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Abstract: Every biological image contains quantitative data that can be used to test hypotheses about
how patterns were formed, what entities are associated with one another, and whether standard
mathematical methods inform our understanding of biological phenomena. In particular, spatial
point distributions and polygonal tessellations are particularly amendable to analysis with a variety
of graph theoretic, computational geometric, and spatial statistical tools such as: Voronoi polygons;
Delaunay triangulations; perpendicular bisectors; circumcenters; convex hulls; minimal spanning
trees; Ulam trees; Pitteway violations; circularity; Clark-Evans spatial statistics; variance to mean
ratios; Gabriel graphs; and, minimal spanning trees. Furthermore, biologists have developed a
number of empirically related correlations for polygonal tessellations such as: Lewis’s law (the
number of edges of convex polygons are positively correlated with the areas of these polygons):
Desch’s Law (the number of edges of convex polygons are positively correlated with the perimeters
of these polygons); and Errara’s Law (daughter cell areas should be roughly half that of their parent
cells’ areas). We introduce a new Pitteway Law that the number of sides of the convex polygons in a
Voronoi tessellation of biological epithelia is proportional to the minimal interior angle of the convex
polygons as angles less than 90 degrees result in Pitteway violations of the Delaunay dual of the
Voronoi tessellation.

Keywords: graph theory; computational geometry; spatial statistics; image analysis; tessellations;
Voronoi polygons; Delaunay triangulations; minimal spanning trees; Pitteway violations

1. Introduction

Visual representations can be used to test hypotheses, help us reason about biolog-
ical causation, and help us communicate our inferences. While calculus and differential
equations currently dominate applications of mathematics to biology, biologists are deeply
interested in a wide variety of patterns in multiple forms of visualization and the causal
mechanisms that generate such patterns. Unfortunately, visual areas of mathematics such
as geometry and topology are rarely learned by biologists. Therefore, while we cannot
make the case as in Star Trek that space is the final frontier, mathematical and computa-
tional analysis of space should allow us to re-vision biological image analysis by seriously
applying graph theory, computational geometry, and spatial statistics. Recent articles in
Σ Mathematics have described the importance of graph theory in biology: RNA structural
motifs in viruses [1]; 3D icosahedra [2]; and non-Mendelian genetics [3]. While these
articles address important mathematical concepts, they do not discuss the general util-
ity of graph theory to biological problems. Graph theory relates especially well to this
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Special Issue on “mathematical biology” because biologists already use graphs such as
phylogenetic trees, fate maps, pedigrees, chromosomal maps, food webs, connectomes,
neural nets, and secondary structures of RNA (planar graphs such as Nussinov circles,
domes, mountains, and airports) and proteins (HP (hydrophobic-polar) protein lattices;
Wenxiang diagrams). These visualizations are mathematical abstractions of many biologi-
cal phenomena. Nonetheless most biologists do not appreciate that these visualizations are
amenable to analysis with formal mathematical tools. Particularly, visualizations such as
photographs of tree canopies, fish territories on sandy or muddy bottom lakes, polygonal
animal coat patterns, histological preparations of epithelial cell layers, radiolarians tests,
viral capsids, or x-ray crystallographic images of protein structures lend themselves to
analysis by tessellations of Voronoi polygons and their topological duals: Delaunay tri-
angulations. Herein the mathematical power of these geometric and topological tools as
well as a series of related concepts from graph theory, computational geometry, and spatial
statistics will be explored in the context of image analysis of biological patterns.

2. Valuing Voronoi Visualization: Spatial Analysis of Biological Patterns of Points,
Polygons, and Polytopes

What do these biological tessellations share in common? Do these organic forms look
quasi-crystalline? Do you see a preponderance of five- and six-sided convex polygons that
primarily adjoin one another to form trigonal junctions? Why should such similar patterns
occur across such vast scales of size, time, phylogeny, and causal mechanism? How can our
appreciation of a very different use of standard geometry and algebra tools as well a little
help from graph theory and spatial statistics help us to better understand the evolution,
development, and beauty of biological patterns?

Allometry and fractals have captured the imagination of mathematical biologists as
well as amateurs because both apply across at least ten orders of magnitude of biological
phenomena and structures from the molecular to the ecological level. All of the biologi-
cal specimens illustrated in Figure 1 contain tessellations of convex polygons known as
Voronoi polygons. Voronoi polygons and polyhedra are less well known to both audiences,
but scale equally well across phylogenetic, spatial, and temporal dimensions. Furthermore,
Voronoi polygons and polyhedra are associated with additional mathematical methods
that allow deeper insight into a variety of biological causal mechanisms such as growth,
diffusion, division, packing, docking of ligands, strength of materials, molecular fold-
ing, foraging behavior, predator avoidance, and crowding as well as to their utility in
making measurements, modeling interactions, relationship of two- and three-dimensional
topographic structures, making succinct abstractions, and visualization per se. These four
criteria of diversity:

(1) Phylogenetic;
(2) Spatial;
(3) Temporal;
(4) Causal mechanisms are posited as useful gauges of the applicability of mathematics

and computer science to biology.

Lest we forget, mathematicians are deeply interested in biological pattern formation
and morphogenesis in general. With the strong visual legacy of mathematical research in
geometry, topology, and symmetry, McCormick, DeFanti, and Brown [4] state: “Visualiza-
tion is a method of computing. It transforms the symbolic into the geometric, enabling
researchers to observe their simulations and computations. Visualization offers a method
for seeing the unseen. It enriches the process of scientific discovery and fosters profound
and unexpected insights. In many fields it is already revolutionizing the way scientists
do science.” It is precisely this desire to use mathematics to “see the unseen” that as a
mathematical biologist I want to share with biologists. Gilbert [5] argues that mathematical
visualization is a metacognitive skill that if students are able to acquire translates to many
different problem-solving applications. Therefore, this is not simply a matter of interpret-
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ing pretty pictures, but a tool in helping both students and researchers to make deeper
inferences about what they see.

Figure 1. Consider the nine images above: (a) tropical rain forest canopy; (b) reticulated giraffe;
(c) Tilapia fish territories; (d) Chameleon head; (e) Galapagos tortoise forefoot; (f) Petoskey stone
(a) fossilized stony coral); (g) pollen grain; (h) Thai breadfruit (Artocarpus altili)); and, (i) radiolarian.
(Figure 1a,b,d,e,g from https://commons.wikimedia.org/ accessed on 25 October 2021). Figure 1c
from (http://www.finterest.com.au/ accessed on 25 October 2021); Figure 1f–h by author. Figure 1i
is from Haeckel’s Art Forms in Nature (http://www.rarebooksberlin.de/fileadmin/haeckel_artforms.
pdf (accessed on 25 October 2021) and see also Wagner and Jungck-Microscopy of Radiolarians and
Foraminiferans https://spark.adobe.com/page/lm464/ (accessed on 25 October 2021).

Aurenhammer [6] has raised two questions and his answers are well worth noting:
Why do Voronoi diagrams receive so much attention? What is special about this easily
defined and visualized construct? It seems three main reasons are responsible.

First (science), Voronoi diagrams arise in nature in various situations. Indeed, several
natural processes can be used to define particular classes of Voronoi diagrams. Human
intuition is often guided by visual perception. If one sees an underlying structure, the
whole situation may be understood at a higher level.

Second (mathematics), Voronoi diagrams have interesting and surprising mathemati-
cal properties; for instance, they are related to many well-known geometric structures. This
has led several authors to believe that the Voronoi diagram is one of the most fundamental
constructs defined by a discrete set of points.

Finally (computer science), Voronoi diagrams have proved to be a powerful tool in
solving seemingly unrelated computational problems and therefore have increasingly
attracted the attention of computer scientists in the last few years. Efficient and reason-
ably simple techniques have been developed for the construction and representation of
Voronoi diagrams.

These considerations were fundamental driving forces in the development of our
software: Ka-me: A Voronoi Visualizer [7]. However, the original motivation to develop
such a tool began in 1977 with the use of Voronoi tessellations in cell biology by Hsiao

https://commons.wikimedia.org/
http://www.finterest.com.au/
http://www.rarebooksberlin.de/fileadmin/haeckel_artforms.pdf
http://www.rarebooksberlin.de/fileadmin/haeckel_artforms.pdf
https://spark.adobe.com/page/lm464/
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Honda [8] and has been used by one of the authors in cellular and developmental biology
courses ever since as well as in BioQUEST Curriculum Consortium workshops [fff]. Honda
fundamentally addressed the question of whether Voronoi tessellations fit the number, size,
and shape of single cell sheets of biological cells such as exist in epithelia and monolayers of
cells grown on 2D surfaces in tissue culture. In an additional paper [ggg], he extended his
analyses to dynamic rather than just static patterns. Thus, the breadth of spatial problems
in biological image analysis will be explored throughout this paper and the power of
Ka-me: A Voronoi Image Analyzer will elaborated for multiple kinds of biological images
and to make inferences about the causal reasons for such patterns to exist.

2.1. Spatial Distributions

Voronoi tessellations abound in biological, medical, and environmental images across
broad phylogenetic (Figure 1), spatial and temporal scales (Table 1; [8]) and are caused by a
large variety of different mechanisms (Table 1). These tessellations have current interest for
biologists because they are self-organizing, can cover an area in an efficiently constructed
fashion with minimal lightweight material and extraordinarily strong structural properties,
are natural instruments for evaluating measurement of nearest neighbor interactions, etc.
They were formally characterized by the Ukrainian mathematician Georgii Feodosevich
Voronoi in 1908 [9]. Further, many disciplines have rediscovered them and given them
different names such as Wigner-Steitz cells in physics, Theissen polygons in geology,
archaeology, and meteorology, Dirichlet domains in crystallography, and S-mosiacs in
ecology. Recently, Gibson et al. [10,11] referred to Voronoi tessellations as “polygonal
lattices.” Priority is usually given to Voronoi and will be adopted throughout this paper.

Table 1. Spatial diversity in biological formation of Voronoi patterns.

Size Biological Pattern

1 kilometer Aerial photograph of old human settlements

100 meters “Canopy Puzzle”: Mature tropical rainforest

10 meters Reticulated giraffe, Tilapia fish territories

1 meter Galapagos tortoise, reticulated eel, leopard coat

1 decimeter Petoskey stone (fossilized “stony coral), Thai breadfruit

1 centimeter Slime mold, fish eggs packed

1 millimeter Pollen grain, elytron of a beetle, leaf cross-section

100 microns Radiolarian, cells in tissue culture

10 microns Bacterial biofilm

In order to test whether a particular biological pattern was actually a Voronoi tessel-
lation, we tried to fit a Voronoi tessellation to the test of a radiolarian that we examined
by 3D nanotomography [12] (see Figure 2). We converted the test of the radiolarian with
a medial axial transformation with the software Amira [13] in order to obtain a flattened
screen projection. Note that all 40 convex polygons on the surface fit quite well. On only a
few cells out of the 40 fit inside of a convex hull (because polygons outside of this region
extend to infinity) can you see the white lines of the underlying Amira image different from
the edge of the fit Voronoi face and all 40 convex polygons have the same number of edges
as their counterparts and cover nearly identical areas. Thus, to a good approximation,
we can make the mathematical inference that whatever mechanism produced the pattern
on the radiolarian test that there was a spatial point distribution of generator sources,
and the edges are the perpendicular bisectors between these generators. In other words,
the properties of Voronoi diagrams, namely that they produce tessellations with trigonal
junctions equidistant from three neighboring generator points (that is, these trigonal junc-
tions are the circumcenter of a circle that goes through all three neighboring generator
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points and the radius of the circle is the distance from each neighboring generator point
and the circumcenter). Furthermore, anytime we see a polygonal tessellation which has a
predominance of five and six sided convex polygons, it is likely to be the product of nearest
neighbor (i.e., local interactions). Conversely, if we see a polygonal tessellation which has a
predominance of three- and four-sided convex polygons with degree four junctions, it is
likely to be the product of line-line intersections (i.e., long range interactions) (see Figure 3).

Equations for the circumcenter of a circle defined by three generator points x1, y1; x2,
y2; and x3, y3.

yc =

[(
x2

3 − x2
2
)
+

(
y2

3 − y2
2
)]
(x1 − x2) + (x2 − x3)

[(
y2

1 − y2
2
)
+

(
x2

1 − x2
2
)]

2(x1 − x2)(y3 − y2) + 2(x3 − x2)(y2 − y1)

and

xc =

(
y2

1 − y2
2
)
+

(
x2

1 − x2
2
)
+ 2

(
y2

2 − y2
1
)
yc

2(x1 − x2)

Then, by substitution of the coordinates of these two equations back into the original
three equations, the length of the radius of the circumcircle can be determined. These
circumcenters define a circle with all three generator points lying on it. Such circles are
often referred to in the computational geometry field as the “greatest open circles.” For
their construction see: https://www.youtube.com/watch?v=YBiAabFcPCI (accessed on
25 October 2021). Circumcircles are shown in a Ka-me analysis in Figure 4. The utility of
these constructions is important to identify where you might locate a cell tower to improve
phone coverage, add a rain-gauge, place a fire station or neighborhood school, or identify
an area of least competition between animals of the same species. Each of these objects: the
generator points, the Voronoi boundaries (perpendicular bisectors between the generator
points), the vertices of the Voronoi polygons (circumcenters), the Delaunay triangulations,
and the greatest open circles have different applications for different biological problems
to which we will refer later.

Figure 2. A screenshot of a Voronoi diagram tessellation generated by the software Ka-me which
is superimposed on a medial axial transformation of the 3D nanotomography image of a test of a
radiolarian generated with the software Amira. The blue lines are the edges of the Voronoi cells, and
the light-yellow lines are the edges of Radiolarian test. The forty Voronoi cells lie within the convex
hull as the edges of the polygons external to the convex hull extend beyond the rectangle containing
the image. Only 5-, 6-, and 7-sided convex polygons are observed and notice that all junctions are
Y-shaped (i.e., trigonal, vertices with degree = 3) which is illustrative of patterns generated by local,
nearest neighbor interactions versus X-junctions produced by global intersecting lines (Figure 3).

https://www.youtube.com/watch?v=YBiAabFcPCI
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Figure 3. Intersecting lines generate X-junctions (i.e., all vertices have degree = 4). The convex
polygons generated are primarily three- and four-sided, although much less frequently five-sided
(here a polygon with vertices ABCDE exists with five edges). Note that no six-sided convex polygons
are generated.

Figure 4. A Voronoi tessellation was generated in Ka-me with random points and the circumcircles
are overlaid. Note that each circumcircle has three adjacent Voronoi polygons’ generator points and
the center of each circumcircle is the vertex shared by all three adjacent Voronoi polygons.

An interesting experimental demonstration (Figure 5) of a biological system capable
of computing a Voronoi tessellation is given by Jones and Adamatzsky [14]: “Slime mould
Physarum polycephalum is a large single cell capable for distributed sensing, concurrent
information processing, parallel computation and decentralised actuation. The ease of
culturing and experimenting with Physarum makes this slime mould an ideal substrate
for real-world implementations of unconventional sensing and computing devices. In the
last decade, the Physarum became a Swiss knife of the unconventional computing: give
the slime mould a problem it will solve it. We provide a concise summary of what exact
computing and sensing operations are implemented with live slime mould. The Physarum
devices discussed range from morphological processors for computational geometry to
experimental archeology tools, from self-routing wires to memristors, from devices approx-
imating the shortest path to analog physical models of space exploration. Plasmodium
growing on a nutrient substrate from a single site of inoculation expands circularly as a typ-
ical diffusive or excitation wave. When two plasmodium waves encounter each other, they
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stop propagating. To approximate a Voronoi diagram with Physarum, we physically map a
configuration of planar data points by inoculating plasmodia on a substrate. Plasmodium
waves propagate circularly from each data point and stop when they collide with each
other. Thus, the plasmodium waves approximate a Voronoi diagram, whose edges are the
substrate’s loci not occupied by plasmodia. Time complexity of the Physarum computation
is proportional to a maximal distance between two geographically neighbouring data
points, which is capped by a diameter of the data planar set, and does not depend on a
number of the data points.

Shirakawa [15] goes one step further by simultaneously constructing both a Voronoi
diagram and a Delaunay triangulation by Physarum Polycephalum. “We experimentally
demonstrate that both Voronoi diagram and its dual graph Delaunay triangulation are
simultaneously constructed—for specific conditions—in cultures of plasmodium, a vegeta-
tive state of Physarum polycephalum. Every point of a given planar data set is represented
by a tiny mass of plasmodium. The plasmodia spread from their initial locations but,
in certain conditions, stop spreading when they encounter plasmodia originated from
different locations. Thus, space loci not occupied by the plasmodia represent edges of
Voronoi diagram of the given planar set. At the same time, the plasmodia originating
at neighboring locations form merging protoplasmic tubes, where the strongest tubes
approximate Delaunay triangulation of the given planar set.”
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Figure 5. Voronoi diagram and Delaunay triangulation developed during slime mould growth.
An approximation of a Voronoi diagram by slime mould on nutrient agar gel. (a) Sites of plas-
modium inoculation represent planar data points to be sub-divided by edges of Voronoi diagram.
(b,c) Experimental snapshots of growing plasmodia. (d) Bisectors of Voronoi diagram are represented
by loci of substrate not occupied by plasmodium, bisectors computed by classical technique are
shown by straight lines. (d) Delaunay triangulation approximated by slime mould growing on
non-nutrient substrate. Edges of Physarum—computed triangulation are represented by protoplasmic
tubes; edges computed by classical algorithm are solid lines. [16].
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2.2. Phylogenetic Distributions

In addition to Voronoi tessellations observed at multiple scales as listed in Table 1, in
Figure 6, the wide phylogenetic diversity of organisms with these patterns is shown.

Figure 6. A phylogenetic sampling of species that display Voronoi tessellation patterns on their
exterior or in their colonial aggregate. Clockwise from lower left: the colonial algae Hydrodictyon,
a canopy of teak trees from Thailand, a lacey stinkhorn fungus, a reticulated giraffe, a Galapagos
tortoise, a reticulated frog, a trunkfish, a dragonfly (the wing pattern), a starfish, a radiolarian, and a
bacterial biofilm.

2.3. Temporal Distributions

In addition to various sizes and a broad phylogenetic diversity, the biological patterns
take vastly different times to form. For example, a mature tree canopy can take hundreds
of years to reach maximal height and form the “canopy gaps” between adjacent large trees.
On the other hand, a viral capsid can self-assemble in milliseconds. For a list of so such
temporal variation, see Table 2. What almanacs, calendars, and clocks do you use that you
think would be most helpful in measuring temporal patterns?

Table 2. Spatio-temporal variation in Voronoi tessellation patterns produced by different mechanisms in phylogenetically
diverse contexts.

Biological Voronoi Pattern Spatial Variation: Rough Potential Scale Temporal Variation: Rough Estimate of
Time of Formation

Rain forest canopy gaps 300 m to kilometers Hundreds to thousands of years

Stony coral About 1 m Years

Talapia fish nesting territories 30 m Days

Embryogenesis 5 mm to 10 m Hours to 30 months gestation

Slime mold aggregation 5 cm Hours

Quorum sensing biofilm mm to cm Minutes

Protein folding Angstroms to nm Nanoscends to milliseconds

2.4. Space and Time Simultaneously

Not only do Voronoi patterns emerge over different scales, but they also persist for
very different time periods. How are these correlated (see Table 2)? How should we
think of biological patterns: as static or dynamic, persistent or evanescent, internal or
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external? In physics, much is made of the interaction of space and time. When we use
a telescope, the light that impinges on our retina may have left a remote star millions of
light years ago; thus, seeing far means that we are seeing into remote time; we are not
seeing what is simultaneously occurring at that location. What about when we look in
through a microscope? Frequently, we have to use a strobe light to pause the rapid motion
of structures such as cilia or flagella. Similarly, if we make a movie at somewhat standard
frames of reference such as 22 frames a second and if our shutter speed is a thousandth
of a second, then we have missed 978/1000 (or roughly 98%) of what was going on. We
psychophysically interpret our perception of the animation as continuous even when we
rationally know that we have discretized time. Do we trust that our sampling is statistically
reliable? There is a famous physics film developed by the former editor of Scientific American
Phillip Morrison along with the famous husband-wife team of designers, Charles and Ray
Eames, entitled Powers of Ten [17]. The movie starts with a couple having a picnic in Grant
Park in Chicago near the shore of Lake Michigan. The camera zooms out in steps of ten
until we can look back on our Milky Way galaxy as only one of many and inwardly until
we reach the subatomic level. Correspondingly, we developed Figure 7 to illustrate that
biologists have to deal with similar complexity in terms of orders of magnitude.

Figure 7. Voronoi-like biological patterns exist across twenty-four orders of space and time.

2.5. Topological Analyses

To analyze the topological question of “who is the closest neighbor to whom?” rather
than the geometry addressed above, another Ukrainian mathematician Boris Nikolaevich
Delaunay (later published under the transliteration Delone) published a triangulation in
1934 [18] that is the dual of the Voronoi tessellation. Again, many synonyms abound;
Patel et al. [10] referred to Delaunay triangulations as the “underlying topology of cell-cell
connections.” This qualitative question of “who is the closest neighbor to whom?” is useful
for testing whether associations between neighbors are next to one another or not. In
order to do so, let us examine two classic data sets used in spatial statistics: cancerous
and noncancerous amacrine cells (see Figure 8) and hamster tumor cells (see Figure 9).
The Delaunay triangulation is tricolored separately: for example, bivariate data such as
on-off generates three kinds of edges: on-on, off-off, and on-off. If p = the frequency of
on points and q = the frequency of off points, then the a priori expected distribution of the
three edges will be the familiar binomial distribution: p 2 + 2pq + q2 =1 which can be tested
via a Chi-squared goodness of fit test with 1 degree of freedom (loss of a second degree
because of the additional constraint that p + q = 1).
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In this case, we can test the distribution of the three kinds of edges with a Chi-squared
test for bivariate data if we presume a binomial distribution. There were 294 observed
amacrine cells, of these 152 were in the on state and 142 were in the off state. When we
examine the Delaunay edges in Figure 5c we found a total of 840 edges,

Thus, the binomial distribution we would expect is:
Expected On-On edges = (152/294)2 T = (0.267) 840 = 224.5 On-On edges
Expected On-Off edges = 2 (152/294) (142/294) T = (0.499) 840 = 419.5 On-Off edges
Expected Off-Off edges = (142/294)2 T = (0.233) 840 = 196 Off-Off edges

Results:
Observed: Expected:

On-On: 161 On-On: 224.5
On-Off: 527 On-Off: 419.5
Off-Off: 152 Off-Off: 196

The result of the Chi-Squared analysis {χ2 = Σ (observed – expected)2/expected} was
55.06, which using a standard statistical table with a one degree of freedom indicates that
the probability is less than 0.001 that this deviation from randomness could occur by chance;
therefore, we conclude that there is significant clustering in the data.

On the other hand, let us look at the nuclei of two types of cells, • are the Pyknotic
nuceli, and * are the metaphase nuclei from hamster tumor cells (Figure 9).

Using the information of the colored Delaunay triangulation, we observed
485 metaphase-metaphase Delaunay edges, 333 metaphase-Pyknotic Delaunay edges,
and 53 Pyknotic-Pyknotic Delaunay edges. This gives a total of 871 Delaunay edges, which
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is then used in finding the expected number of edges in each group. The equations below
were then used to find the expected numbers.

Expected Pyknotic-Pyknotic edges = (77/313)2 T = (0.061) 871 = 53 Pyknotic-Pyknotic edges
Expected metaphase-Pyknotic Delaunay edges = 2 (77/313) (236/313) T = 2 (0.246)

(0.754) 871 = (0.371) 871 = 323 metaphase-Pyknotic edges
Expected metaphase-metaphase Delaunay edges = (236/313)2 T = (0.569) 871 = 496

Metaphase-metaphase edges

Results:
Observed Expected

Pyknotic-Pyknotic edges: 53 Pyknotic-Pyknotic edges: 53
Metaphase-Pyknotic edges: 333 Metaphase-Pyknotic edges: 323

Metaphase-Metaphase edges: 485 Metaphase-Metaphase edges: 496

Obviously, even without calculations, these expected values look close to observed.
The result of the Chi-Squared analysis was 0.225, which using a standard statistical table
with a one degree of freedom indicates that the probability falls between 0.9 and 0.8 that
this deviation from randomness could occur by chance; therefore, we cannot reject the null
hypothesis conclude that there is no evidence of clustering in the data.

Thus, Ka-me makes analyses of the spatial point distributions of both single kinds of
generator points such as tests of a radiolarian as well as bivariate data (on-off, metaphase-
pycnotic) easy and rapid for even quite large data sets. The implementation of multiple
indices is helpful because there is a wide literature on how each behaves in a variety
of circumstances.

2.6. Spatial Statistics

How are the Voronoi generator points themselves distributed? Generally, we classify
spatial point distributions into four categories:

(a) Uniformly;
(b) Randomly;
(c) Clustered,
(d) Disperse (see Figure 10);

Figure 10. Patterns of point distributions in space: (a) three biological communities: fish swarm,
penguins on ice, and corals. (b) Biological assumptions about each of these three patterns: random
patterns are presumed to be the result of “neutral interactions between individuals and the local
environment;” regular [uniform] patterns are presumed to be the result of antagonistic interactions
between individuals or local depletion of resource; clumped patterns are presumed to be the result
of attraction between individuals or attraction of individuals to a common resource. Source: https:
//www.slideshare.net/thelawofscience/population-growth-22514883 (accessed on 25 October 2021).

https://www.slideshare.net/thelawofscience/population-growth-22514883
https://www.slideshare.net/thelawofscience/population-growth-22514883
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Even though this is obviously a discretization and there must be continuous patterns
in between these recognizable patterns.

In Ka-me, we distinguish these patterns by the use of two different spatial statistics:
the Clark-Evans nearest neighborhood test and the variance to mean ratio test. We ini-
tially implemented two other four tools most commonly used by ecologists, the Index
of Quantitative Variation and Index of Relative Uncertainty but did not find that they
added anything new to the other two. The Clark-Evans nearest neighborhood (Figure 11a)
behaves quite well in biological image analysis; however, since the variance to mean ratio
test (Figure 11b) is not dimensionless, it is heavily dependent upon the pixel size of any
particular analysis. We included the variance to mean ratio test in Ka-me only because it is
the most widely used metric even though it is less informative in this implementation.

Figure 11. (a) Range of the Clark-Evans nearest neighborhood; (b) range of the variance to mean
ratio test.

We have used Ka-me to analyze five generations in a dividing epithelium (a Drosophila
embryo) from a beautiful film by Thomas Gregor [19] at Princeton produced with laser
confocal microscopy (see Figure 12). Even though we know that incredible differentiation
and distribution of morphogenetic signals are producing patterns that lead to fate maps to
adult tissues of these cells, there is no apparent clustering of nuclei over the whole embryo
during these divisions.

Figure 12. Five generations of successive divisions of Drosophila embryogenesis from film by Thomas Gregor [15]: (a) 3 s
(b) 8 s (c) 14 s (d) 34 s (e) 42 s; (f–j) corresponding indices of dispersion and histographic frequencies of edges per polygon
in the respective Voronoi tessellation for each of the five images using nuclei as Voronoi generator points in Ka-me (from
Reinfleisch and Jungck [20]).
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The Clark-Evans dispersion index uses the measurements from the Delaunay trian-
gulation to calculate the dispersion index of the sample by comparing the expected mean
summation of distances from each individual to its nearest neighbor by the observed
mean distance (Clark and Evans [21]; Simberloff modification of the Clark-Evans measure:
Cox [22]. The Clark-Evans index of dispersion ranges from 0, maximally clustered, to
1.0 indicating a randomly dispersed population, to 2.1491 indicating a uniform pattern.
At 2.1491, all polygons are hexagonal, because perfectly regular spacing occurs when poly-
gons are hexagonal in shape [21,22]. The general rule of thumb when using the Clark-Evans
dispersion index is if the value of R is equal to 1, then we infer that the points are randomly
dispersed. If R is significantly greater than 1, then the population is more uniformly dis-
persed. Finally, if R is significantly less than 1, then we infer that the points are clustered.
In Figure 12, the Clark-Evans dispersion index values were very close to 1 (1.03 in one
case); therefore, we have no evidence of clustering or repulsion of nuclei in these embryos.

Similarly, the variance to mean ratio test is interpreted in a very similar way: if the
variance/mean ratio is equal to 1, the points are randomly distributed. If the variance/mean
ratio is significantly greater than 1, the points are considered to be clustered. Finally, if
the ratio is significantly less than 1, the points are more uniformly distributed. In general,
values above 2 in either direction are often used as cut off points for rejecting random
assumptions. The Ka-me value of the variance to mean ratio test did not exceed 1.44 for any
of the images; therefore, again, we did not infer anything other than a random distribution
of nuclei in these embryos.

We were able to find a case where the Voronoi tessellation of a biological epithelium
produced values of both measures that were not random (see Figure 13).

Figure 13. (A) We superimposed a Voronoi tessellation onto an image of “the inflorescence shoot
apex of Anagallis arvensis” (Kwiatkowska and Routier-Kierzkowska [23]). (B) Ka-me analysis of the
Clark-Evans nearest neighborhood and variance to mean ratio for the Voronoi tessellation. Both of
these measures fall outside the usual random range.

Recently, we saw a beautiful illustration of this spatial analysis in a medical examina-
tion of fast and slow twitch muscles (Figure 14).
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Figure 14. “Slow fibres are labelled in red and fast fibres in black. (A) In the BA a high tendency
for slow cells to be isolated govern the organization of the tissue. This induces a homogenous
distribution of both types of fibres. (B) In QA, there is no clear tendency in the organization. Slow
fibres can appear isolated or grouped. The distribution is random,” Bag et al. [24].

2.7. Geometric Analyses: Area, Centroidality, Circularity, and Perimeter

Biologists have studied epithelial tissues from many species for hundreds of years.
For the tessellations that they observed, they made inferences about empirical geometric
measurements on their images (Table 3).

Table 3. Eight analyses of the distribution of the sides per polygon of Voronoi tessellations that widely appear in the
biological literature.

Eight Hypotheses/Rules/Properties That We Test:

Name of Hypothesis/Rule/Property Phenomena Observed/Tested

1 Euler’s Law Vertices minus edges plus faces = 2

2 Distribution of Polygons Are the number of sides of Voronoi polygons in the tessellation normally
distributed?

3 Lewis’s Law Are the areas of Voronoi polygons in the tessellation positively correlated
with their number of edges?

4 Desch’s Law Are the perimeters of Voronoi polygons in the tessellation positively
correlated with their number of edges?

5 Aboav-Weaire Law Is topological charge conserved?

6 Pitteway Violations Do any edges of the Delaunay dual of the Voronoi tessellation cross more
than one Voronoi edge?

7 Centroidality Does a Voronoi polygon’s generator point fall on its gravitational center?

8 Errera’s Rule
Are the areas of the Voronoi polygons positively correlated with that of one
of their immediate neighbors? (In successive generations of a tissue, did

the average area of cells decrease by half in each subsequent generation?)

2.7.1. Errera’s Rule

In the 19th century, Errera [25] postulated that the area of daughter cells would be half
that of the parent cell (the assumption of equal division of the cytoplasm of the parent cell to
form the daughter cells). Six recent papers [26–31] have extended Errera’s rule to examine
some other potential models (Sachs, Hofmesiter, Heinowicz, Besson and Dumais, Gibson,
minimum degree, minimum random wall, shortest) of the cleavage plane of epithelial cells.
Since on a static diagram, we do not know from one tissue with the cells going through
simultaneous cell division to the next, which particular parent cells gave rise to particular
daughter cells in the subsequent image, we test whether the mean areas of generations
are halved in each subsequent division. We tested this on three different species: fruit
flies (Drosophilia melanogaster) [data from [23]; Figure 15a] and flour beetles (Tribolium
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castenenum) [data from [32]; (Figure 15b)], and mustard plant (Arabipdopsis thaliana). In all
three cases, the observed areas of sequent divisions were very close to the halves predicted
by Errera [25].

Figure 15. Tests of Errera’s rule that successive cell divisions have one-half the mean areas of the
previous generation for tissues with simultaneous divisions of all cells. The linear regression of the
ln(A) is plotted for five successive divisions. (a) Fruit flies (Drosophilia melanogaster) (data from [33]);
test of Errera’s 1

2 rule: R-squared = 0.87, p < 0.0001. (b) Flour beetles (Tribolium castenenum) (data
from [31]]; violin plots of the areas of Voronoi cells in each of three successive divisions; the blue line
connects the mean areas of each of the three generations; the red line is what would be expected if
Errera’s rule was used to predict the means of successive generations.

2.7.2. Voronoi Entropy

While most investigators of Voronoi entropy simply employ the Shannon formula
for computation, our spreadsheet model [34] (Figure 16) calculates both the Shannon and
Simpson diversity index. Bormashenko, Frenkel, and Legchenkova [35] state that the
Voronoi Entropy “represents the averaged Shannon measure of ordering for 2D patterns.”
It is an intensive rather than an extensive measure. For our three divisions of Triboleum
casteneum the values of the Shannon measure of Voronoi Entropy were 1.23 for Division
10, 1.95 for Division 11, and 1.17 for Division 12. Therefore, we saw no monotonically
increasing or decreasing trend. This is not surprising because, even though the number
cells nearly doubles with each synchronic division (see Errera’s Rule [25]), as Bormashenko,
Frenkel, and Legchenkova [35] furthermore point out “that the Voronoi entropy of the
pattern characterized with the given and constant 2D order does not depend either on
the area of the pattern nor on the number of seed points (of course, this is true, when the
boundary effects are neglected). In contrast, the entropy is an extensive thermodynamic
value, in other words it grows with an increase in the number of particles constituting
the system.”
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Figure 16. The distribution of sides per convex polygon type have used to calculate both Shannon and Simpson equations
for diversity (Voronoi entropy in this case). The results are illustrated above from using our spreadsheet in the BioQUEST
ESTEEM Collection [36].

2.7.3. Pitteway Violations

When the Delaunay triangulation and Voronoi diagram are placed on top of one
another, and the edges of the Delaunay triangulation and the Voronoi diagram of the same
pair of points (“dual edges”) cross through each other forming the Pitteway triangula-
tion [36–39]. A Pitteway violation occurs if the edges created by the Delaunay triangulation
and Voronoi diagram from the same pair of points do not cross each other, this is usually
observed by the Delaunay edge crossing over two Voronoi edges that are not generated
from the respective points. Figure 17A shows a Voroni tessellation whose Delaunay dual
has no Pitteway violations. Figure 17B shows the violations of the Pitteway triangulation,
marked in red, from the overlay of the Delaunay triangulation onto the Voronoi diagram.
The mean number of edges that a sample has is calculated by summing the number of
edges per each point divided by the number of points in the sample (Cox 1996). The
mean number of edges, proportion of hexagons, and the Clark-Evans dispersion index
are all calculated using the number of edges that a point has. The proportion of Pitteway
violations is a test of topological data, which in this case is the mathematical structures
that are used for the relationships between objects, to determine the irregularities in the
sample. These tests have close relation to each other, therefore, I hypothesized that the
mean number of edges, proportion of hexagons, proportion of Pitteway violations, and the
Clark-Evans dispersion index are highly correlated in biological samples.
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Figure 17. (A) A Delaunay dual superimposed upon a Voronoi tessellation where the Pitteway
triangulation condition is satisfied, i.e., each edge of the Delaunay dual crosses one and only one
edge of the Voronoi tessellation. In this picture, the polygonal cells have a more general shape in
that most of the interior angles are not too different from a mean of the interior angles. In such cases,
biological investigators infer stability of the epithelia. (B) Pitteway violations are shown in red on this
Delaunay dual superimposed upon a Voronoi tessellation, i.e., each of the red edges of the Delaunay
dual crosses more than one edge of the Voronoi tessellation. In this picture the polygonal cells have a
less general shape in that several of the interior angles are very different from a mean of the interior
angles. In such cases, investigators infer that the irregularity of the above cells in the epithelia cause
the Pitteway violation in which cases biological and geographic investigators [40] have used the
presence of such violations to infer that such cell packings are less stable.

Can we generalize this empirical relationship to have a more solid footing? Gold [40]
had pointed out that “any triangulation of a regular pentagon includes a central isosceles
triangle such that a point p near the midpoint of one of the triangle sides has its nearest
neighbor outside the triangle” does not support a Pitteway triangulation. Herein we
prove that if any Voronoi polygon has an interior angle less than 90 degrees, then a
Pitteway violation will occur. In exercise 4.29 (page 110), in Satyan L. Devadoss and
Joseph O’Rourke’s (2011) book: Discrete and Computational Geometry (Princeton University
Press) [41], they challenge readers to show why not every Delaunay dual of a Voronoi
tessellation satisfies the Pitteway condition, but they do not provide a general proof.
Furthermore, we will assert that using the interior minimal angles of the convex polygons in
a Voronoi tessellation can be used in a multivariate prediction of the topological properties
(number of edges per polygon) from geometric properties (area, perimeter) than univariate
rules described above (Lewis Law and Desch’s Law).

First, from a biological image analysis perspective let us examine actual biological
images for Pitteway violations. In Figure 18, Patel et al. [18] reported on Voronoi tessella-
tions that matched the configurations of convex cells in epithelia of Drosophila melanogaster
embryonic epithelia. We analyzed it for the presence of Pitteway violations.

Note that 68 out of 707 edges violated the Pitteway condition; in other words, 9.62% of
the Patel et al. [33] data had Pitteway violations. Please note that most violations occurred
on the outer edges. We wondered whether this way due to photographic aberrations be-
cause the embryo is ovoid in structure and so the planar photograph is primarily distorted
on the margins. This led us to our work on 3D nanotomography of radiolarian tests because
we had a crystalline biological polyhedron with polygonal tessellations over its surface
where we could avoid photographic aberrations [42,43].
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Figure 18. We illustrate the distribution of Pitteway violations (yellow edges) in a Voronoi tessellation
of the epithelium of embryonic cells of Drosophila melanogaster. Data provided by [33]. The image
was entered in Ka-me to illustrate the edges of the Delaunay triangulation of the Voronoi tessellation
that cross more than one Voronoi edge (i.e., Pitteway violations).

Above in Figure 12a–e, we showed five generations of successive divisions of Drosophila
embryogenesis from film by Thomas Gregor [14]: (a) 3 s (b) 8 s (c) 14 s (d) 34 s (e) 42 s; (f–j)
along with the corresponding indices of dispersion and histographic frequencies of edges
per polygon in the respective Voronoi tessellation for each of the five images using nuclei
as Voronoi generator points in Ka-me. (From [20]). We them analyzed each successive
division for Pitteway violations (Figure 19):
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Figure 19. Plot of the per cent of Pitteway violations on the Delaunay dual of the Voronoi tessellations
of successive divisions of an embryo of Drosophila melanogaster. Stage 1: 10.78%; Stage 2: 12.265%;
Stage 3: 8.807%; Stage 4: 7.31%; and Stage 5: 5.25% [20]. Raw images were stills extracted from
Thomas Gregor’s, Princeton University, YouTube video: early mitotic divisions in a Drosophila
embryo URL: http://www.youtube.com/watch?v=XSKh-GLQn4E (accessed on 25 October 2021).

After Stage 2, Pitteway Violations decrease with the increase in the number of cells in
an area of the image. While more cells exist within in the same area, they are becoming
more stable, and most cell-cell junctions determine which nuclear signals would affect
neighboring cells. The result is statistically significant (Figure 20) as we noticed that in the

http://www.youtube.com/watch?v=XSKh-GLQn4E
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polygonal distributions (Figure 12) that over successive generations that more hexagonal
cells were prevalent in the Voronoi tessellations.

Figure 20. Parametric linear regression of the proportion of Pitteway violations with successive
divisions of cells in the embryo of Drosophila melanogaster [20].

To better understand what was going on, we sought a general insight into which
kinds of individual convex polygons in a Voronoi tessellation are correlated with Pitteway
violations in the Delaunay dual. We found the following characterization.

Theorem 1. For a finite set P of points in general position in the plane, Pitteway Violations occur
precisely where there is an acute angle in the Voronoi Diagram.

“General position” means that the points avoid a few configurations that are inconve-
nient but also extremely unlikely (probability measure zero):

(i) No three points of P are colinear;
(ii) No circle contains more than three points of P, and;
(iii) A circle with two points of P at antipodes contains no third point of P (Figure 21).

Figure 21. In the proof below, C is a Voronoi cell, v is one of its vertices, and P0, P1, and P2 are “seeds”
of the Voronoi diagram. P0P1, P0P2, and P1P2 are edges in the Delaunay triangulation, although for
clarity P1P2 has been omitted from the figure.

A finite set P of points in general position defines a unique Delaunay triangulation
and dual Voronoi diagram.
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Proof of Theorem 1. Let C be a polygonal cell in the Voronoi diagram where the “seeds”
are the finite set P and let P0 ∈ P be the seed for C. Let v be a vertex on its boundary of C
where two consecutive sides meet and let α and β be the angles that those sides make with
the line segment vP0. Each side of C is equidistant from P0 and another seed vertex Pi, so
if that side is extended to a line then it is perpendicular to and bisects the line segment
P0Pi. Figure 16 shows the seeds P1, P2 that are opposite to P0 across the sides incident to
v. By duality, P0P1 and P0P2 are edges in the Delaunay triangulation of P. P0 and P1 are
the closest seeds to one side incident to v and P0 and P2 are the closest seeds to the other
side incident to v, so v is equidistant from all three and no other seeds are closer to v. Since
the seeds P are in general position, there is no fourth seed at that distance from v, and so it
follows that v is incident to a total of three edges of the Voronoi diagram. Then, by duality,
P1P2 is an edge of the Delaunay triangulation. There is a Pitteway violation here if and only
if 2α + 2β < π. (Since the points P are in general position, the angle P1vP2 cannot equal π.)
The internal angle of C at v is clearly α + β, so we have a Pitteway violation here if and only
if that angle is less than π/2. �

It is well-known that the Gabriel graph for a given set of points is a subgraph of its
Delaunay triangulation, with the difference being precisely those edges which are Pitteway
violations ([44]; also see Lemma 2 in [45]). Using this connection, we can give an alternative
proof of the previous theorem (Figure 22).

Figure 22. On the left, three blue edges from the Voronoi diagram meet at vertex v, with “seeds” P1,
P2, and P3, such that P1P2, P1P3, and P2P3 are edges in the Delaunay triangulation. In the proof
below, P3 slides along the green line until it reaches the boundary of the disk D’, which also moves v
to v’ and moves D to D’; the result is pictured on the right.

Proof of Theorem 1 (sketch). It is well-known that the Gabriel graph for a given set of
points is a subgraph of its Delaunay. Let P1, P2 ∈ P such that P1P2 be an edge in the
Delaunay triangulation. Then there is a disk D with P1, P2, and a third seed P3 on its
boundary. The center of D is a vertex v of the Voronoi diagram which is incident to three
edges that lie between each pair of the seeds from P1, P2, P3. Let D’ be the disk such that
P1P2 is the diameter of D’ and let v’ be its center (the midpoint of P1P2). Then P1P2 is in
the Gabriel graph of P if and only if D’ contains no seeds for P in its interior, and there is a
Pitteway violation here otherwise. Let L be the line that bisects P1P2 and is perpendicular
to it; then L contains v and v’.

Slide P3 along the line through v’P3 until it lies on the boundary of D’; this causes v to
slide over to v’ and D to change until it equals D‘. Then two of the edges of the Voronoi
diagram will meet at v at an angle α + β with 2α + 2β = π as shown in Figure 17, which
is a right angle. Sliding P3 back to its actual position will increase or decrease the angle
that was α + β, depending on whether P3 moves out or in to D’, causing the angle to
be obtuse and P1P2 to be in the Gabriel graph, or making the angle acute and creating a
Pitteway violation. �
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After learning of the 90◦ requirement for Pitteway violations, we began to measure all
of the interior angles of every convex polygon in Voronoi tessellations of epithelial cells
of Drosophila melanogaster and Tribolium casteneum. Instead of assuming that the Pitteway
violations were due to problems with the curvature of the embryo deforming cells on
the perimeter of two-dimensional microphotographs, we found that Pitteway violations
occurred even central to some images. In Table 4, we show that the smallest angle of the
convex polygons in Voronoi tessellations of Tribolium casteneum is a much better predictor
of the number of sides of the convex polygons in the Voronoi tessellation. In a multivariate
regression, we could improve the R-square value of the regression slightly by employing
circularity (recall that has information on areas and perimeters within its measurement) as
well as the smallest angle information.

Table 4. Regression analysis of flour beetle cell divisions: 10, 11, and 12.

R2 Values in Linear Regression Relationships.

Division 10 Division 11 Division 12

Deasch’s Law (perimeter) 0.0015 0.0497 0.0840

Lewis’ Law (area) 0.0952 0.1530 0.1578

Circularity 0.4141 0.2217 0.1261

Smallest Angle 0.7549 0.6212 0.5118

Smallest Angle + Circularity 0.7583 0.6213 0.5120

While the linear regressions for all five models were significantly significant, note
that the smallest angle plus circularity produced a much better prediction of the number
of sides of the convex polygons in these Voronoi tessellation than either Desch’s Law or
Lewis’s Law which have been historically used throughout a wide swath of biological
literature. Therefore, we suggest that the use of smallest angle alone or the smallest angle
plus circularity relationship to the number of sides of the convex polygons in these Voronoi
tessellation be called a “Pitteway Law” and urge colleagues to measure the interior angles
of their convex polygons.

In Figure 23 we show that the three multiple linear regression graphs of expected
versus predicted the number of sides of the convex polygons in these Voronoi tessellation
based upon using both the smallest angle plus circularity variables.
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3. Conclusions

Phenomenological models of biological patterns have provided a major path for
biologists to see the impact of point-point nearest neighbor effects in using of Voronoi
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tessellations to analyze features of the distribution of convex polygons in such tessellations.
Simply by observing tessellations that have convex polygons with degree = 3 vertices, it can
be inferred that these patterns primarily arose by some causal force that was operating in a
nearest-neighbor interaction. A powerful series of topological and geometric measurements
can be deployed to determine significant relationships between topological properties such
as vertices, edges, and faces on the one hand and geometric measurements such as angles,
areas, and perimeters on the other hand. Graph theorists have developed a wide variety
of tools that involve triangulations, cycles, paths, neighborhoods, spatial distributions,
and topological charges that let us explore these complimentary relationships between
topology and geometry of tessellations. Herein we have demonstrated this versatility
by using examples of Voronoi tessellations to examine the distribution of successful and
unsuccessful bird nests, species of trees in a diverse forest, different cells in the eye, fast
and slow-twitch vertebrate muscle fibers, radiolarian tests, and extensively of embryos of
fruit flies (Drosophila melanogaster), flour beetles (Triboleum casteneum), and plants (Anagallis
arvensis, scarlet pimpernel). While Lewis’s Law relating the areas of convex polygons
in a Voronoi tessellation and Desch’s Law relating the perimeters of convex polygons
in a Voronoi tessellation have been the most widely used relationships in the biological
literature, we have shown herein that “Pitteway’s Law” relating the smallest angles of
convex polygons in a Voronoi tessellation possess a significantly better regression model
than either of these two “laws.” The causal basis of these relationships is being examined
and both mechanical (surface energy [46]) and topological (number of sides [47]) are
reported to have major impact on the formation of epithelial Voronoi tessellations. The
need for determining these relationships have potential medical importance in developing
quantitative models for differentiating between normal, benign, and metastatic tissues in
cellular pathology assessments for diagnosis, treatment, and prognosis.
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