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Abstract: The optimization problem of cloaking a perfectly electric conducting or dielectric spherical
core is investigated. The primary excitation is due to an external magnetic dipole. The chaotic accel-
erated particle swarm optimization (CAPSO) algorithm is adjusted and applied to this optimization
problem. The optimization variables are the radii, the permittivities and the permeabilities of a small
number of spherical shells covering the core. Several feasible optimal designs are obtained, which
exhibit perfect or almost perfect cloaking performance for all angles of observation. These optimal
designs correspond to two, three or four spherical coating layers composed of ordinary materials.
Detailed parametric investigations of the cloaking mechanism with respect to the type and radius of
the core and the location of the primary dipole are carried out. The presented optimization procedure
and the reported results are expected to be useful in applications like scattering and characterization
of optical particles as well as in designing low-profile receiving antennas.

Keywords: particle swarm optimization; accelerated particle swarm optimization; chaotic accelerated
particle swarm optimization; chaotic maps; electromagnetic waves; scattering; cloaking; layered
medium; dipoles

1. Introduction

Optimization-based approaches constitute the foundations for the modeling and anal-
ysis of state-of-the-art applications concerning the design of electromagnetic, optical, and
metamaterial devices, renewable energy sources’ components as well as antenna elements;
see [1] for a recent survey. Particularly, particle swarm optimization (PSO) algorithms,
which are bio-inspired and population-based evolutionary algorithms, have been proven
to provide efficient and flexible tools for the treatment of the aforementioned applica-
tions [2–5] as well as several other applications in diverse fields [6,7]. The original PSO
algorithm, as a concept, was first introduced in 1995 [8,9], and it was directly inspired by
simulations mimicking the behavior observed in biological swarms of birds targeting food
locations [10]. It was conceptually placed between genetic algorithms and evolutionary
computing [8]. The swarm is designed in compliance with the basic principles of swarm
intelligence [8,11]. Since its original appearance, many variants and versions of the al-
gorithm have been developed, utilizing different tools and techniques and excelling at
different types of problems. For instance, PSO methods are very popular for non-convex
optimization problems. Presently, the variety of PSO algorithms constitute a versatile and
efficient family of optimization methods.

The development and implementation of PSO algorithms in computational electro-
magnetics and related engineering and antenna design applications were presented for
the first time in [12,13]. Moreover, a quantum PSO algorithm was developed in [14] and
applied for finding a set of dipoles producing the same fields as a circular dielectric res-
onator antenna; this algorithm relied on quantum mechanics rather than the Newton’s laws
considered in the original PSO versions. A PSO algorithm based on molecular dynamics
and leading to a physical theory for the swarm environment was presented in [15] and
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applied to the synthesis of antennas arrays. Variants of PSO algorithms with relevant
applications in microwave absorbers and base-station antenna optimization for mobile
communications were developed in [16].

In this paper, we apply the chaotic APSO (CAPSO) algorithm [17], which is a sug-
gested variant and improvement of the accelerated particle swarm optimization (APSO)
algorithm [18]. Both the APSO and the CAPSO algorithms follow the approach of a
single-step update regarding the position of the particles of the swarm in contrast to the
original PSO, which first updates the velocity of the particles and then the position. There
exist parameters to fine tune the algorithm, and to insert necessary randomness. Specifi-
cally, in CAPSO, the global attraction parameter is decided to be non-constant; it updates
through chaotic maps. The descriptions and definitions regarding the APSO/CAPSO
algorithms are presented in the following section, accompanied by necessary specifications
and adjustments.

The optimization problem we are considering concerns the electromagnetic cloaking
of a perfect electric conducting (PEC) or dielectric spherical core by covering it with a
small number of spherical shells (layers). The primary excitation of the spherical medium
is due to a magnetic dipole lying either in close proximity to the medium or far from it;
in the latter situation, the plane-wave incidence case is fairly approximated. We adjust
the CAPSO algorithm to the considered optimization problem and apply it to determine
optimal values of the radii as well as the permittivities and the permeabilities of the
spherical shells, yielding significantly reduced bistatic scattering cross section values with
respect to the bare PEC or dielectric sphere. It is demonstrated by means of several
numerical experiments that perfect or almost perfect cloaking performance is achieved
for all observation angles. The coating shells yielding this robust cloaking performance
are composed of ordinary materials, while only two, three or four shells are sufficient; the
number of shells depends on the type and radius of the core, as well as on the location of the
primary dipole. Moreover, the fast convergence of the CAPSO algorithm for the examined
optimization problem is exhibited by presenting representative convergence plots.

Finding such optimal designs for the considered cloaking problem is an outcome
of the effectiveness and versatility of the applied CAPSO algorithm; exhibiting these
findings for a variety of scattering configurations is a main goal of this work. In a previous
paper [19], the classic version of the PSO algorithm was applied for cloaking a PEC core,
and some preliminary numerical investigations were performed. However, the obtained
results showed efficient cloaking only for a range of observation angles, while a dielectric
core or different radii of the core were not considered. Besides, the cloaking behavior of
layered media and related optimization problems were investigated in [20–28] by means of
different techniques and by employing other types of materials not always easily realizable,
such as epsilon-near-zero, mu-near-zero, single-negative, double-negative or plasmonic
metamaterials.

This paper is organized as follows. Section 2 includes some background material
on PSO and APSO and provides a description of the CAPSO algorithm with specific
adjustments needed for the examined cloaking problem. The optimization problem is
presented in Section 3, where the exact solution of the scattering problem is derived, and
then the optimization strategy is detailed. Several numerical results are given in Section 4
for different parameters of the examined scattering geometry. In all cases, feasible optimal
solutions are determined and the efficient cloaking performance is shown. Conclusions are
summarized in Section 5.

2. Chaotic Accelerated Particle Swarm Optimization

The CAPSO algorithm was proposed by Gandomi et al. in [17]. APSO stands for
Accelerated Particle Swarm Optimization and is an algorithm developed by Yang in [18];
it was also presented in [29]. Thus, CAPSO was introduced as a variant and possible
improvement of the APSO.
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In this section, we first describe as a background some fundamentals of the PSO
and the APSO algorithms. Then, we present mathematical descriptions of the swarm’s
movement in CAPSO as well as the pseudo-code and the implementation of the algorithm
in the form that proved to be very efficient with respect to obtaining optimal solutions for
the electromagnetic cloaking problem we are investigating (details on this optimization
problem are given in the next section).

2.1. Particle Swarm Optimization Fundamentals

In PSO algorithms, the swarm consists of “particles”, which are points in the n-
dimensional search space of the optimization problem. There exist nature-inspired swarm
optimization methods, in which the particles have additional properties or societal struc-
tures. For example, the Fish School Search algorithm’s swarm is modeled after fish swarms,
and the members have feeding mechanisms resulting to weight [30], while in the Grey
Wolf Optimizer [31], hierarchy and hunting behaviors are utilized. PSO particles can also
follow topologies and form clans with leaders, such as in [32–34]. In this work, we only
refer to swarms of particles with no weight and size that follow a global topology.

It is worthwhile to briefly mention that said swarms in PSO algorithms are built with
respect to the following principles of swarm intelligence (SI) [11]:

• Proximity: The swarm has the ability to complete simple/elementary computations.
We mostly refer to time and space computations, since they concern the swarm’s
“natural” environment;

• Quality: The swarm considers quality factors as well (e.g., safety);
• Diverse response: The swarm does not narrow down its strategies regarding the

environment to an extreme degree, causing limitations. It ensures the ability to follow
alternatives;

• Stability: The swarm does not alter its mode of behavior for every single change
observed in its environment;

• Adaptability: The swarm alters its mode of behavior in response to environmental
changes when this decision is ensured to be a beneficial one (the swarms are designed
to have means of knowing so).

In general, PSO algorithms can be described by the following model. It should be
noted that depending on the algorithm, a variety of parameters and/or mechanisms
accompany this model.

1. Candidate solutions are represented by the particles’ positions x ∈ Rn;
2. The particles move in the search space possessing velocity u ∈ Rn;
3. There is shared knowledge in the swarm regarding the top solution(s) discovered by

the swarm. The best solution of the whole swarm per iteration is usually referred to
as the global best g∗. There can be multiples if the algorithm follows such a topology;

4. The velocity update formula is certainly affected by the global best solution and by
other parameters. For example, the particle’s individual best position so far, x∗, which
is known as the local best;

5. Some randomness is necessary to establish better solutions. It is very common to
insert some randomness factors in the velocity update formula.

6. The position updates after the velocity, commonly with respect to laws of the Newto-
nian (classical) mechanics;

7. The algorithm converges when the particles have agreed to an optimal position.
Additionally, there is a stopping criterion when the maximum number of iterations is
met.

2.2. Accelerated Particle Swarm Optimization (APSO)

The APSO algorithm follows a minimalist approach regarding the position updates
for the swarm. Thus, in this algorithm, we only use the global best g∗, as well as introduce
necessary randomness, to generate the velocity vector u, resulting in the use of a simpler
mathematical formula than that of the original PSO algorithm. In one of the formulae
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proposed in [29], a standard normal distribution αri is used, where r is drawn from N(0, 1).
For a specific particle during the i-th iteration, we have the following updates for the
velocity and position:

ui = ui−1 + β(g∗ − xi−1) + αri−1, (1)

xi = xi−1 + ui. (2)

We can draw ri−1 from suitable distributions (e.g., a Gaussian one).
It is also suggested to use an even more simplified formula in order to have particle

location updates in a single step:

xi = (1− β)xi−1 + βg∗ + αri−1. (3)

The parameters α and β do have a suggested range of suitable values, which are:
α ∈ [0.1, 0.4] and β ∈ [0.2, 0.7] [17,29]. However, these parameters should scale with respect
to the scales of the problem variables and need to be fine-tuned, especially for complicated
optimization problems. It should be noted that β is a very important parameter, since it
characterizes the variations of the global best g∗ attraction. The parameter α is usually
described as α(t), since a non-increasing, or monotonically decreasing function can be
chosen in order to reduce the randomness as the iterations proceed. This is considered to
be advantageous for the algorithm’s convergence.

Using a single step simplifies the process and allows us to avoid initializing and
updating particle velocity vectors. It reduces the computational burden of the swarm.
Thus, it is suggested to apply (Equation (3)) when using this algorithm.

2.3. The Chaotic Accelerated Particle Swarm Optimization (CAPSO) Algorithm

In the CAPSO algorithm [17], it is pointed out that a non-constant parameter β can
improve the algorithm’s convergence and general behavior. In this variant of APSO, the
method suggested for calculating and fine-tuning β is chaotic maps. Chaotic maps are
evolutionary functions that exhibit some type of chaotic behavior [35]. They are quite
well known for their use and application for fractal generation. They are usually (but not
necessarily) discrete. Therefore, they take the form of iterated functions, and this is also
how they are utilized in CAPSO. As chaotic maps are normalized, their output is always
between [0, 1], so they can safely be used for tuning parameter β.

We have chosen to work with the two most effective suggested chaotic maps, which,
according to [17], are the sinusoidal map and the singer map.

For a sinusoidal map:
xk+1 = axk

2 sin(πxk). (4)

For a = 2.3 and x0 = 0.7, the following simplified alternative form has been also
proposed [17]:

xk+1 = sin(πxk). (5)

Hence, the value of a for the sinusoidal map was chosen fixed at 2.3 to provide
flexibility regarding the use of either (Equation (4)) or (Equation (5)).

For a Singer map:

xk+1 = µ(7.86xk − 23.31xk
2 + 28.75xk

3 − 13.302875xk
4), (6)

where µ ∈ [0.9, 1.08] [17]. After extensive experimentation for our considered cloaking
problem, we selected µ = 0.9; in general, we noticed that smaller values of µ yielded
slightly more beneficial optimization results.

Both of the above maps have a unimode centered around their middle, and experi-
mentation has dictated that this is advantageous [17].

One can find MATLAB code for the original APSO algorithm in [18,29] and their
following editions, or at the MathWorks website [36]. In this work, we utilized this code
and updated it into the CAPSO algorithm. Additionaly, we adjusted it to the restrictions
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and requirements of the optimization problem at hand. The chaotic maps applied are as
described in (Equations (4) and (6)). The pseudo-code of the CAPSO algorithm is presented
in Algorithm 1 below; it was also tested versus the classic PSO variant [8,9] in [37].

Algorithm 1: Chaotic APSO (CAPSO)
Input: l,u,itmax,n
Output: A swarm S of n particles and their final positions
Initialize S of size n with random positions w.r.t the upper and lower bounds u
and l;

Initialize α and β parameters;
Initialize iteration, it = 1;
Set convergence as f alse;
while it ≤ itmax AND convergence == f alse do

Find global best g∗ for iteration it;
Update α;
Update β through a chaotic map;
for Each particle in S do

Update locations using (Equation (7));
end
Update the iteration counter, it = it + 1;
Update convergence;

end

As can be seen in Algorithm 1, there are two stopping criteria applied to the algo-
rithm. The first one is the maximum number of iterations, and the second is convergence.
Convergence means that the particles of the swarm have agreed to a solution [38]. Thus,
in order to check for convergence we need to check for similarity amongst the solutions
(particle locations). The method chosen is a minSTD criterion (also pointed out in [12]).
The similarity of the solutions is measured by standard deviation with respect to each
dimension of the problem, and the algorithm stops when the current STD is smaller than a
selected minSTD threshold. When this happens, the PSO is considered to have stagnated
around the global best g∗, which has been chosen as the best solution.

The CAPSO algorithm was chosen for two main reasons: (i) it is an APSO variant;
thus, it updates in a single step and spares some computational cost, and (ii) the chaotic
maps provide a lot of randomness, which could be very advantageous for the exploration
part of the algorithm regarding our problem. The optimization problem is described in
detail in the following sections, but it is worthwhile to stress that the above reasons were
deemed beneficial for handling its complexity and accumulating several feasible optimized
solutions. Regarding CAPSO’s efficiency and evaluation, extensive metrics and benchmark
testing were provided in the original work [17].

MATLAB code for the above CAPSO algorithm, adjusted to the considered cloak-
ing problem, is available at a GitHub repository online, https://github.com/alcmenem/
Chaotic-APSO (accessed on 21 July 2021), where further information is also available.

3. Optimization Problem

In this section, we describe the optimization problem to be solved concerning the
electromagnetic cloaking of a perfect electric conducting (PEC) or dielectric spherical core
covered by a fixed number of spherical shells with determinable physical and geometrical
parameters. This particular spherical model was chosen mainly because: (i) layered
spherical particles can be easily fabricated and (ii) the scattering problem by a layered
spherical medium admits an analytic solution in the form of a Mie series, which can be
fast and accurately simulated by a computer program. For these reasons, it is a scattering
model adopted in cloaking investigations, e.g., in [20–28]. First, we determine the exact
solution of the scattering problem, and then we describe the optimization strategy that

https://github.com/alcmenem/Chaotic-APSO
https://github.com/alcmenem/Chaotic-APSO
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we follow in order to determine the parameters of the structure offering efficient cloaking
performance.

3.1. Exact Solution of the Scattering Problem

The scattering geometry is depicted in Figure 1. A spherical core of radius a5 is covered
by four concentric spherical shells with radii aj, real relative dielectric permittivities εj,
and magnetic permeabilities µj (j = 1, 2, 3, 4). The core is either PEC or dielectric with
relative permittivity ε5 and permeability µ5. The layered medium is excited by an external
y-polarized magnetic dipole located at (0, 0, b) of the z-axis (with b > a1). The limiting case
of a plane incident wave is also considered when the distance b becomes suitably large.

Figure 1. The considered scattering geometry of a layered spherical medium composed of a PEC
or dielectric core of radius a5 covered by four spherical shells with radii aj, permittivities εj, and
permeabilities µj (j = 1, 2, 3, 4). The medium is excited by a magnetic dipole located at (0, 0, b).

The above-described scattering problem is solved analytically (and even for the general
case of an arbitrary number of layers) by applying a generalized separation of variables
scheme involving suitable expansions of the fields in every region in eigenfunctions of the
Helmholtz partial differential operator [39]. Specifically, the scattered field in the exterior
of the layered medium is expressed as

Esc(r) =
i

ĥ0(k0b)

∞

∑
n=1

2n + 1
n(n + 1)

[
αn ĥn(k0b)N3

e1n(r, k0)− βn ĥ′n(k0b)M3
o1n(r, k0)

]
, r > a1, (7)

where αn and βn are under determination coefficients, hn is the first-kind spherical Hankel
function of order n, ĥn(z) = zhn(z), k0 = 2π/λ0 is the wavenumber of the external region
r > a1 (with λ0 the corresponding wavelength), while M3

o1n and N3
e1n are the third-kind

spherical vector wave functions (Equations (13.3.68)–(13.3.70) of [40]).
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By imposing the transmission boundary conditions on the interfaces of the spherical
shells and applying a T-matrix method, we obtain the explicit expressions of coefficients αn
and βn. In the case of a dielectric core, these expressions are as follows [39]:

αn = − (A5
nAn)12

(A5
nAn)11

, βn = − (B5
nBn)12

(B5
nBn)11

, (8)

where

Aj
n = −ixj

[
wj jn(xj)ĥ′n(yj)− ξ j ĵ′n(xj)hn(yj) wj jn(xj) ĵ′n(yj)− ξ j ĵ′n(xj)jn(yj)

ξ j ĥ′n(xj)hn(yj)− wjhn(xj)ĥ′n(yj) ξ j ĥ′n(xj)jn(yj)− wjhn(xj) ĵ′n(yj)

]

Bj
n = −ixj

[
σj jn(xj)ĥ′n(yj)− ĵ′n(xj)hn(yj) σj jn(xj) ĵ′n(yj)− ĵ′n(xj)jn(yj)

ĥ′n(xj)hn(yj)− σjhn(xj)ĥ′n(yj) ĥ′n(xj)jn(yj)− σjhn(xj) ĵ′n(yj)

]
,

with xj = k jaj, yj = k j−1aj, wj = k j/k j−1, ξ j =
(
µjεj−1/µj−1εj

)1/2, σj = µj/µj−1, while
jn is the spherical Bessel function of order n, and ĵn(z) = zjn(z). Matrices An and Bn,
participating in (8), are defined by

An = A4
nA3

nA2
nA1

n, Bn = B4
nB3

nB2
nB1

n. (9)

Besides, in the case of a PEC core, the corresponding expressions of the scattered
field’s coefficients αn and βn are given by

αn = − ĥ′n(y5)(An)12 + ĵ′n(y5)(An)22

ĥ′n(y5)(An)11 + ĵ′n(y5)(An)21
, βn = −hn(y5)(Bn)12 + jn(y5)(Bn)22

hn(y5)(Bn)11 + jn(y5)(Bn)21
. (10)

We are interested in the variations of the scattered field in the far zone (i.e., as r → ∞)
with respect to the physical and geometrical parameters of the scattering problem. To this
end, we consider the following asymptotic expression (see, e.g., Corollary 4.9 of [41]):

Esc(r) = F(r̂)h0(k0r) +O(r−2), r → ∞, (11)

where the function F(r̂) is the so-called far-field pattern and describes the far-field response
of the scatterer in the direction of observation r̂ = r/r due to the excitation by the considered
primary magnetic dipole. The explicit expression of the far-field pattern for the considered
scattering problem is found to be [39]

F(r̂) = Sθ(θ) cos φ θ̂+ Sφ(θ) sin φ φ̂, (12)

where

Sθ(θ) =
∞

∑
n=1

(−1)n(2n + 1)√
n(n + 1)

[
δn

P1
n(cos θ)

sin θ
− γn

∂P1
n(cos θ)

∂θ

]
, (13)

Sφ(θ) =
∞

∑
n=1

(−1)n(2n + 1)√
n(n + 1)

[
γn

P1
n(cos θ)

sin θ
− δn

∂P1
n(cos θ)

∂θ

]
, (14)

where P1
n is the first-order Legendre function of degree n, and

γn =
hn(k0b)
h0(k0b)

inαn, δn =
ĥ′n(k0b)
ĥ0(k0b)

in−1βn, (15)

with the scattered field’s coefficients αn and βn given by (8) and (10) for the cases of a
dielectric and a PEC core, respectively.
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Having determined the far-field pattern, we provide the definitions and subsequently
calculate the two basic scattering cross sections (SCS) of interest. The differential SCS or
bistatic radar SCS

σ(r̂) =
4π

k2
0
|F(r̂)|2 (16)

specifies the amount of the field’s power scattered in the direction r̂. The total SCS can be
represented by:

σt =
1
k2

0

∫
S2
|F(r̂)|2ds(r̂)

=
1

4π

∫
S2

σ(r̂)ds(r̂), (17)

where S2 denotes the unit sphere in R3 and is defined as the average of σ(r̂) over all
directions.

Combining (12) with (13) and (16), as well as (14) with (17), we find that the differential
SCS and the total SCS for the considered problem of excitation of the spherically-layered
medium by an external magnetic dipole, are, respectively, given by

σ(θ, φ) =
4π

k2
0

[
|Sθ(θ)|2 cos2 φ + |Sφ(θ)|2 sin2 φ

]
(18)

and

σt =
2π

k2
0

∞

∑
n=1

(2n + 1)
[
|γn|2 + |δn|2

]
. (19)

All fields’ expressions derived above in this section correspond to a primary magnetic
dipole excitation, but can be converted to the respective ones due to an electric dipole exci-
tation by using the well-known interchanges between the fields and material parameters
(see, e.g., Section II of [42]).

3.2. Strategy

Our goal is to determine geometrical and physical parameters of the four spherical
shells covering the core such that the entire layered structure cloaks the presence of the
core (of fixed radius k0ac). In other words, the far field generated by the core covered by
the optimized shells is required to be significantly reduced with respect to the far field
generated by the bare sphere of radius k0ac. To this end, we consider as the objective
function of the optimization problem the normalized total SCS σt/(πa2

c ). Small values
of this objective function assure that the overall response of the scatterer in the far field
is substantially reduced. Another option is to consider the backscattering cross section
σ(0, φ) as the problem’s objective function. This was performed in [43], where it was shown
that very small values can be attained in the vicinity of the backscattering direction θ = 0;
however, the cloaking behavior for other observation angles was not so efficient in the
examined cases. Hence, σ(0, φ) is better suited for traditional monostatic applications,
while reducing σt serves well the purpose of achieving enhanced cloaking performance.

The optimization variables considered are the radii aj, the relative dielectric permit-
tivities εj and the relative magnetic permeabilities µj (j = 1, 2, 3, 4) of the coating layers.
Importantly, we note that N = 4 is the maximum number N of coating layers sought for in
the optimization schemes. Precisely, for a chosen core’s type (PEC or dielectric) and radius,
and a chosen dipole’s location, we initiate optimizations with N = 1 (a single magneto-
dielectric coating layer), and then proceed subsequently to N = 2, 3, and 4 (two, three,
and four magneto-dielectric coating layers) and report in the next section the best attained
results for each N. Regarding the location of the dipole, different cases are considered both
close to the boundary r = a1 of the layered medium as well as relatively far from it. In the
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former case, a genuinely spherical wave impinges on the layered medium, while in the
latter case the generated far field is expected to be sufficiently close to that resulting by
a plane incident wave propagating along the −ẑ-direction [39]. Besides, dipoles lying at
arbitrary locations (inside or outside the layered medium) and possessing arbitrary dipole
moments can also be considered; exact solutions for the associated scattering problems
were derived in [44,45].

It is worthwhile to emphasize that the exact solution of the scattering problem, which
is obtained here in the form of a Mie series [cf. Equation (7)], is highly advantageous for the
efficient implementation of an optimization algorithm. Specifically, the objective function,
given by the explicit expression (19), is computed fast and accurately without resulting in
any numerical approximations. Additionally, results from commercial software simulation
packages are not required at any stage of the optimization procedure; it is customary to
rely on such packages in many related optimization problems in electromagnetics when
an analytic method for solving the underlying boundary-value problem has not been
developed.

4. Numerical Results and Discussion

The CAPSO algorithm, described in Section 2, as well as the objective function of
the cloaking problem, given by (19), were both implemented in MATLAB R2019ar. The
employed swarms were MATLAB structures or arrays constructed according to the steps of
Algorithm 1. The components of the CAPSO position vector consisted of the optimization
variables aj of the radii, εj of the relative dielectric permittivities, and µj of the relative
magnetic permeabilities of the N = 4 magneto-dielectric layers covering the spherical
core. Hence, we considered 3N = 12 optimization variables for the particles’ position.
However, as noted above, we also tested the cases of N = 1, 2, and 3 coating layers, for
which the numbers of the optimization variables are 3N = 3, 6, and 9, respectively. For
N = 1 (a single coating layer), it was found that no substantial cloaking effect is observed.
To this end, in the sequel, we report the results obtained for efficient cloaking by using
N = 2, 3, and 4 coating layers. The optimization variables were considered in the following
ranges: the differences k0(aj+1 − aj) between two consecutive layers’ radii varied in ( π

10 , π)
or ( π

10 , π
2 ), while the permittivities εj and permeabilities µj varied in (0.4,5). These specific

intervals were chosen such that each covering layer is sufficiently thin; more precisely, the
width aj+1 − aj is smaller than λ0/2, and the physical parameters εj and µj of the layers
correspond to realizable materials, particularly excluding the cases of epsilon-near-zero,
mu-near-zero, single-negative, double-negative or plasmonic metamaterials.

Besides, regarding the characteristics of the core, both cases of PEC and dielectric
cores were considered with the radius being either k0ac = 2π (one free-space wavelength)
or k0ac = π (half of the free-space wavelength). For the distance of the dipole from the
scatterer, two cases were simulated: b = 10ac when the dipole lies sufficiently far from
the layered medium and hence the plane-wave incidence situation is approximated, and
b = 1.3a1 when the dipole is in the vicinity of the medium and hence the incident wave
impinging on the medium is spherical.

The CAPSO algorithm was applied to minimize the total SCS σt. In the experimen-
tation phase, we set a maximum number of iterations equal to 500. This is what we refer
to as itmax in Algorithm 1, which constitutes the maximum allowed number of swarm
updates, and ensures that the while loop is terminated if the algorithm does not converge.
Such a maximum iteration limit is widely used in related algorithms to guarantee that
the algorithm does not run infinitely (for example in cases of wrong parameter values
or failed simulations). Regarding the minSTD criterion, we have chosen a threshold of
10−7. As will become evident by the numerical results presented below, the number of
iterations that the algorithm converges will be, at most, 100 for all examined scattering
problems, since the minSTD criterion always takes effect when the algorithm agrees around
an optimal solution. The plateaus representing the solutions’ agreement are observable in
the corresponding graphs.
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The procedure we follow is to consider a fixed number of coating layers (we start from
N = 2) and, from all the numerical experiments performed, to retain only the solutions
corresponding to values of the objective function σt/(πa2

c ) smaller than −1 in the dB scale.
From all the solutions satisfying this criterion, we then select the two giving the smallest
values of the objective function. This procedure is then repeated for N = 3 and N = 4.
In all the numerical results presented below, by “optimized design A/B”, we refer to the
optimized solutions achieving the two best scores (the two smallest values of the objective
function) for each examined constant value of N. To demonstrate the actual reduction
in the generated far field with respect to the spherical observation angles, we compute
and depict the normalized bistatic SCS σ(θ, φ)/(πa2

c ) versus the angle θ in the xOz and
yOz planes.

The examined optimization problem is complex and open-ended. Furthermore, there
exists no definite prior knowledge on whether the objective function is unimodal or
multimodal. Additionally, each added layer further complicates the objective function,
since it is accompanied by corresponding permittivity and permeability options, which
themselves are strictly limited by the imposed physical boundaries. Nevertheless, in our
experiments, the CAPSO algorithm managed to provide feasible optimal solutions. The
results are as follows.

First, we present the results of the numerical experiments for a PEC core with
k0ac = 2π excited by a dipole at b = 10ac. Figure 2 depicts the normalized bistatic
SCS in the xOz and yOz planes for the obtained optimized designs A and B with N = 3
and N = 4 coating layers covering the PEC core; for this case, N = 2 did not give results
satisfying the above-described criterion for the objective function’s values. The parameters
of the optimization variables for optimized designs A and B are detailed in the two first (for
N = 3) and the two last (for N = 4) columns of Table A1 of the Appendix A. Besides, in
Figure 2, the corresponding SCS curves for a bare PEC sphere of k0ac = 2π are also shown
for comparison purposes. It is observed that significant reductions in the bistatic SCS of the
layered medium with optimally-determined layers compared to the bistatic SCS of a bare
PEC spherical core are exhibited. These reductions occur for all observation angles in the
yOz plane and for nearly all angles in the xOz plane, apart from a resonance regime of the
bare PEC SCS centered θ = 140o. Another characteristic—not initially expected—is that
the optimal coating layers for N = 3 perform generally slightly better in both observation
planes than the ones for N = 4. This means that—at least in the present case—the addition
of an extra coating layer does not improve the overall cloaking performance of the layered
medium; therefore, it is better to choose the simpler coating cover with N = 3, which
would be also potentially easier to be realized.

A representative convergence plot of the CAPSO algorithm, when applied to the
scattering problem of Figure 2, is shown in Figure 3. This convergence plot is presented
in the form of a stairstep graph, in which the values of the objective function are sampled
per five iterations, i.e., the best swarm values with a five-iteration step are depicted. PSO
algorithms and variants exhibiting similar convergence performances, which are presented
in the form of stairstep graphs, are included, e.g., in Figure 10a in [12] and Figure 4a
in [46]. Additionally, similar convergence diagrams appear in the curves for the global best
depicted in Figures 4 and 7 of [13]. In these figures, convergence regarding the solution
similarity can also be observed. From Figure 3, it is evident that the CAPSO algorithm
shows very fast convergence requiring, at most, 100 iterations.
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Figure 2. Normalized bistatic SCS σ(θ, φ)/(πa2
c ) in the xOz and yOz planes versus the angle θ for (a,b) N = 3 and (c,d)

N = 4 optimized spherical layers covering a PEC core of radius k0ac = 2π excited by a dipole at b = 10ac (nearly plane-wave
incidence case).
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Figure 3. Best fitness function’s values versus the CAPSO algorithm’s iterations for the scattering
problem considered in Figure 2, presented in a stairstep graph with a 5-iteration step.

Next, we consider the same PEC core of radius k0ac = 2π, but now excited by a dipole
in close proximity to the spherical medium, located at b = 1.3a1; thus, a genuinely spherical
wave excites the spherical medium. Compared to the previous case of (effectively) plane-
wave incidence, now the interaction of the dipole and the medium is definitely stronger,
and hence, in this case, the problem is much more difficult to optimize. For this reason, the
minimum values of the total SCS obtained by applying the CAPSO algorithm were larger
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in this examined case of spherical-wave incidence. The bistatic SCS plots for the two best
cases found in the numerical experiments are depicted in Figure 4. Evidently, the designed
cloaking performs remarkably well in the yOz plane, and quite satisfactorily in the xOz
plane, except for the interval [105o, 135o], where the bistatic SCS of the bare PEC sphere has
two minima.
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Figure 4. As in Figure 2 with (a,b) N = 3 and (c,d) N = 4, but for a dipole at b = 1.3a1, near the boundary of the spherical
medium. The values of the optimization variables for designs A and B are given in Table A2 of the Appendix A.

Furthermore, we change the PEC core’s radius to k0ac = π. Figures 5 and 6 depict
the normalized bistatic SCS for the primary dipole located at b = 10ac (nearly plane-wave
incidence case) and b = 1.3a1 (spherical-wave incidence case), respectively. The main
difference in this scenario of k0ac = π with respect to the previous scenario of k0ac = 2π
(depicted in Figures 2 and 4) is that now, since the radius of the core is half the previous
radius, efficient cloaking performance can be achieved by using a smaller number of
coating layers (i.e., N = 2 or N = 3 for k0ac = π versus N = 3 or N = 4 for k0ac = 2π).
On top of that, it is worthwhile to point out that almost perfect cloaking is obtained when
using the optimized N = 3 coating layers with their parameters determined by the CAPSO
algorithm (cf. optimized design B for N = 3 in Figures 5c,d). As in the case of k0ac = 2π,
also in this case of k0ac = π, cloaking is more challenging for a spherical incident than a
plane incident wave; still, significant bistatic SCS reductions are obtained, particularly in
the yOz plane.



Mathematics 2021, 9, 2725 13 of 23

0 20 40 60 80 100 120 140 160 180

 (degrees)

-10

-5

0

5

10

15

B
is

ta
ti
c
 S

C
S

 (
d
B

)

optimized design A

optimized design B

bare PEC sphere

N=2

xOz plane

0 20 40 60 80 100 120 140 160 180

 (degrees)

-25

-20

-15

-10

-5

0

5

10

15

B
is

ta
ti
c
 S

C
S

 (
d
B

)

optimized design A

optimized design B

bare PEC sphere

N=2

yOz plane

(a) (b)

0 20 40 60 80 100 120 140 160 180

 (degrees)

-10

-5

0

5

10

15

B
is

ta
ti
c
 S

C
S

 (
d
B

)

optimized design A

optimized design B

bare PEC sphere

xOz plane

0 20 40 60 80 100 120 140 160 180

 (degrees)

-25

-20

-15

-10

-5

0

5

10

15

B
is

ta
ti
c
 S

C
S

 (
d
B

)

optimized design A

optimized design B

bare PEC sphere

N=3

yOz plane

(c) (d)

Figure 5. Normalized bistatic SCS σ(θ, φ)/(πa2
c ) in the xOz and yOz planes versus the angle θ for (a,b) N = 2 and (c,d)

N = 3 optimized spherical shells (layers) covering a PEC core of radius k0ac = π excited by a dipole at b = 10ac (nearly
plane-wave incidence case). The values of the optimization variables for designs A and B are given in Table A3 of the
Appendix A.

Now, we move to the case of a dielectric core. Its material is considered to be magneti-
cally inert (i.e., µc = 1) with dielectric permittivity initially selected as εc = 2.1; the latter
corresponds to the permittivity of fused silica (a pure form of glass) in the infrared range
of the electromagnetic spectrum. Figure 7 depicts the bistatic SCS results (stemming from
the best scores of the corresponding total SCS) obtained for N = 2, 3, and 4 optimal layers
covering a dielectric core of radius k0ac = 2π. Importantly, perfect cloaking performance
for all angles is observed. Even N = 2 coating layers are sufficient for rendering the
considered dielectric sphere electromagnetically invisible.
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Figure 6. As in Figure 5 with (a,b) N = 2 and (c,d) N = 3, but for a dipole at b = 1.3a1 (spherical-wave incidence case). The
values of the optimization variables for designs A and B are given in Table A4 of the Appendix A.

0 20 40 60 80 100 120 140 160 180

 (degrees)

-40

-30

-20

-10

0

10

20

B
is

ta
ti
c
 S

C
S

 (
d
B

)

optimized design A

optimized design B

bare dielectric sphere

N=2

xOz plane

0 20 40 60 80 100 120 140 160 180

 (degrees)

-60

-40

-20

0

20

B
is

ta
ti
c
 S

C
S

 (
d
B

)

optimized design A

optimized design B

bare dielectric sphere

N=2

yOz plane

(a) (b)

Figure 7. Cont.



Mathematics 2021, 9, 2725 15 of 23

0 20 40 60 80 100 120 140 160 180

 (degrees)

-40

-30

-20

-10

0

10

20

B
is

ta
ti
c
 S

C
S

 (
d
B

)

optimized design A

optimized design B

bare dielectric sphere

N=3

xOz plane

0 20 40 60 80 100 120 140 160 180

 (degrees)

-60

-40

-20

0

20

B
is

ta
ti
c
 S

C
S

 (
d
B

)

optimized design A

optimized design B

bare dielectric sphere

N=3

yOz plane

(c) (d)

0 20 40 60 80 100 120 140 160 180

 (degrees)

-40

-30

-20

-10

0

10

20

B
is

ta
ti
c
 S

C
S

 (
d
B

)

optimized design A

optimized design B

bare dielectric sphere

N=4

xOz plane

0 20 40 60 80 100 120 140 160 180

 (degrees)

-60

-40

-20

0

20

B
is

ta
ti
c
 S

C
S

 (
d
B

)

optimized design A

optimized design B

bare dielectric sphere

N=4

yOz plane

(e) (f)

Figure 7. Normalized bistatic SCS σ(θ, φ)/(πa2
c ) in the xOz and yOz planes versus the angle θ for (a,b) N = 2, (c,d) N = 3,

and (e,f) N = 4 optimized spherical layers covering a dielectric core of radius k0ac = 2π and permittivity εc = 2.1, excited by
a dipole at b = 10ac. The values of the optimization variables for designs A and B are given in Table A5 of the Appendix A.

Cloaking results for a dielectric sphere of the same material but with radius k0ac = π
are shown in Figure 8. The cloaking behavior is again nearly perfect with the best per-
formance attained for N = 3, covering layers with optimally-determined parameters.
Notice also in Figure 8d that the layered medium (for the optimized design A) has a sharp
minimum in its bistatic SCS at exactly the same angle (θ = 38o) as the bistatic SCS of the
bare dielectric sphere.

Representative convergence plots of the CAPSO algorithm when applied to the scatter-
ing problems of Figures 7 and 8 are shown in Figure 9. Here, as well, the CAPSO algorithm
converges quickly, in 100 iterations. It is observed that for the examined case of a dielectric
core, the objective function’s values for which the algorithm converges are significantly
smaller than those for the corresponding case of a PEC core; cf. Figures 3 and 9a.
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Figure 8. As in Figure 7 with (a,b) N = 2, (c,d) N = 3, and (e,f) N = 4, but for a dielectric core with radius k0ac = π. The
values of the optimization variables for designs A and B are given in Table A6 of the Appendix A.

Next, we change the relative dielectric permittivity of the core to εc = 18.7; this
corresponds to the permittivity of amorphous silicon in the infrared range. Now, the
optimization problem is more difficult due to the large value of the core’s permittivity.
However, as shown in Figure 10, efficient cloaking performance can still be obtained for all
angles except two small intervals in the xOz and the yOz planes, where the bistatic SCS of
the bare dielectric sphere exhibits global minima. A convergence plot for the scattering
problem of Figure 10 is shown in Figure 11. The objective function’s values for which
the algorithm converges are notably larger in this case with respect to the previous one,
corresponding to a much smaller core permittivity; cf. Figures 9b and 11.
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Figure 9. Best fitness function’s values versus the CAPSO algorithm’s iterations for the problems considered in (a) Figure 7
and (b) Figure 8, presented in stairstep graphs with a 5-iteration step.
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Figure 10. Normalized bistatic SCS σ(θ, φ)/(πa2
c ) in the xOz and yOz planes versus the angle θ for (a,b) N = 2- and (c,d)

N = 3-optimized spherical layers covering a dielectric core of radius k0ac = π and permittivity εc = 18.7, excited by a
dipole at b = 10ac. The values of the optimization variables for designs A and B are given in Table A7 of the Appendix A.
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Figure 11. The best fitness function’s values versus the CAPSO algorithm’s iterations for the scattering
problem considered in Figure 10, presented in a stairstep graph with a 5-iteration step.

Finally, it is important to examine for practical reasons the sensitivity of the obtained
results to the variations of the optimization variables (resulting, e.g., from fabrication im-
perfections). To this end, we consider the scattering problem analyzed in Figure 7a,b, i.e., a
dielectric core with k0ac = 2π and εc = 2.1 and covered by N = 2 coating layers, and test the
effectiveness of the cloaking performance when the permittivity ε1 or the permeability µ1 of
the first coating layer is perturbed. Figure 12 depicts the variations of the bistatic SCS when
ε1 or µ1 are perturbed by ±5% from their optimally determined values (cf. Table A5). It is
evident that, although a small deterioration in the performance is observed, the cloaking
still performs well in both observation planes.
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Figure 12. Cloaking performance for the optimized design B of Figure 7a,b after perturbing (a,b) the permittivity ε1 and
(c,d) the permeability µ1 by ±5%.
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Closing the numerical results section, we make a comparison of the optimal solutions
derived for the examined problem by applying the CAPSO algorithm with those derived
in [19] by applying the conventional PSO algorithm. In this work, we derive feasible
optimal solutions for cloaking PEC and dielectric cores with different radii and different
permittivities (for the dielectric cores). In [19], only the problem of a single-radius PEC core
was examined. Besides, the obtained results in [19] yielded efficient cloaking performance
only for a range of the observation angles, while the results presented here achieved
almost perfect cloaking performance for nearly all observation angles. This means that
the application of the CAPSO algorithm for the cloaking problem resulted in solutions
with significantly higher scores (i.e., significantly reduced values of the total SCS) than the
respective ones determined by the conventional PSO.

5. Conclusions

The scattering problem of a layered spherical medium excited by an external magnetic
dipole was considered. Its analytic solution in terms of the Mie series was exploited for
formulating a suitable optimization problem concerning the cloaking of a perfectly electric
conducting or dielectric core by a small number of spherical shells. The objective function
of the problem was the total scattering cross section, while the optimization variables were
the geometrical and material parameters of the spherical shells composing the coating.
Applying the chaotic accelerated particle swarm optimization algorithm, several feasi-
ble optimal solutions were determined, leading to efficient cloaking performances. The
coatings were composed of realizable materials, although in certain cases materials with
permittivities or permeabilities smaller than one may be required. The total number of
coating shells was only two, three or four, hence assisting in fabrication. These facts con-
stitute an advancement to cloaking design because existing methods mainly investigated
coatings composed of extraordinary materials. The effects of the core’s type and radius and
the location of the dipole on the cloaking mechanism were studied. Significantly reduced
objective function values were obtained for all cases examined and for almost the entire
range of observation angles.
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Appendix A

In this Appendix, we include in tabular form the values of the optimization variables
corresponding to the optimized designs A and B reported in Section 4.
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Table A1. Values of the optimization variables for optimized designs A and B of Figure 2.

A (N = 3) B (N = 3) A (N = 4) B (N = 4)

k0a1 8.12 8.09 8.24 8.66
k0a2 7.36 7.30 7.86 7.70
k0a3 6.65 6.60 7.30 6.89
k0a4 – – 6.67 6.75
ε1 0.40 0.40 0.60 0.50
ε2 3.87 4.15 0.40 2.93
ε3 0.40 0.40 5.00 0.50
ε4 – – 0.60 0.53
µ1 1.92 1.88 2.59 1.62
µ2 0.40 0.40 0.86 0.50
µ3 1.73 1.79 0.40 2.62
µ4 – – 1.25 0.97

Table A2. Values of the optimization variables for optimized designs A and B of Figure 4.

A (N = 3) B (N = 3) A (N = 4) B (N = 4)

k0a1 8.10 7.54 8.17 7.68
k0a2 7.41 7.24 7.46 7.32
k0a3 6.67 6.60 6.87 6.62
k0a4 – – 6.76 6.40
ε1 0.40 1.00 0.40 0.68
ε2 3.73 4.71 3.85 5.00
ε3 0.40 0.40 1.35 0.40
ε4 – – 0.40 1.96
µ1 1.92 0.41 2.00 0.60
µ2 0.40 0.40 0.40 0.40
µ3 1.70 1.70 0.47 1.15
µ4 – – 1.64 1.49

Table A3. Values of the optimization variables for optimized designs A and B of Figure 5.

A (N = 2) B (N = 2) A (N = 3) B (N = 3)

k0a1 4.37 4.48 5.35 5.39
k0a2 3.87 3.88 4.35 4.45
k0a3 – – 3.79 3.65
ε1 3.48 3.03 0.58 0.65
ε2 0.50 0.50 4.76 4.25
ε3 – – 0.80 0.75
µ1 0.50 0.52 1.28 1.11
µ2 1.04 1.04 0.52 0.56
µ3 – – 0.70 0.59

Table A4. Values of the optimization variables for optimized designs A and B of Figure 6.

A (N = 2) B (N = 2) A (N = 3) B (N = 3)

k0a1 4.37 4.50 5.14 4.63
k0a2 3.99 3.99 4.43 3.99
k0a3 – – 3.95 3.68
ε1 3.56 2.90 0.85 2.43
ε2 0.50 0.50 3.43 0.53
ε3 – – 0.50 0.50
µ1 0.50 0.51 0.64 0.62
µ2 1.10 1.16 1.66 1.39
µ3 – – 0.70 0.89
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Table A5. Values of the optimization variables for optimized designs A and B of Figure 7.

A (N = 2) B (N = 2) A (N = 3) B (N = 3) A (N = 4) B (N = 4)

k0a1 9.68 9.67 9.69 10.23 9.82 9.98
k0a2 7.40 9.00 9.07 9.35 9.03 9.20
k0a3 – – 7.52 7.46 8.19 9.10
k0a4 – – – – 6.95 7.60
ε1 3.57 2.91 2.56 1.26 1.69 1.54
ε2 5.00 5.00 4.42 4.17 4.73 4.42
ε3 – – 4.91 4.97 4.82 4.52
ε4 – – – – 4.98 4.39
µ1 3.81 2.81 2.41 1.26 1.76 1.63
µ2 3.76 3.46 4.31 4.09 4.78 4.17
µ3 – – 3.27 3.42 3.49 4.86
µ4 – – – – 3.91 3.11

Table A6. Values of the optimization variables for optimized designs A and B of Figure 8.

A (N = 2) B (N = 2) A (N = 3) B (N = 3) A (N = 4) B (N = 4)

k0a1 4.89 4.95 5.27 5.65 5.67 5.31
k0a2 3.52 3.51 4.61 4.82 5.13 4.97
k0a3 – – 3.69 4.34 4.75 4.05
k0a4 – – – – 3.90 3.58
ε1 3.56 3.32 1.57 1.16 3.77 1.51
ε2 4.60 4.92 4.57 2.89 2.66 4.00
ε3 – – 3.87 3.91 1.53 2.66
ε4 – – – – 4.86 4.98
µ1 3.92 3.82 1.39 1.36 4.86 1.31
µ2 3.67 3.68 4.78 4.55 2.92 3.35
µ3 – – 2.76 3.82 1.18 2.78
µ4 – – – – 3.22 3.68

Table A7. Values of the optimization variables for optimized designs A and B of Figure 10.

A (N = 2) B (N = 2) A (N = 3) B (N = 3)

k0a1 5.20 5.20 5.21 5.26
k0a2 3.47 3.51 3.74 4.60
k0a3 – – 3.42 3.47
ε1 0.53 0.52 0.50 0.71
ε2 4.90 4.44 3.93 0.50
ε3 – – 0.50 0.50
µ1 1.68 1.72 1.90 1.83
µ2 0.65 0.68 0.85 1.32
µ3 – – 0.82 0.67
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