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Abstract: It is a non-deterministic challenge on a fog computing network to schedule resources
or jobs in a manner that increases device efficacy and throughput, diminishes reply period, and
maintains the system well-adjusted. Using Machine Learning as a component of neural computing,
we developed an improved Task Group Aggregation (TGA) overflow handling system for fog
computing environments. As a result of TGA usage in conjunction with an Artificial Neural Network
(ANN), we may assess the model’s QoS characteristics to detect an overloaded server and then
move the model’s data to virtual machines (VMs). Overloaded and underloaded virtual machines
will be balanced according to parameters, such as CPU, memory, and bandwidth to control fog
computing overflow concerns with the help of ANN and the machine learning concept. Additionally,
the Artificial Bee Colony (ABC) algorithm, which is a neural computing system, is employed as an
optimization technique to separate the services and users depending on their individual qualities.
The response time and success rate were both enhanced using the newly proposed optimized ANN-
based TGA algorithm. Compared to the present work’s minimal reaction time, the total improvement
in average success rate is about 3.6189 percent, and Resource Scheduling Efficiency has improved by
3.9832 percent. In terms of virtual machine efficiency for resource scheduling, average success rate,
average task completion success rate, and virtual machine response time are improved. The proposed
TGA-based overflow handling on a fog computing domain enhances response time compared to
the current approaches. Fog computing, for example, demonstrates how artificial intelligence-based
systems can be made more efficient.

Keywords: fog computing; resource scheduling; overflow handling; virtual machines; TGA; ABC;
neural computing and ANN

1. Introduction

Over the past few years, the amount of information generated worldwide has in-
creased dramatically, necessitating enormous storage facilities [1]. In network architecture,
the word cloud or fog refers to how network engineers locate and connect to various
network devices to access or store data [2]. There are two terms commonly used to describe
fog computing: “fogging” and “fog networking.” To put it another way, fog is a distributed
computing environment where data and applications are spread out among multiple data
sources and the cloud. Basic analytic services will be brought to the network edge, lowering
the amount of data that need to be transmitted over the network and increasing overall
network efficiency and performance as a result of a better location. Security can also
benefit from fog computing, as it can split bandwidth flow and add additional firewalls to
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a network for extra safety. This network’s design resembles a cloud; therefore, the name
“Cloud”. Figure 1 shows the cloud computing architecture in broad terms.

Figure 1. General cloud model representation.

Cloud computing, sometimes known as fog computing, is a relatively new concept
that uses the Internet and remote servers to store data and run applications. Instead
of being directly tied to a server, cloud computing delivers IT services via the Internet
using web-based tools and apps. One can store files in a remote database rather than
on a hard disc or another local storage medium, as shown in Figure 2, which illustrates
cloud-based storage.

Figure 2. Fog computing platform representation.

Fog computing is a revolutionary new approach to delivering IT services. Many
business owners hope to use this method to consolidate all of their IT services into one
place. Such services have grown in popularity as the information society has progressed, as
entrepreneurs assist integrated companies in solving IT challenges swiftly and efficiently.
For the purposes of this discussion, let us say the fog computing environment is about the
needs of IT firms. Cloud users can access a wide range of services via the Internet and
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in real-time. Using cloud computing as an example, let us categorize the most prevalent
services [3–5].

An application, some storage, and a network are all part of the fog computing system.
For enterprises and individuals around the world, each department caters to distinct
needs with specialized products. The front and rear ends of fog computing include
two components. The front end of a cloud computing system serves the needs of the
end-user. A cloud computing platform’s access interfaces and applications make up
this infrastructure. A cloud’s back end includes the resources needed to provide cloud
computing services. A cloud service provider manages this virtual computer, server, data
storage, and security mechanism, among other things [6]. Figure 3 shows the architecture
of the fog computing concept.

Figure 3. The architecture of the fog computing model.

In addition, with the evidence of neural computing as one of the pioneers in the
current era, utilization of the same in various applications such as fog and edge computing
has become necessary, and also it makes the applications optimized. Neural computing
has become a widespread choice owing to its adaptability and better results pertaining
to the applications on which it is applied. Hence, in this work, some advanced forms of
techniques of neural computing are utilized.

ANN as machine learning combined with artificial Bee Colony (ABC) and Task Group
Aggregation (TGA) methods [7] are used in Figure 3 to show the suggested fog computing
model’s architecture. The existing fog computing model faces some crucial issues:

Overflow Handling: This approach allows the servers or virtual machines to maintain
data flow in fog computing. It helps to handle the overflow problem based on the Quality
of Service (QoS) parameters, such as Resource Scheduling Efficiency, Energy uses and
Response Time, and Average Success Rate.

Load Balancing: In order to maximize time efficiency and make optimal use of
resources, it distributes jobs or loads among multiple system nodes. By collecting and
sorting the expected execution time from each of the produced virtual machines, the load
balancing process begins by classifying the number of tasks included within each VM.
Rearranging the classified jobs in each VM according to the most recent execution period is
how load balancing is accomplished.

Virtual Machine Migration: In order to help data center operators meet performance
targets, boost resource efficiency and connectivity locality, reduce performance hotspots,
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and achieve fault tolerance and reduce energy consumption, virtual machine (VM) migra-
tion is an effective management strategy that allows data center operators to adjust the
location of virtual machines (VMs). Because it emulates the underlying hardware, a virtual
machine has an interface that is identical to that of the physical machine. Virtualization’s
benefits include better resource utilization, a higher level of abstraction, and more scalable
and adaptable architecture.

Fault Tolerance: It is possible to run virtual computers with fault tolerance, even if
part of the device fails. This method moves the virtual computer from a single actual server
to another based on an estimate of collapse. While preserving the device performance, the
fault-tolerant migration method makes the physical server more available. This research
has been motivated by a number of factors, with the principal one being the development
of an overflow handling model that combines the ANNABC and TGA algorithms. The key
influences in this investigation are enumerated as follows:

1. To address the overflow problem on fog servers or virtual machines, we provide an
ANN-oriented overflow management model with a TGA method for a fog computing
environment;

2. TGA with ABC is used as a classifier to detect overflow problems in ANN;
3. The suggested fog computing overflow control model is tested by comparison to the

current state-of-the-art virtual machine efficiency for resource scheduling average
success rate, average task completion success rate, and virtual machine response time.

The rest of the article follows this structure. Section 2 presents an examination of the
connected works. Methods are described in Section 3, and results are shown in Section 4.
In the end, Section 5 summarized the findings and forecasts for cloud computing’s virtual
machine load optimization in the coming years.

2. Related Work

The essential features and challenges in the cloud or fog computing model are un-
covered by reviewing a variety of previous works. Cloud service provisioning resource
scheduling approach with load balancing was presented by V. Priya et al. in 2018 [8].
Researchers coupled integrated resource scheduling with a load balancing algorithm in
this work to provide efficient cloud service provisioning. A fuzzy-based multi-dimensional
resource scheduling (FRMS) model based on the MQLO with the MRSQN method was
used to improve virtual machine resource scheduling efficiency in the cloud. The MQLO
algorithm was then used to dynamically pick a request from a class, increasing Virtual
Machine utilization through efficient and equal load balancing. A load adjusting equation
was used to avoid asset under- and overutilization, reducing idle time for each type of
solicitation. The proposed method improved execution in terms of typical rate of suc-
cess, asset planning expertise, and turnaround time, and per the findings of recreations
aimed at evaluating the sufficiency in a cloud server. Compared to the best-in-class works,
leisure research showed that the technique increases asset booking effectiveness by 7% and
decreases response time by 35.5 percent.

In order to reduce energy consumption and completion time, Guo et al. [9] developed
an energy effectual vigorous offloading and device scheduling strategy. The primary goal
of this study was to find a solution to the issue of excessive energy usage when faced with
strict limits. A significant reduction in energy costs could be achieved with sufficient task
dependence and completion time. Clock frequency control and broadcast power allocation
were employed by the author a lot, along with a technique for selecting computation
offloading. A task’s workload determines which computation method to use, and doing so
increases completion time. Mukherjee et al. [10] proposed handling the problem of mobile
device mobility, as these devices move at different speeds, and (ii) task allocation becomes
difficult if the mobile device’s position changes. The primary challenge was handled by
utilizing a technique that utilized remote cloud servers to carry out the operation on mobile
devices. If the connection is lost, the server sends a message (pushing alert) to restore the
server and mobile node. To address the issue of location, the VM transfer concept was
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applied. The sample must be transferred from the prior download platform to the new
download platform to continue unloading. According to the results of the analysis, the
suggested work cuts power consumption by 30 to 63%. When using a mobile device in
and out of the university building, different speeds produce varied consequences.

The m-cloud system’s suggested malfunction detection and recovery policies have
been found [11]. The algorithm’s performance has been studied through a series of tests.
Studies have shown how an integrated decision strategy and a planned system can help
users make decisions about which mobile devices to use and which cloud resources to
use. SLA, energy usage, and makespan have all been tallied. Resource scheduling was
made better utilizing optimization approaches, but when it comes to loading balancing,
there are some concerns connected to the classification of overloaded or underloaded cloud
servers, which must be addressed [12]. Researchers [13–19] have done similar work on
fog computing load balancing and the use of neural computing ideas. The use of neural
computing concepts and methods in the fog environment has also lately become popular
among scientists [20–25].

To control overflow concerns in fog computing, we employed an artificial neural
network (ANN) as a classifier to recognize overloaded or underloaded servers or virtual
machines (VMs) and balance them based on their basic metrics resource scheduling average
success rate, average task completion success rate and virtual machine response time. The
proposed model is a hybridization of artificial neural network (ANN) and Task Group
Aggregation (TGA) algorithm in fog computing, which increases the reaction time as
well as the success rate. This model is an energy optimization-based tradeoff scheme in
a fog computing environment. Moreover, the VMs are allotted to the ABC algorithm,
which delivers the optimized list of VMs. At last, ANN as a supervised machine learning
method is used to distinguish between faulty and normal VMs to avoid the failure rate and
reduction in job completion time [25].

3. Method of Model

Using the overflow handling idea and ANN as machine learning in conjunction with
ABC and TGA algorithms for fog computing, we provide the methodology and algorithms
of the suggested model for fog computing in this section of the research article. The
following are the model’s procedural phases in a fog computing environment.

Proposed Simulator: To begin, we create MATLAB 2016a software simulations for the
suggested fog computing environment model using the graphical user interface paradigm.

Figure 4 illustrates the used simulation area of the proposed scenario in the MATLAB
software. In the simulator, the x-axis represents the width of the network (2000 m), and the
y-axis represents the height of the network (2000 m). So, a total area of the simulator of
2000 × 2000 m2 is used for deployment.

User and Server Deployment in the Simulator:
When the simulation is completed, the users and servers are placed in the region

depicted in Figure 5. A few basic parameters were provided to each server, user, and VM
for simulation purposes after the deployment was complete. These parameters were then
sorted in descending order to identify the most efficient server with the greatest amount
of CPU, Memory, and Bandwidth available. First unsorted data will be sorted, and then,
after execution for a load balancing and resource scheduling, the data will be used in the
simulation model. We used TGA, ABC, and ANN algorithms to calculate the model’s
performance measures, such as Mean Rate of success, Resource Provisioning Effectiveness,
Power Consumption, and Turnaround Time are all important factors to consider.
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Figure 4. The architecture of the Fog Computing Model.

Figure 5. Resource Allocation.

The mentioned Algorithm 1 of TGA is responsible for the task group aggregation in
the proposed work, and then, the concept of ABC is used to optimize the resource allocation
based on their fitness using the given Algorithm 2:
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Algorithm 1. Algorithm of TGA (Task Group Aggregation)

Input: U→Number users
C→Number of servers
Output: AS→List of Allocated Server

Start
Define RTF = [sCPUsMemsBW]//Assign the RTF (Resource Threshold Factor) using the basic
parameters of servers like their CPU, RAM, and bandwidth
For each U
TimInt = random//Requests at Time Interval
DemR= max([uCPUuMemuBW])//user demand for resources
UtilRate= DemR×TimInt//Resource Utilization Rate
If max (UtilRate)<=max (RTF)
AvgPTimeSer(i)=DemR(i)/(1-
UtilRate(i))AvgPTimeAllSer(i)=(AvgPTimeSer(i)×TimInt(i))/(TimInt(i))
AS-LIST =ceil(cServer × rand)
End—If
End—For
Return: AS-List as a list of allocated servers
End—Algorithm

Algorithm 2. Algorithm of ABC (Artificial Bee Colony) with Fitness Function

Input: AS→ List of Allocated Server
f (fit)→Fitness Function of ABC
Output: OAS→Optimized List of Allocated Server

Start
Initialize ABC algorithm with operators and parameter—Iterations (ITR)
– Bee Size (S)
– Lower Bound (LB)>
– Upper Bound (UB)
– Number of Variables (Nvar)
Calculate Size of AS, SZ = Size (AS)
Define Fitness function, f (fit)

f (fit) =
{

True; if condition fullfill for allocation
False; otherwise

For each ITR & SZ
EBee = ∑S

i=1 Power(VMs(AS))//Select one by on VMs from allocated serves list

OBee = ∑S
i=1 Power(VMs(AS))

SZ
//Threshold

f(fit) = fitness function//which is define above
Cserverprop = ABC(S, LB, UB, M, Nvar, f(fit))

End—For
For each CserverProp
OAS = Count (find (AS == CserverProp))
End—For
Return: OAS→Optimized List of Allocated Server
End—Algorithm

When a list of optimized allocation of servers is returned by Algorithm 2 of ABC based
on their fitness, the machine learning idea of ANN is used to deal with overflow problems
in order to identify overburdened or underburdened servers and VMs and balance them
on the basis of their basic properties.

As a next step, we look at resource scheduling, energy consumption, and reaction
time to determine the suggested overflow handling concept’s performance characteristics
as given in Algorithm 3. This is done using the combination of ANN machine learning
with ABC and TGA algorithms for fog computing environments. The proposed approach
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using task group aggregation and optimized ANN [21] includes overflow handling as a
critical component. These three algorithms must be tuned in a fog computing environment
to achieve optimal task group aggregation based on an overflow management mechanism.
The architecture of ANN is shown in Figure 6 with a description, and scalable traffic
management has recently been created in fog computing for data centers to balance traffic
load and service quality.

Figure 6. ANN Architecture proposed work.
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Algorithm 3. Algorithm of ANN for Overflow Handling (Artificial Neural Network) with TGA

Input: OAS→Optimized List of Allocated Server
T-Data→VM properties as training data
TR→No. of VMs as a target in OAS
N→Neurons
Output: VAS→ValidList of Allocated Server

Start
For each cServer
If OAS (individual)>Average (OAS)
T-Data= [sCPUsMemsBW]
Targetc []
End—If
End—For
Foreach T-Data
IfsCPU(Individual)>= Average(sCPU)
Target (1)= 1
Else ifsCPU(Individual)<minimum (sCPU))
Target (2)= 1
Else
Target (3) =1
End—If
End—For
Call and set the ANN
Set, Fog-Net = Newff (T-Data, TR, N)
Fog-NetEpoch = 1000
Fog-Net Training Data Ratio = 70%
Fog-Net Testing Data Ratio = 15%
Fog-NetValidation Data Ratio = 15%
Fog-Net = Train (Fog-Net, T-Data, TR)
Properties Current VM in OAS = VMC
VM Characteristics = simulate (Fog-Net, VMC)
If VM Characteristics is valid and not overloaded
VAS = Validated
Else
VAS = Maybe under or overloaded
End
Return: VAS as the list of valid allocated server
End—Algorithm

Input, hidden, and output layers are all components of an ANN’s architecture. Users,
servers, and VM attributes are used to train the ANN for scheduling and balancing. Input
parameters include things such as the amount of energy used by the server to execute a
task and the amount of CPU time used in conjunction with bandwidth utilization on the
server or Virtual Machine. Any errors generated are transmitted back to the hidden layer
so that nodes’ characteristics can be tweaked until the desired result is achieved. So, the
network may be taught with the least amount of error possible. There are N interconnected
neurons in the network, as shown in Figure 7 by the arrow. These neurons independently
update each neuron’s activation function. The Mean Square Error (MSE) is the error caused
by the ANN network during training.
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Figure 7. ANN Architecture.

Using ANN as machine learning with ABC and TGA method for a fog computing
environment, we offer an experimental section after the formation of the model. The model
includes simulation results of the proposed fog computing model based on the overflow
handling idea and compares it to the previous work.

4. Results and Discussion

Here, we discourse the simulation consequences of the suggested fog computing
model, which is based on the overflow handling idea and uses ANN as a machine learning
algorithm together with the ABC and TGA algorithms for fog computing. First and
foremost, we will go over the findings of the study’s computer simulations.

As shown in Figure 8, the suggested model has an average success rate based on user
requests ranging from five to one hundred. According to our findings, the average success
rate decreases as the number of requests from the user rises.

Figure 8. Average Success Rate.
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Figure 9 depicts resource scheduling efficiency of user requests, taking into account a
range of customer requests from 5 to 100. Based on our observations, resource scheduling
efficiency ranges from 80 to 96 percent as the number of requests increases.

Figure 9. Resource Scheduling Efficiency.

As shown in Figure 10, the energy usage varies from 1 to 100 users when considering
user demands. As a result of our research, we have discovered that energy usage is rising
along with user demand. Responding to user requests in a reasonable amount of time is
shown in Figure 11, which takes into account queries from between five and one hundred
users. We have noticed an increase in response time and an increase in user requests as a
result of our observations.

Figure 10. Energy Consumption.
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Figure 11. Response Time.

We compare the resulting parameters with and without optimization for all parameters
so that the proposed model’s efficacy can be easily determined. Table 1 compares our
simulation results with those of V. Priya et al. [8] once the experiments are complete.

Table 1. Comparison of Parameters with Advantages and Disadvantages.

Parameters Current/Existing
Model [26]

Implemented/Proposed
Model

Advantage and Disadvantage of Proposed
Model

Virtual Machine
Efficiency For

Resource Scheduling

In the existing models,
average of resource

scheduling is 93.10%.

In the proposed model,
average of resource

scheduling is 97.20%.

The success rate of resource scheduling is
increased because more new tasks will be allocated
to the virtual machines as per energy consumption.

However, this work can be extended by
considering the concept of clustering mechanism
with optimization technique to find out the over-
and underloaded VMs so that we can manage the

task allocation properly.

Average Task
Completion
Success Rate

In the existing models,
the average success

rate is 94.20.

The proposed models’
average success rate is

98.10%.

The proposed scheme achieved a far better result
than the other existing work based on the job

completion time. It mitigates the job scheduling
problem in the fog computing environment.

Additionally, it gratifies the service requests of
operators based on the optimal tradeoff scheme.

However, the energy consumption is still massive
for a cost-effective prototype.

Virtual Machine
Response time

In the existing model,
average response time

is 5.65 ms.

In the proposed model,
average response time is

4.55 ms.

The issue of resource scheduling and task overflow
handling in fog computing can be handled by

reducing response time and balancing the load on
servers. This provides the optimal tradeoff scheme

between user and operator.
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Table 1 and Figure 12 show that using the deep learning-based ANN classifier im-
proves the projected work efficiency over the prior work.

Figure 12. Comparison of Parameters.

5. Conclusions

This paper suggested a fog computing environment where ABC and TGA algorithms
are combined with an ANN as machine learning for overflow handling and work schedule.
In fog computing, we looked at the problem of resource scheduling and overflow handling
to see how we could reduce the model’s response time while also using less energy and
balancing the load on the servers. A major problem is managing the arrival of new users’
tasks while also balancing the server’s load. As a consequence, we used the ANN concept
to detect overloaded or underloaded servers and transfer the load to the VMs operating
on servers were feasible for the load task optimization. Although the proposed model
has superior virtual machine efficiency for resource scheduling, average success rate, and
average task completion success rate compared to the existing work, it still consumes
a significant amount of energy despite being cost-effective. An improved ANN will be
used in the cloud’s future to produce better intelligible models by applying swarms-
based metaheuristic algorithms built on top of the idea of optimized artificial neural
networks (ANNs).
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