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Abstract: The objective of this work is to present a methodology that automates the prediction
of students’ academic performance at the end of the course using data recorded in the first tasks
of the academic year. Analyzing early student records is helpful in predicting their later results;
which is useful, for instance, for an early intervention. With this aim, we propose a methodology
based on the random Tukey depth and a non-parametric kernel. This methodology allows teachers
and evaluators to define the variables that they consider most appropriate to measure those aspects
related to the academic performance of students. The methodology is applied to a real case study
obtaining a success rate in the predictions of over the 80%. The case study was carried out in the
field of Human-computer Interaction.The results indicate that the methodology could be of special
interest to develop software systems that process the data generated by computer-supported learning
systems and to warn the teacher of the need to adopt intervention mechanisms when low academic
performance is predicted.

Keywords: computer-supported cooperative learning; non-parametric statistics; predictive methods;
statistical data depth; supervised classification; random methods

1. Introduction

Recent technological innovations are currently reflected in the proliferation of group-
ware systems aimed at facilitating communication and coordination between users, as well
as providing shared workspaces where users build artifacts that solve tasks. Collaboration
supported by groupware is characterized by a large number of interactions that each user
performs to cooperate with other members of a common group. An analysis of these
interactions can be used to improve these collective processes. Duque et al. [1] propose a
methodology for carrying out this analysis based on the following three phases:

(i) to capture descriptive information of the interactions,
(ii) to categorize and characterize the information collected and
(iii) to intervene in the improvement of the collaborative activity.

Among these improvements, it is worth highlighting those that refer to providing
better mechanisms to be aware of the interactions performed by other users [2], optimizing
business processes to achieve strategic goals of organizations [3], and adapting academic
processes supported by collaborative learning environments [4].

Computer-Supported Collaborative Learning (CSCL) is the research field that studies
how groupware can be exploited in academic environments. Thus, groupware systems
support processes that enable students to build new knowledge. These processes are usu-
ally oriented towards solving academic problems using social interaction with classmates.
Students discuss and interchange ideas about solutions that solve a problem proposed
by the teacher. Therefore, students acquire new knowledge due to the arguments and
reasonings that arise in these discussions. One of the main research challenges in the CSCL
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field is building groupware that generate interventions in the collective process to optimize
the student academic performance. Bravo et al. [5] define intervention mechanisms in
CSCL systems with three components:

(i) information to be processed by the students (analysis indicators to be displayed,
advice to be shown, new exercise to be solved, etc.),

(ii) a trigger moment or situation that puts the intervention in action,
(iii) learners who receive each intervention.

1.1. Related Work

Intervention mechanisms have been deeply studied in the CSCL field to improve
students learning. Thus, Anderson et al. [6] establish a set of theoretical principles to
integrate software agents that simulate the role of a teacher who helps the student by
issuing advice. Selker [7] follows this theoretical proposal with a generic architecture
that allows modeling the behavior of the student and offering advice based on how users
interact with the system. Meanwhile, Paolucci et al. [8] focus interventions in guiding
students to solve academic problems. According to the criteria used by [9], it is possible to
intervene in the work of students not only to optimize solutions but also to ensure optimal
collaboration between classmates.

Some alternatives have already been explored to include artificial intelligence (in some
of its variants) to the field of teaching, such as incorporating virtual assistants adapted
to specific classes and different levels of students [10] or in online courses to mitigate the
impact of the volume of students [11]. The aim of these intelligent systems is to provide
continuous support to students, overcoming some of the disadvantages of online teaching,
such as long response times by teachers or the correction of common errors. This support
can be particularly interesting in courses based on significant problems in which the student
learns by doing [12]. These methodologies can be applied in such a way that students are
structured into groups that must carry out small tasks throughout the course. These tasks
are related to each other in such a way that the solutions produced in one task are essential
for the completion of the next tasks since they are taken as inputs [13]. Thus, students are
increasingly producing larger solutions to more complex problems, generating at the end of
the course a product close to the quality standards required in professional environments.
Artificial Intelligence [14] can be used to analyze academic performance, being able to train
different machine learning models [15,16] so that the different types of students are detected
and classified. After extracting the characteristics of the students and classifying them,
it can be given a series of warnings or personalized hints and feedback [17]. Therefore,
Artificial Intelligence techniques are a useful tool to characterize learning activities and
provide interventions. Intervention mechanisms have been generally focused on guiding
specific activities. However, these research proposals do not provide information that
enables teachers to guide a course or subject.

1.2. Our Research Contribution

This work is dedicated to propose a methodology that enables teachers to identify the
factors with most impact in the academic performance of the students in a course, using an
interaction and collaboration analysis of the earliest activities of the subject. The idea is to
obtain a flexible methodology that can be adapted to any subject and software system that
supports the learning process, individually or collaboratively. Thus, the intention is that
the methodology does not adhere to predefined indicators or competencies, but rather that
the teacher establishes, in a flexible manner, how to measure those aspects of the learning
process that he/she considers of interest. Additionally, the methodology is based on a
statistical technique that can be carried out in an automated manner by software tools.
Therefore, the amount of information generated by CSCL systems is not an obstacle for the
execution of the prediction process, as is automated by software support. Thus, a generic
and flexible solution is obtained, providing a state of the art proposal that automates the
process of predicting academic performance while providing the teacher with the freedom
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of configuration, not sticking to specific competencies or indicators. This methodology
is useful to intervene, not only in specific problem-solving activities but also in adapting
the course development to the students. It is based on statistical data depth [18] and non-
parametric kernel classification [19] and is here applied to the Human-computer Interaction
subject of the Computer Science degree at the University of Cantabria.

This paper has four additional sections. Section 2 describes the methodology for
predicting the academic performance of the students from the interactions collected in early
stages. Section 3 shows the results of a case study in which the methodology is applied to
predict academic performance in a university course. Section 4 discusses the results of this
work. The computations have been carried out using the R software.

2. Materials and Methods

Our main research problem is about knowing whether it is possible to predict suc-
cessfully the performance of students in an academic course from the earliest activities
supported by groupware, by making use of the performance of the students who took
the course in previous years. Denoting by N = 6 the amount of tasks performed by the
students, the research problem is divided into the following research subproblems:

1. Is it possible to predict successfully the average grade over the N tasks based on the
two first tasks performed by the students?

2. Is it possible to predict successfully the average grade over the N tasks based on the
three first tasks performed by the students?

3. Is it possible to predict successfully the average grade over the N tasks based on the
four first tasks performed by the students?

4. Is it possible to predict successfully the average grade over the N tasks based on the
five first tasks performed by the students?

To design a methodology that allows for this, the following three types of data,
commonly used to characterize groupware [20], are taken as input:

• Communication between classmates: These data measure the fluency in exchanging
ideas on how to solve the activities (e.g.: contributions from each student, perception
of the quality of the proposals of others, etc.).

• Coordination to distribute tasks: These data allow us to quantify how the efforts are
distributed between the members of the group (e.g.: hours of work of each member of
the group, perception of the effort of the classmates, etc.).

• Collaboration for building quality solutions: These data quantify whether the collec-
tive process allowed the student to improve solutions (e.g.: grades in collaborative
activities, perception of how solutions are improved by the classmates, etc.).

The measurement of the students’ academic performance was carried out through the
analysis indicators proposed by [5]. This proposal includes a set of indicators that measure
three dimensions of the students’ academic work:

1. The individual work of the students. Examples of these indicators are the number of
proposal of each learner and the amount of individual interaction with the solution.

2. The degree of collaboration. Examples of these indicators are the number of pro-
posals commented by other learners and the degree in which the task distribution
was equitable.

3. The solutions generated. Examples are the degree to which the solution is well-formed
according to the syntax rules of the programming language and the assessment of
whether the solution solves the task goals.

Finally, the technological framework proposed by [21] was used to automate the
calculation of a single variable that measures student performance as an average of the
value of these indicators. Each indicator has the same weight in the calculation of the
final variable. These data are multivariate and are processed by means of data depth to
reduce their dimensionality, resulting in univariate data, which allows to easily predict
the students performance. This prediction is done in terms of non-parametric supervised
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classification. We employ the random Tukey depth [22] as statistical data depth. As this
is a more novel technique, we explore it in what follows. After that, we propose the
methodology employed in practice and introduce the studied dataset.

2.1. Statistical Data Depth

According to the recent paper [23], statistical depth is a current hot research topic in
statistical analysis [24–28] in some papers on the topic. Given a probability distribution
P on Rp, a statistical depth function orders the points in Rp from the “center of P” to the
“outer of P”. Obviously, this problem includes data sets if we take P to be the empirical
distribution associated to the dataset at hand. Note that in the one-dimensional case this
order is trivial; being reasonable to order the points using the order induced by the function

x → D1(x, P) := min{P(−∞, x], P[x, ∞)}. (1)

This implies that the data is ordered using the decreasing order of the difference
between 50 and their percentiles, in absolute values, and the deepest points are the medians
of P. Ordering multivariate data is, however, neither trivial nor pursued in a unique manner.
Therefore, several multidimensional depths have been proposed [29–32]. Here we are
mainly interested in the random Tukey depth function, which is a random approximation
of the Tukey (or halfspace) depth [33]. The problematic of the Tukey depth is the required
high computational time [34]. This issue is addressed by its random approximation.
According to Zuo and Serfling [18], the Tukey depth behaves very well in comparison with
the existing competitors. The random Tukey depth inherits the good theoretical properties
of the Tukey depth and, in particular, that it characterizes discrete distributions [35], which
comes in handy. for the study performed in this paper.

For x ∈ Rp, the random Tukey depth of x with respect to P, DR(x, P), is the minimal
probability which can be attained over a set of randomly closed halfspaces containing x;
i.e., DR(x, P) is the minimum of the one-dimensional depths (see (1)) of a finite number
of randomly chosen one-dimensional projections of x, where those depths are calculated
with respect to the corresponding marginal of P. In this paper we make use of 50 random
projections. Let us, then, concentrate further on explaining what the idea of deepness
inside the definition of random Tukey depth is. Given n points, let us denote one of them
by x. Then, we want to compute the random Tukey depth of x with respect to the set of
n points. For that, we compute the number of points in the set that are contained in each
of the randomly chosen closed halfspaces that has x in its border. Then, we record any
of those halfspaces that contain the fewest points from the set and the depth of x is this
number of points divided by n. In the left-hand side plot of Figure 1, in R2, n is equal to ten
and the random Tukey depth of x is given, among others, by the randomly obtained closed
halfspace painted in pastel blue. As there are four points inside this halfspace, the random
Tukey depth of x is 0.4. Note that x is the deepest point in the set. From the right-hand
side plot of Figure 1 we can observe that, taking sufficient randomly chosen halfspaces,
the random Tukey depth of point y is 0.3 because among all the closed halfspaces that have
y on their border, the ones that contain fewer points from the set do contain three points.
Alternatively, taking into account that (1) coincides with the definition of random Tukey
depth in R, to compute the random Tukey depth of a point x ∈ Rp with respect to a set
A ⊂ Rp of size n we can do the following. For each randomly selected vector v in the unit
sphere of Rp, we compute the one-dimensional depth, (1), of the projection of x on v with
respect to the projection of A on v. Then, the minimum of the one-dimensional depths over
the drawn v′s is the random Tukey depth of x. Note that when A is finite it suffices to take
an amount of vectors, v, equal to the number of combinations of (p− 1) elements taking
(n− 1) at a time without repetition.
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Figure 1. n is equal to ten and the random Tukey depth of x (left-hand side) and y (right-hand
side) are, respectively, given, among others, by the randomly obtained closed halfspaces painted in
pastel blue.

2.2. Methodology in Practice

To evaluate the performance of the students, we make use of their grades. There are a
variety of grade systems. For instance:

• A letter in the set {A∗, A, B, C, D, E, U} with A∗ the highest possible grade and U the
lowest. This is a common grading system in the United Kingdom.

• A number in the set {1, 1.3, 1.7, 2, 2.3, 2.7, 3, 3.3, 3.7, 4, 5}, with 1 the highest possible
grade and 5 the lowest. This is the system used in Germany.

• A number in the interval [0 ,10] with 0 the lowest possible grade and 10 the highest.
This system is the one established in Spain.

The methodology we present here is valid for any grading system. The reason is
that any system can be translated into a success percentage. That is, any grade can
be transformed into a number g ∈ [0, 100] with g% the percentage of right answers,
for instance. Thus, to particularize it, we focus on the Spanish grading system.

Let t := {t1, . . . , ts} be the dataset under study where ti ∈ Rp for any i ∈ {1, . . . , s}
with s, p ∈ N, both larger than two. ti represents the grades of student i. Thus, if p = 6,
we have theoretically recorded 6 grades for each student. Missing grades will be assigned
the lowest possible grade. The dataset is split into training sample, r := {r1, . . . , rm}, and
test sample e := {e1, . . . , en}. Thus, r ∪ e = t, r ∩ e = ∅ and m + n = s. ri, ej ∈ Rp for any
i ∈ {1, . . . , m} and j ∈ {1, . . . , n}. Then, each ri = (ri,1, . . . , ri,p) and, analogously, each
ej = (ej,1, . . . , ej,p). Let d ∈ N ∩ [2, p). The objective in this manuscript is to predict the
average grade Ej := 1/p ∑

p
k=1 ej,k, for each j ∈ {1, . . . , n}, making use of:

r(d)i := (ri,1, . . . , ri,d) for i ∈ {1, . . . , m}, (2)

Ri :=
1
p

p

∑
k=1

ri,k for i ∈ {1, . . . , m} and (3)

e(d)j := (ej,1, . . . , ej,d) for j ∈ {1, . . . , n}. (4)

As a large range of grades are possible in the Spanish system, Ri ∈ [0, 10], we summa-
rize it by substituting Ri by IRi, that provides the membership of Ri to one of the intervals
in the following set:

G := {[0, 4), [4, 5), [5, 6), [6, 7), [7, 8), [8, 9), [9, 10), {10}}. (5)

These intervals have been set by taking into account that a student passes with a grade
larger or equal than 5. Thus, we use the interval [0,4) for those grades where the student
clearly fails. The largest possible grade posses also an interval, {10}, since it is a distinction.

Then, noting that G in (5) denotes the set of all labels, it is easy to see that we are given
a series of data with label:
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• the training sample consists of the pairs (r(d)i , IRi) ∈ Rd × G for i ∈ {1, . . . , m},
• the test sample is given by the pairs (e(d)j , IEj) ∈ Rd × H for j ∈ {1, . . . , n},
where, for each j ∈ {1, . . . , n}, IEj provides the membership to the intervals in

H := {[0, 4], [3, 5], [4, 6], [5, 7], [6, 8], [7, 9], [8, 10], [9, 10]}. (6)

of Ej := 1
p

p

∑
k=1

ej,k. Note that these intervals are of larger length, to emulate confidence bands.

The idea is to first construct a model making use of the training sample. To construct
it, we simply employ a supervised classification procedure where first the random Tukey
depth is used to reduce the dimensionality, and then a normal kernel classifier is applied
to perform the classification. In what follows we explain in what consists this classifier;
for which we refer to Ferraty and Vieu [36] and Ferraty and Vieu [37], Chapter 8 for more
technical details, consistency, and rate of convergence of posterior probabilities. For that, we
suppose that (r(d)i , IRi) and (e(d)j , IEj), i ∈ {1, . . . , m} and j ∈ {1, . . . , n}, are independent

and identically distributed (i.i.d.) as (X, Y); where X takes values in Rd and Y takes values
in G. The classifier is based on a general Bayes classification rule. For a general pair (x, g),
where g ∈ G and x ∈ Rd, it is defined the posterior probability

pg(x) := P(Y = g|X = x). (7)

Note that P denotes the underlying probability. Then, x ∈ Rd is classified to the class
g ∈ G yielding maximum posterior probability. In particular, for classifying points in the
training sample we take (x, g) = (r(d)i , IRi) for some i ∈ {1, . . . , m}, while for classifying

points in the test sample (x, g) = (e(d)j , IEj) for some j ∈ {1, . . . , n}. For this purpose, we

need to estimate pg(x). As the training sample (r(d)i , IRi), i ∈ {1, . . . , m}, consists of i.i.d.
copies of (X, Y), we use it to estimate the underlying probability distribution. Specifically,
we replace pg(x) by its Nadaraya–Watson estimator [38,39], which is given by

p̂g(x) :=
∑m

i=1,IRi=g K(h−1‖x− r(d)i ‖)

∑m
i=1 K(h−1‖x− r(d)i ‖)

, (8)

where h > 0, ‖·‖ is the Euclidean norm on Rd , and K is a probability kernel satisfying
K(0) > 0, K(u) = 0 for u < 0, and it is non-increasing in u, for u is positive. Notice that the
sum at the numerator is only over those i such that IRi = g yielding

∑
g∈G

p̂g(x) = 1. (9)

Additionally, the closer the point x is to ri, the closer the quantity h−1‖x− r(d)i ‖ is to
0, the maximal point of the kernel K; thus, yielding a higher probability. Specifically, we
choose K to be 2 times the standard normal density if u is non-negative and 0 otherwise.
The parameter h is chosen so that the classification error in the training sample is minimized.
Then, we introduce into the model the e(d)j for j ∈ {1, . . . , n} and obtain the predictions
ˆIE1, . . . , ˆIEn of the IE1, . . . , IEn.

2.3. The Dataset

The proposed method was applied in the Human-computer Interaction (HCI) subject
taken by students in the third year of the Computer Science degree at the University of
Cantabria, in Spain. The HCI discipline deals with studying how people interact with
computers. Some of the main objectives pursued by this discipline are the definitions
of methodologies to develop more efficient and intuitive user interfaces, the creation of
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methods that allow evaluating and comparing the characteristics of user interfaces and
the design of models that allow the interaction between people and computers to be
represented. HCI studies the relationship of people with computers and this makes it
necessary to apply knowledge from fields as varied as Psychology, Computer Science,
Telecommunications and Sociology. Therefore, HCI has a multidisciplinary nature that
bases it on many classical fields of knowledge.

This subject follows a Project-Based Learning (PBL) approach through tasks in which
students work collaboratively to design and build different types of user interfaces (for
mobile phones, web applications, or desktop tools). The methodology is applied to predict
academic performance using data from a few early activities. The main goal of this
experimentation is to identify elements of the learning process (tasks, group composition,
etc.) that should be intervened to have a real impact in the academic performance of the
students in a course.

Data collected quantify the activity of 205 students:

• 43 of them took the subject during the academic period 2017/18,
• 41 during 2018/19,
• 63 during 2019/20 and
• 61 during 2020/21.

As part of their academic course, these students performed 6 tasks that required
designing user interfaces. These tasks are the following:

1. Prototype a mockup of a user interface for smartphones.
2. Build user interfaces using the Android platform.
3. Design and build user interfaces for desktop computers using a WIMP (windows

icons menus and pointers) style.
4. Design and build user interfaces for desktop computers using a WYSIWYG (What

You See Is What You Get) style.
5. Design and build the user interfaces of a website.
6. Perform a usability test process.

Software support used by the students was a videoconferencing tool with a shared
whiteboard and chat, a shared folder and Axure, a UX tool to prototype interfaces. These
user interfaces were later built using Android technologies and Java and HTML languages.
Students collaborated in groups, resulting in a total of 79 groups:

• 14 of them for the academic period 2017/18,
• 15 for 2018/19,
• 21 for 2019/20 and
• 29 for 2020/21.

The dataset was used to experiment with the proposed methodology as shown in
Figure 2. The students collaborated in groups to solve the proposed tasks. This collabo-
ration was made with the support of software tools that recorded their communications,
how the workload was distributed, and the solutions to the tasks. The teacher used all this
information to grade each assignment. Finally, the methodology was applied to verify if a
small number of tasks allowed to predict the final grade of the student.
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Task 1

Task 2

Task 3

Task 4

Task 5

COMMUNICATION:
Messages of each 

student

COORDINATION
Task of each student

SOLUTIONS:
User interfaces

Task 6

Grades

FINAL 
GRADE

Predictive
method

TeacherStudents

Figure 2. Outline of the process followed to experiment with the methodology.

To illustrate the dataset, we have plotted in Figure 3 the grades of the groups over the
six tasks of the different academic periods. These grades are in the range 0–10, 0 being the
lower possible grade and 10 the highest one. These grades are the result of quantifying the
following three aspects:

(i) the quality of the user interfaces,
(ii) the extent to which group members distribute the workload equitably, and
(iii) the contributions and proposals that arise to establish a real collaboration.

The left plot corresponds to the grades in Task 1 against those in Task 2, the central
plot to those in Task 3 against those in Task 4 and the right plot to those in Task 5 against
those in Task 6. The grades of the academic period 2017/18 are represented in black, those
of 2018/19 in red, those of 2019/20 in green, and those of 2020/21 in blue. In each of
these academic periods we have labeled each group by a number. Thus, we can observe,
for instance, that:

• Group 3 of the academic period 2017/18 had grades in the interval [6,8) in Tasks 1
and 2 that improved to the range [8,10) for Tasks 3, 4 and 5 and decreased to the range
[4,6) for Task 6.

• Group 5 of the academic period 2018/19 had grades in the range [8,10) in Task 1 that
worsened to the range [2,4) for Tasks 2 and 3 and slighted improved to the interval
[4,6) for Tasks 4 an 5 and again improved to the interval [6,8) for Task 6.

• Group 19 of the academic period 2019/20 had grades in the range [6,8) in Tasks 1 and
2 that improved to the range [8,10) for Tasks 3, decreased to the range [4,6) for Tasks 4
and 5 and then highly increased to a 10 for Task 6.

This leads us to realize that the patterns among the different groups is different, which
makes the analysis more difficult.
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Figure 3. Illustration of the grades of the different groups in the academic periods 2017/18 (black), 2018/19 (red), 2019/20
(green) and 2020/21 (blue). Grades of Tasks 1 and 2 in the left plot, of Tasks 3 and 4 in the central plot and of Tasks 5 and 6
in the right plot. Each group in an academic period is labeled by a corresponding number.

3. Results

The objective of this section is to provide the results for the research problem proposed
in Section 2, which consist in predicting the average grade of the students taking an
academic course based on their early performance in the course and the performance of the
students who took the course in previous academic years. In particular, we use the grades
of the courses 2017/18, 2018/19, 2019/20 as training sample; obtaining a training sample
of size m = 50. We use as test sample the early grades recorded during the course 2020/21
to predict the average grade over the six tasks (in groups); having a test sample of size
n = 29. The research problem has four subproblems where the first one regards as early
grades the first two, the second research problem the first three grades, the third the first
four grades, and the fourth problem the first five grades. Making use of the methodology
expressed in Section 2, we perform here a supervised classification to predict the average
grade over the six tasks of the groups in the test sample. To do this, we take d, the amount
of tasks done by the student, in the range from 2 to 5.

At the top of Table 1 we observe the results of applying the model to the test data
with d = 2 (research problem 1). That is, we have constructed the model making use of the
training data (ri,1, ri,2), which are the grades for the first two Tasks, and the label IRi, which
is the average grade of the six Tasks, for i ∈ {1, . . . , 50}. Then, we have reported in the top
panel of Table 1 the summary of the range values ˆIE1, . . . , ˆIE29, that is, the estimated values
of IE1, . . . , IE29. We report the values by providing a wider ranger, of a ± grade, than the
one used to summarize the given values. Thus, we obtain that the three test groups of
students whose average grade is in the interval [0,4) are correctly classified in the interval
[0,4]. Analogously, the four groups of students with average grade in the interval [7,8) are
appropriately classified in the interval [6,8].

There are 13 groups of students in the average grade range [8,9), 3 of them are classified
in the [6,8] interval and the other 10 in the [7,9]. Although both classifications should be
considered correct, to be on the safe side, we have only considered successful for a later
analysis (Figure 4) those classified in [7,9]. Similarly, there are seven groups of students
with average grade in [9,10) which are correctly classified in [8,10] and another one which
is not so clear as it is classified in [7,9]. Thus, for the later analysis we only consider as
correct the seven classified in [8,10]. Furthermore, there is one case in the analysis that is
clearly wrongly classified. That is the one of the group of students with average grade in
[9,10) whose estimation is in [6,8].
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Table 1. Four confusion matrices between the real average grade intervals (columns) and the
estimated average grade intervals (rows) for the n = 29 test data (academic course 2020/21) on the
model constructed using the m = 50 training data (academic courses 2017/18, 2018/19, 2019/20).
3 test data belong to the interval [0,4), 4 to [7,8), 13 to [8,9,) and 9 to [9,10) (intervals reported in (6)).
The analysis is based on: Tasks 1 and 2 (top matrix), Tasks 1, 2 and 3 (second matrix from the top),
Tasks 1, 2, 3, and 4 (third matrix from the top) and Tasks 1, 2, 3, 4, and 5 (bottom matrix). The average
grades make use of the six Tasks. The groups of students whose average grade is clearly correctly
classified are in blue. The omitted values correspond to zeros.

TEST SAMPLE

Tasks 1–2 (research problem 1)

estimated
[0,4] [5,7] [6,8] [7,9] [8,10]

[0,4) 3
real [7,8) 4

[8,9) 3 10
[9,10) 1 1 7

Tasks 1–3 (research problem 2)

estimated
[0,4] [5,7] [6,8] [7,9] [8,10]

[0,4) 2 1
real [7,8) 1 3

[8,9) 13
[9,10) 2 7

Tasks 1–4 (research problem 3)

estimated
[0,4] [5,7] [6,8] [7,9] [8,10]

[0,4) 1 2
real [7,8) 4

[8,9) 13
[9,10) 9

Tasks 1–5 (research problem 4)

estimated
[0,4] [5,7] [6,8] [7,9] [8,10]

[0,4) 1 2
real [7,8) 4

[8,9) 13
[9,10) 9

When making use of the grades of Tasks 1, 2, and 3 (research problem 2) to predict
the average grade over the six tasks, the obtained results when classifying test sample
are, as expected, slightly better than those obtained by just using Tasks 1 and 2 (research
problem 1) and worse than when also using Task 4 (research problem 3). They are reported
in the second block of Table 1. In particular, we can observe only one clear misclassification,
which is that of a group with an average grade in the interval [0,4) whose estimated average
grade belongs to the interval [6,8]. The results obtained when making use of just Tasks 1, 2,
3, and 4 (research problem 3) are the same than those obtained when also adding Task 5
(research problem 4). In particular, the absolute number of misclassifications increases to
two in both cases. As reported in Table 1, they correspond to groups with average grade in
the interval [0,4) that is estimated as in the interval [6,8].

We have reported above the absolute misclassifications when predicting the test data
making use of a model that is based on just Tasks 1 and 2 (research problem 1) to a model
based on Tasks 1, 2, 3, 4, and 5 (research problem 4). All these misclassifications are
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summarized in Table 2 where we report the relative success rate of the procedure under
the different studied scenarios. There, we can observe that, when applying to the test data
the model that only makes use of Tasks 1 and 2 (research problem 1), we are able to predict
the interval to which the average grade over the six Tasks belongs with a success rate of
the 82.76%. This rate increases to the 86.21% when also making use of Task 3 (research
problem 2) and stabilizes to the 93.10% success rate when making use of Tasks 1, 2, 3,
and 4 (research problem 3). A display of these success rates is in Figure 4 where a rapid
increase and stabilization of the success rates is observed. It is worth saying that we have
been conservative in computing these success rates, considering as successful the entries
in blue in Table 1 although, as explained above, there are other entries that could also be
considered successful.

Table 2. Success rates for the supervised classification of average grade intervals over 6 tasks for the
test data on the model constructed using the training data. Test data refer to the n = 29 groups in
the academic course 2020/21 and training data to the m = 50 groups along the academic courses
2017/18, 2018/19, and 2019/20. The analysis is based on: Tasks 1 and 2 (left column), Tasks 1, 2, and
3 (second left column), Tasks 1, 2, 3, and 4 (third left column) and Tasks 1, 2, 3, 4, and 5 (right column).
For the success rate, it is used as correctly classified only the groups of students whose average grade
is displayed in blue in Table 1.

Tasks 1–2 Tasks 1–3 Tasks 1–4 Tasks 1–5
(Research (Research (Research (Research

Problem 1) Problem 2) Problem 3) Problem 4)

Test 82.76% 86.21% 93.10% 93.10%

S
uc

ce
ss

 r
at

e

Tasks 1−2 Tasks 1−3 Tasks 1−4 Tasks 1−5

85
90

95

Figure 4. Display of the success rates in Table 2. The OX-axis shows the tasks used in the model to
predict the interval of the average grade; it goes from Tasks 1 and 2 (research problem 1) in the left
corner of the axis to Tasks 1, 2, 3, 4, and 5 (research problem 4) in the right corner.

The obtained results are extremely good as after the student has completed just the
two first tasks, we can predict their average final grade over the six tasks with a success
rate of over the 80%; when completing the first three tasks with a success rate over the 85%
and when completing the first four tasks with a success rate of over the 90%.

4. Discussion

The algorithm used is powerful in that it makes use of the random Tukey depth. This
is due to two main reasons:

1. The random Tukey depth is computationally effective in reducing the dimension to
one even if the original data dimension is high, as it happens with high dimensional
or functional data [40].

2. The random Tukey depth behaves adequately [35] as it generally inherits the good
properties of the Tukey depth, which is the most well-known in the literature but for
it expensive computational time.
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Furthermore, the kernel classifier performed on the resulting one-dimensional data is a
well-known one but could be substituted by any other one-dimensional classifier. The only
requirement being that the process can be automated as it occurs in this case.

Other works have carried out data-driven analysis of student academic activity with
different objectives. Thus, ref [41] stores information on how students solve collaborative
activities using CSCL systems and analyzed them to propose 17 strategies to optimize
student performance. In other cases, the studies have focused on predicting the optimal
number of students who should collaborate on the tasks [42]. Our study has a broader tem-
poral scope. It is not about analyzing specific activities but rather predicting performance
in an academic year.

The obtained results show a high success rate in predicting the average grade by just
using the first two tasks performed by the students.

Thus, something that can be considered is the possibility of reducing the amount of
tasks required of the students. Additionally, this would also allow an early intervention to
improve the performance of the groups whose predicted grade is lower.

We can deduce that academic collaborative tasks imply greater richness and complex-
ity due to the social interactions that take place, this work opens the door to consider the
first tasks that students solve as predictive of academic performance in the rest of the course.
The case study of this work illustrates how the method proposed can achieve this goal.
This approach complements other works in the CSCL field that analyzes collaboration and
interaction without predicting future academic performance [1,13,14]. However, our work
has not delved into mechanisms that detail the causes (lack of communication, problems
with the groupware system, etc.) that lead to an academic performance problem or in
proposing automatic intervention strategies (adapting the groupware system, changing the
composition of working groups, etc.).

5. Conclusions

This work has presented a proposal to automatically predict the academic perfor-
mance of students using only the data recorded in the first tasks of the academic year.
The interactions that students carry out with software tools to solve academic activities
allow us to have datasets with which to try to carry out this prediction. In many active
learning methodologies these activities are carried out collaboratively. For this reason,
the work focused on experimenting with a real case in which the students collaborate in
solving the tasks.

The proposal is based on a statistical depth based supervised classification technique,
which first performs the random Tukey depth to lower to one the data dimension and
then applies a kernel classifier. This means that the prediction can be carried out in
an automated way, using support software that processes a significant amount of data.
The experimentation carried out during four academic years in a university subject shows
promising results, as just making use of the first two tasks that the students perform we
obtain over an 80% success rate in predicting their final grade. This success rate increases
to over the 90% success rate if the first four tasks, out of six, are known in predicting the
final grade.

We propose that the results of the predictive mechanisms serve not only to inform
what the academic performance of students would be at the end of the academic year
but also to intervene in the automated development of activities. Our future work will
address the analysis of the causes of task failures and to design intervention mechanisms
in CSCL systems.
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