Hu
et al. [26] proposed a stacked hierarchy of reservoirs which introduces the basic echo
state network and DL framework for power production and consumption forecasting.
Sharifzadeh et al. [27] conducted a study using an ANN, Gaussian process regression,
and SVR for the prediction of future energy from wind resources. Similarly, Demolli
et al. [28] used extreme GB (XGB) regression, SVR, and RF approaches for wind power
energy forecasting using daily wind speed data. Li et al. [29] applied the least square SVM
for short-term wind speed prediction, while Andrade et al. [30] presented a wind and solar
power prediction model using the GB decision tree (DT) algorithm with feature engineering
techniques. Moreover, Khosravi et al. [31] investigated the fuzzy inference system (FIS),
SVR, and other ML approaches to forecast wind speed data for a power plant located in
Brazil. Guoyang et al. [32] analyzed time series data of wind speed using the autoregressive
moving and autoregressive integrated moving average approaches to predict wind power.
Furthermore, Ding et al. [33] used the KF model for online prediction of wind speed and
power generation for an efficient grid management system. Manero et al. [34] evaluated
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different DL approaches using wind speed time series data for the prediction of wind power
generation. Khan et al. [35] combined DL and principal component analysis approaches
for forecasting wind power using datasets of hourly, monthly, and yearly wind speed data.
Eze et al. [36] introduced LSTM networks for the prediction of power generated at a wind
power plant. Liu et al. [37] practiced wavelet packets along with other DL approaches for
wind speed prediction, with outstanding results.

2.2. Solar Power Generation

Solar energy is a limitless RES that does not emit carbon or other greenhouse gases,
since it does not need fuel or other resources. This property makes it one of the most
ecofriendly energy generation technologies. In solar energy, radiation is considered to
be an important parameter with different intervals of time scales. Different ML and DL
approaches based on data-driven methods have been used for the purpose of effective
management at solar power plants. For instance, Aslam et al. [38] analyzed different DL
approaches for the prediction of solar radiation for one year ahead in intervals of hours and
days through a recurrent neural network (RNN), GRU, LSTM, feedforward neural network
(FFNN), and SVR. Next, Torres-Barrán et al. [39] utilized the methods of RF regression, GB
regression, and XGB for the prediction of power generation from the renewable sources
of solar and wind. Another group, Saloux et al. [40], investigated DT, SVM, and ANN
for the prediction of the heating demand at a solar power plant, while Sun et al. [41]
presented a CNN-based prediction approach for PV power generation. Torres et al. [42]
proposed an FFNN to predict the day ahead electricity generated by PV solar systems,
while Kamadinata et al. [43] forecasted the solar radiation from sky images using the ANN
architecture. Similarly, Correa-Jullian et al. [44] explored the techniques of ANN, RNN, and
LSTM and found these methods reliable for solar energy prediction. AlKandari et al. [45]
used both ML and statistical methods for the prediction of future solar power generation
in solar plants. Liu et al. [46] comparatively analyzed the SVM and copula-based nonlinear
quantile regression (CNQR) approaches in terms of predicting solar radiation and proved
the efficiency of CNQR over SVM.

2.3. Hydropower Generation

Among RESs, hydropower is also one of the most widely used power generation
sources. Water sources are used for energy production due to their efficient characteristics,
economic viability, and availability [47]. Different resources of water such as rivers and
stored water are used for power generation purposes. Rainfall is also considered an impor-
tant parameter affecting the power generation process [48]. Different types of prediction
approaches have been presented for the better planning and management of hydropower
plants [49]. For instance, Sapitang et al. [50] predicted the water level at a hydropower
generation plant using the supervised ML approaches of Bayesian linear regression (LR),
boosted DT regression, neural network regression, and decision forest regression. Similarly,
Dehghani et al. [51] presented a promising approach using gray wolf optimization and
an adaptive neuro-fuzzy inference system for hydropower generation prediction. Further,
Zhang et al. [52] presented a multi-step hybrid approach of long-, medium-, and short-term
Bayesian stochastic dynamic programming for the purpose of forecasting hydropower in-
flows. Hong et al. [53] forecasted rainfall with the hybrid approach of RNN and SVR along
with the chaotic particle swarm optimization approach, while Wang et al. [54] presented a
seasonal decomposition-based least square SVR approach for power generation prediction
in hydropower plants. Lansberry et al. [55] utilized the genetic algorithm approach for
optimization of the gains of governors that are plant parameters of the conduit constant
and load self-legalization at a hydropower plant. Similarly, the authors in [56] used wavelet
transform and SVR to predict tidal current speed and direction at a tidal power generation
plant. Safari et al. [57] predicted tidal current speed and direction using least square SVR
and ensemble empirical mode decomposition. Ozbas et al. [58] predicted hydrogen pro-
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duction through biomass gasification using ML-based approaches of LR, SVM regression,
k-NN regression, and DT regression.

3. Methodology

This section discusses the proposed framework for power generation prediction. First,
we discuss the data acquisition and preprocessing steps. Then, the technical details of the
proposed AB-Net architecture are presented, and, finally, the model evaluation strategy is
explained. The overall framework of the proposed system is shown in Figure 1.
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Mathematics 2021, 9, 2456 6 of 18

3.1. Data Acquisition and Preprocessing

In this section, we discuss the data acquisition and preprocessing steps in detail. Power
is generated from different RESs such as wind, hydro, solar, geothermal, tidal, and biomass.
The generated power from renewable sources is provided to consumers through a power
distribution system such as a smart grid. In the proposed method, solar and wind power
generation data are considered. Detailed descriptions of each dataset such as location,
time, samples, duration, interval, and other attributes are presented in Table 1 (Section 4.1).
Several smart sensors are installed in smart grids that measure the power generation and
consumption information, and they keep records for future analysis. These previous data
such as power generation and consumption are utilized for training ML and DL models for
future power generation forecasting and consumption prediction. During the acquisition
of data, there are some uncertainties in the data such as noise and missing values. To
remove these abnormalities, preprocessing techniques are applied. The moving average
filter is an important technique that is utilized to smooth data and make them appropriate
for model training. For handling missing values, the substitution method can be applied,
where missing values are filled with previous time values. ML and DL models learn to
map the input data to the output data [59]. There are multiple variables in input data
that have different distributions and scale ranges. The difference between the scale and
distribution of the input variables makes it difficult to model a particular problem. Hence,
DL models learn huge values for weights when the input variable values are large and the
values are in different ranges. As a result, the model becomes unstable and yields a poor
performance. Similarly, a model with large values for weights has a higher generalization
error and suffers from a poor performance throughout the learning. Furthermore, a large
difference in output variable values makes the learning process unstable and results in
a large error gradient. Therefore, it is very important to scale the input and output data
before training ML and DL models. To tackle the above-mentioned problems, the input
and output variable data can be normalized to a range of 0 and 1.

3.2. Proposed Network for Power Generation

This section discusses the proposed AB-Net framework, which is a hybrid network of
an AE and BiLSTM. Then, various sequential models such as RNN, LSTM, BiLSTM, and
an autoencoder are discussed in the following subsections.

3.2.1. Recurrent Neural Network

RNNs are an important type of DNN which deals with sequential data using the
internal memory concept and loops. Figure 2a shows the basic structure of an RNN that is
similar to the architecture of LSTM, while Figure 2b illustrates the unfolded structure. The
calculation process of a hidden layer state is presented in Equation (1). The hidden state ht
of a hidden layer is modified and retained on the basis of the previous hidden state ht−1
and the layer input xt at every time interval t.

ht = σh(WxhXt + Whhht−1 + bh) (1)

yt = σy

(
Whyht + by

)
(2)

In Equation (1), σh is the activation function, Wxh is the weight matrix for the input to
the hidden layer, Whh is successive hidden states’ weight matrix, and bh is the hidden layer
bias vector to produce the hidden state. The output of the network is shown in Equation (2),
where σy is the output layer activation function, and Why is the weight matrix for the hidden
layer to the output layer, while the output layer bias vector is represented by by. In nonlinear
time series problems, RNNs have shown a good performance compared to traditional ML
methods. However, general RNNs have some problems during backpropagation such as
exploding gradients and vanishing gradients due to which these sequential models become
incapable of learning long-term dependencies and longtime lags.
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3.2.2. Long Short-Term Memory

RNNs suffer from vanishing and exploding gradient problems; therefore, to handle
these issues, the architecture of LSTM has been introduced, which is well known for its
good performance on sequential problems with long-term dependencies [60]. The hidden
layer of LSTM, which is also called the LSTM cell, makes it different from the general
RNN architecture [61]. Figure 3a shows the hidden layer of LSTM, where xt is the input of
the cell at time t, and ht is the output. During weight updating and training, the hidden
layer of LSTM also considers different cell states including the input Ct, output C̃t, and
previous output Ct−1. The gate concept is present in LSTM compared to general RNNs
due to which LSTM is capable of learning useful information from long-term as well as
short-term dependencies. LSTM includes three types of gates: input, forget, and output
gates, which make it an effective and scalable model for various sequence-based tasks. In
Figure 3a, for time t, the input gate of the LSTM cell is represented by it and the forget gate
by ft, while the output gate is represented by ot. Equations (3)–(6) are used to calculate the
gates of a cell [62].

ft = σg

(
W f Xt + U f ht−1 + b f

)
(3)

it = σg(WiXt + Uiht−1 + bi) (4)

ot = σg(WoXt + Uoht−1 + bo) (5)

C̃t = tanh(WcXc + Ucht−1 + bc) (6)
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In the above equations, σg is the activation function for each gate which is normally a
sigmoid function, while the hyperbolic tangent function is represented by tanh. Weight
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matrices are represented by W f , Wi, and Wo for mapping from the cell input to the LSTM
gates, while Wc is the weight matrix for mapping the cell input to the input cell state.
Similarly, for connecting the prior hidden layer output state to the gates and the input
cell state, weight matrices are represented by U f , Ui, Uo, and Uc. The bias vectors are
represented by b f , bi, bo, and bc in each equation. At time interval t, the layer output ht and
cell output state Ct can be calculated using Equations (7) and (8):

Ct = ft ∗ Ct−1 + it ∗ C̃t (7)

ht = ot ∗ tanh(Ct) (8)

3.2.3. Bidirectional LSTM

The bidirectional RNN and BiLSTM ideas are similar, which involve the processing
of sequential data with separate hidden layers in both directions, i.e., forward and back-
ward [63]. These two hidden layers are connected to the same output layer in a BiLSTM
network, and it is proved that these bidirectional networks are considerably better than
unidirectional models in many domains such as speech classification and gene sequence
classification. Figure 3b shows the unfolded structure of BiLSTM, which contains the for-

ward and backward LSTM layers. The output sequence of the forward layer
→
h is repeatedly

calculated from time T − n to time T − 1, utilizing inputs in a positive sequence. Similarly,
by means of reversed inputs from T − n to T − 1, the output sequence of the backward

layer
←
h is iteratively calculated. The bidirectional layer produces an output vector where

every element is calculated using the following Equation (9):

yt = σ

(→
h t,
←
h t

)
(9)

To combine the forward and backward layer output sequences, the function σ is used.
This function can have different purposes such as summation, average, concatenation,
or multiplication.

3.2.4. Bidirectional Autoencoder

An AE performs the task of learning the compact representation of data using an
unsupervised learning approach. In this technique, a neural network architecture is
designed in such a way that imposes a compressed information representation of the
original input data. Figure 4 shows that unlabeled data can be framed as a supervised
learning task with the reconstruction of the original input data. There are three types of
layers in an AE, which are the input, hidden, and output layers, where the hidden layers
learn to encode the data, while the output layers reconstruct the original data from the
encoded data [64]. An AE is trained in order to reduce the reconstruction error, which is the
difference between the reconstructed data and original input data. The important attribute
in the AE architecture design is the bottleneck, which is utilized to obtain the compressed
form of the original input data. An AE simply learns to memorize the input data by passing
the data through the model with the presence of bottleneck information. The bottleneck is
responsible for restraining the required information by traversing the whole architecture,
forcing the original input data into a compressed representation. A small number of
nodes are maintained in the hidden layer of our network architecture due to which the
information flow is also reduced through the network. The AE is trained according to
the reconstruction error and tries to learn the key attributes from the original input data,
which is called data encoding, and then it tries to reconstruct the real original data from the
encoded data, which is called data decoding. A BiLSTM-based ED structure can be used to
implement a BiLSTM-based AE for time series data. A BiLSTM-based ED is constructed for
sequential input data in such a way that it can read the input data properly, encode it, and
finally reconstruct it. The efficiency of the architecture is then computed from its capability
to reconstruct the original input time series data. During unsupervised learning, when the
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model obtains the preferred accuracy, the encoder part of the model is used to encode the
input data to a fixed length vector, while the decoder part of the model is removed.
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3.3. Model Evaluation

In this work, an ablation study was conducted using four different sequential models
on two publicly available power generation datasets. In the proposed AB-Net model,
first, a BiLSTM autoencoder is trained, then its decoder part is removed, and the encoder
part is used for extracting the meaningful features from the data. Finally, the extracted
features are passed through another BiLSTM network for one-step forecasting of power
generation. All the forecasting methods were evaluated using basic error metrics that
are presented in Equations (10)–(12) and visual graphs. For instance, y∼i shows variable
values for n number of predictions that are samples from the power generation, while yi
shows the predicted/observed numbers. The MSE calculates the average of squared error,
showing the difference between the estimated and observed values. Similarly, the RMSE is
the square root of the value obtained from the MSE. The details of the ablation study are
presented in the Experimental Result section.

MSE =
1
n

n

∑
i=1

(yi − y∼i )
2 (10)

RMSE =

√
1
n

n

∑
i=1

(
yi − y∼i

)2 (11)

MAE =
1
n

n

∑
i=1
|yi − y∼i | (12)

System Settings and Hyperparameters

The sequential models used for power generation forecasting were implemented
in Python (version 3.8.5) with a popular DL framework (Keras) with Tensorflow at the
backend. Each model was trained up to 100 epochs on each dataset with the Adam
optimizer, with a learning rate of 0.001, and a batch size of 16. In the BiLSTM network,
two BiLSTM layers with 200 and 100 neurons are used for the first and second layers,
respectively, followed by a fully connected layer with 50 neurons. Similarly, in the CNN-
BiLSTM network, two layers of a one-dimensional CNN are used with a 1 × 3 filter size,
while 128 and 256 filters are utilized in the first and second layers, respectively, followed by
a max pooling layer. After the CNN layers, two BiLSTM layers having 200 and 100 neurons
are used, followed by a fully connected layer with 50 neurons. Furthermore, the encoder
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part of the ED model has two BiLSTM layers with 200 and 100 neurons in the first and
second layers, respectively, while the decoder part also comprises two BiLSTM layers
with 100 and 200 neurons. After the decoder part, there is one fully connected layer with
50 neurons. The proposed model is a hybrid connection of two networks that uses the
encoder part of the AE for feature extraction and passes the features to the BiLSM layers
for decoding. The encoder part of the AE in the proposed model contains two BiLSM
layers with 200 and 100 neurons. After that, two layers of BiLSM are used, having 200 and
100 neurons, followed by a fully connected layer with 50 neurons.

4. Experimental Results

This section thoroughly explains the experiments performed for power generation
forecasting using publicly available datasets with the hold-out method to evaluate the
performance of the proposed method. We used 70% and 30% of the data for training and
testing, respectively, which is a standard data splitting procedure. Next, for classification
purposes, model validation was performed via accuracy, recall, and precision. However,
time series forecasting is a regression problem; therefore, basic error metrics such as the
MSE, RMSE, and MAE were assessed, which are widely used to validate and verify the
effectiveness of regression problems.

4.1. Datasets

To verify and evaluate the performance of the proposed method, two publicly available
datasets, namely, a solar dataset [65] and a wind dataset [66], were used. The description
of each dataset is presented in Table 1.

Table 1. Detailed description of each dataset along with its parameters and units.

Dataset Parameters Values

Wind Dataset [66]

Plant Max Output 16 MW
Max Wind Speed 23.0352
Max Wind Direction 359.3794 degrees
Max Temperature 35.9660 degrees Celsius
Max Air Pressure 8.5927 × 104 Pas
Max Air Density 1.0980 Kg/m3

Longitude −104.258
Latitude 35.00168
Duration (1 Year) 2012
Time Interval 5 min
Totals Points 105,121

Solar Dataset [65]

Plant Max Output 2610 kW
Plant Capacity 3026 kW
Max Inclined Irradiance 999.96
Max Surface Temperature 49.78
Max Surrounding Temperature 125.60
Duration 3 years, 10 months (2015 to 2018)
Time Interval 1 h
Totals Points 17,252

4.1.1. Solar Dataset

The solar dataset was obtained from [65] and was collected at a solar plant located
at the stadium of the Yeongam F1. These data cover three years and ten months (i.e.,
January 2015 to October 2018). The input variables in the dataset are inclined irradiance,
surrounding temperature, and surface temperature, while the output power is considered
as a predicted variable.
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4.1.2. Wind Dataset

This dataset was obtained from NREL [66] and was gathered in New Kirk. The wind
dataset consists of power, wind speed, wind direction, surface air pressure, air temperature,
and air density. In this dataset, five variables such as wind direction, air temperature, wind
speed, air density, and surface air pressure are considered as input variables, while the
power is considered to be forecasted.

4.2. Results on Solar Dataset

This section discusses the results obtained over state-of-the-art techniques that include
the most popular competitive DL networks such as BiLSTM, CNN-BiLSTM, ED, and AB-Net.

There are several studies that have used different DL approaches for forecasting
purposes. The RNN architecture is one of the most employed techniques for forecasting
problems, which is capable of remembering the preceding input data to learn the weights
of the network. Several variants of the RNN architecture such as LSTM and BiLSTM have
been used that have improved the network’s ability to preserve the network states by
capturing the long-term sequential dependencies. Initially, LSTM was formed to extend the
memory state in RNNs and to enable them to deal with long-term dependencies. Similarly,
another form is BiLSTM, where the proceeding input sequences are learned in both the
forward and backward directions. In BiLSTM, several layers are stacked to capture the
complex features in time series. In the experiments, we firstly analyzed the results obtained
over BiLSTM by using its predefined settings. The two layers are stacked together to
process the input data, where each layer performs its operations in the reverse direction.
The results obtained from BiLSTM are combined in the final layer to produce the final
prediction/forecast. BiLSTM was found to be effective in the literature. The MSE value
obtained by BiLSTM on the solar dataset was 0.0112. The value is presented in Table 2,
where the RMSE and MAE are also shown. The forecasting graph obtained over BiLSTM
is presented in Figure 5a. Next, the experiments were performed on the hybrid network
where CNN and BiLSTM are combined to extract the most important and discriminative
features. In this network, the features from multivariate data are extracted through the
CNN layers which contain the most important details about the sequential series data. The
features obtained through the CNN are forward propagated into BiLSTM to learn them
for forecasting purposes. The value obtained for the MSE on the solar dataset was 0.0111,
while the other metric values such as the RMSE and MAE are presented in Table 2. The
forecasting graph obtained over CNN-BiLSTM is presented in Figure 5b.

Table 2. Results obtained for different models on solar data via ablation study.

Method MSE RMSE MAE

BiLSTM 0.0112 0.1060 0.0778
CNN-BiLSTM 0.0111 0.1055 0.0748

ED 0.0107 0.1036 0.0747
AB-Net 0.0106 0.1028 0.0743

Next, the ED model was applied, which is also a technique of using BiLSTM for
sequence-to-sequence forecasting problems. This technique involves two BiLSTM networks,
where one network encodes the sequence, known as an encoder, while the other decodes
the input sequence into a target, called a decoder. The encoder takes a single element from
the input sequence at every time step by processing it. It collects the information and
forward propagates it. The encoder produces an internal state that contains the information
about the entire sequence that helps the decoder to carry out accurate forecasting. Finally,
the decoder provides the final prediction at each time step. The MSE value obtained with
the ED on the solar dataset was 0.0107. The value is presented in Table 2, where the RMSE
and MAE are also presented. The forecasting graph obtained over the ED is presented in
Figure 6a.
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Figure 6. Visual results on hourly solar data, where (a) is the ED prediction graph, while (b) is the
proposed AB-Net model prediction graph for solar power in kW.

The proposed method is a hybrid connection of an AE and BiLSTM, rendering the
network more capable of extracting the most important and hierarchical features from
the multivariate data. The initial part of the network consists of an AE that takes the
input sequence and analyzes it for detailed information collection. After this step, once
the information from the AE part is collected, this information is forward propagated
into the BiLSTM for final forecasting. In traditional time series data problems, the AE is
usually formed by stacking simple LSTM layers that are not effective in encoding long-term
dependencies. However, in the proposed method, we create the AE part from the BiLSTM.
The output from the AE is forward fed into the BiLSTM to learn the sequence and provide
the final prediction/forecast. The first input layer is a BiLSTM that is followed by another
BiLSTM layer, which has a small size. The output taken from the encoder part of the AE is
fed into the repeat vector, which is a single vector that reshapes it in our BiLSTM network.
The value of the MSE obtained on the solar data was 0.0106. The value is presented in
Table 2, where the RMSE and MAE are also presented. The forecasting graph obtained over
AB-Net is presented in Figure 6b.

4.3. Results on Wind Dataset

This section thoroughly explains the results obtained on the wind dataset. Similar
to the solar dataset, we practiced the same strategy that was previously applied for the
ablation study.

Firstly, the BiLSTM was applied to study its performance on the wind dataset, where
we examined that the BiLSTM has a good performance compared to its results on the solar
dataset. In fact, the wind blows for a constant time, and the air turbines continuously
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operate for 24 h, while the solar panel only works in the daytime where sunlight radiation
occurs in a specific period. Therefore, some values in this duration are not recorded. The
obtained MSE value by the BiLSTM on the wind dataset was 0.0005, while the RMSE and
MAE were 0.0219 and 0.0142, respectively. The forecasting graph obtained over BiLSTM is
presented in Figure 7a. The hybrid connection of CNN and BiLSTM was also evaluated
on the wind dataset, and it was found to perform better than the results obtained on the
solar dataset due to the same previously stated reason. However, its results on the wind
dataset are better than the simple BiLSTM, where the obtained MSE value was 0.0005,
while the RMSE and MAE values were 0.0216 and 0.0133, respectively. The forecasting
graph obtained over CNN-BiLSTM is presented in Figure 7b.
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The ED that was formed by the BiLSTM variants was also evaluated on the wind
dataset and obtained promising results. The architectural details of ED have been previ-
ously discussed. The ED performed better than BiLSTM and CNN-BiLSTM by obtaining
a 0.0005 MSE on the wind dataset. The RMSE and MAE values were 0.0198 and 0.0130,
respectively. The forecasting graph obtained over ED is presented in Figure 8a. Finally,
the proposed AB-Net architecture was evaluated on the wind dataset, which beats all the
previously practiced networks on the wind dataset. The network settings of the proposed
AB-Net have already been explained in the previous section, and its further details are
out of the scope of this paper. The obtained MSE of the proposed method on the wind
dataset was 0.0004, while the RMSE and MAE values were 0.0189 and 0.0109, respectively,
as shown in Table 3. The forecasting graph obtained over AB-Net is presented in Figure 8b.
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Table 3. Results obtained for different models on wind data via ablation study.

Method MSE RMSE MAE

BiLSTM 0.0005 0.0219 0.0142
CNN-BiLSTM 0.0005 0.0216 0.0133

ED 0.0005 0.0198 0.0130
AB-Net 0.0004 0.0189 0.0109

4.4. Assessment with State of the Art

In this section, we compare the proposed method with recent research carried out
for power generation forecasting. Both the solar and wind datasets were considered for
the comparative study. The comparison was performed with the most recent method [67],
where a mode-adaptive ANN algorithm is proposed via Spearman’s ranking order and
population-based algorithms. They evaluate different models such as advanced particle
swarm optimization (APSO) and the fine-tuning metaheuristic algorithm (FTMA). We
considered their most outstanding results for the comparison, which were obtained using
FTMA, in their case. The MSE values obtained by FTMA on the solar dataset and wind
dataset were 0.0207 and 0.4944, while the RMSE was 0.1438 and 0.7031, respectively. Finally,
we pose the results of the proposed method on the solar dataset where the obtained MSE,
RMSE, and MAE were 0.0106, 0.1028, and 0.0743, respectively, while the MSE, RMSE, and
MAE for the wind dataset were 0.0004, 0.0189, and 0.0109, respectively. Comparative
results are shown in Figure 9a,b for both datasets.
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5. Conclusions

To mitigate climate change and global warming impacts, RE usage is significantly
increasing on a daily basis. A certain amount of power has been generated by different
RESs in recent decades. The power generated through these plants is used by consumers
for different applications. However, the power produced needs to be predicted so that
an exact amount of power is produced in the future. To forecast this problem, several
techniques have come into the foreground, where the majority of these methods are based
on traditional learning techniques. To this purpose, we developed a novel architecture that
creates a hybrid connection between an AE and a BiLSTM network. Initially, the data are
cleaned through a refinement step in the preprocessing step, and their refined sequence is
passed into the AE for feature collection. The obtained features from the AE are fed into the
BiLSTM for final forecasting. The proposed approach is capable of learning a compressed
representation from the sequential input data and of forecasting RES power accurately. The
proposed method is helpful to avoid extra production of power energy and its wastage.
The smart grid and the consumer side will smoothly cooperate following the proposed
algorithm. Further, using publicly available datasets, the proposed method’s performance
was shown to be higher than state-of-the-art techniques.
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In the future, we aim to consider different scenarios for power energy generation and
its consumption by residential areas, industries, and the commercial side for proper energy
management. Moreover, lightweight models will be investigated for their deployment as
prediction models over resource-constrained devices by reducing the computation and cost.
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Nomenclature

ANN Artificial neural network
AE Autoencoder
AI Artificial intelligence
BiLSTM Bidirectional long short-term memory
CNQR Copula-based nonlinear quantile regression
CNN Convolutional neural network
DL Deep learning
DNN Deep neural network
DT Decision tree
ED Encoder–decoder
FIS Fuzzy inference system
FFNN Feedforward neural network
GRU Gated recurrent unit
GB Gradient boosting
k-NNs k-nearest neighbors
LSTM Long short-term memory
LR Linear regression
ML Machine learning
PV Photovoltaics
RF Random forest
RES Renewable energy source
RE Renewable energy
RNN Recurrent neural network
SVR Support vector regression
SVM Support vector machine
XGB Extreme gradient boosting
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