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Abstract: We consider alternative possibilities for hedging spot positions on the FTSE LATIBEX Index,
the index of the only international market exclusively for Latin American firms that is denominated by
the euro. Since there is not a futures market on the index, it is unclear whether a relatively successful
hedge can be found. We explore the plausibility of employing futures on four stock market indices:
EUROSTOXX 50, S&P500, BOVESPA, and IPC, and simulate the results that could be obtained by a
hedge position based on either unconditional or conditional second order moments estimated from
different asymmetric GARCH models. Several criteria for hedging effectiveness suggest that futures
contracts on BOVESPA should be preferred, and that a salient reduction in risk can be achieved
over the unhedged LATIBEX portfolio. The evidence in favor of a better performance of conditional
moments is very clear, without significant differences among the alternative GARCH specifications.

Keywords: cross-hedging; futures markets; hedging efficiency; asymmetric multivariate GARCH models

1. Introduction

Latin American firms have experienced robust growth in the last few decades, with
large corporations, known as Multilatinas, obtaining access to ever more sophisticated, liq-
uid, and efficient financial markets. Under this scenario, firms in emerging Latin American
countries are currently an attractive alternative for the foreign investor in search of diversi-
fication for his/her portfolio. Although stock markets in the region have experienced an
important increase in the number of firms trading as well as in their capitalization, little
progress has been made towards the integration of the different markets or the development
of a representative trading market for the region. The LATIBEX is the only international
market trading for Latin American stocks, in the same currency, the euro. It is worth
mentioning that the Mercado Integrado Latinoamericano (MILA), made up by the stock
markets of Chile, Colombia, Mexico, and Peru, introduced in August 2011 the S&P MILA
Andean 40 index using data since December 2006. However, unlike the LATIBEX market,
MILA transactions are in the local currency of each company. Moreover, the aggregate
GDP of the member countries does not represent more than 40% of the regional GDP, while
LATIBEX member countries represent 68%. This is considered a convenient instrument
to efficiently channel investments to the region, allowing investors to trade stocks from
the main Latin American firms in a single market, with a single operating system for
trading and liquidation, satisfying high transparency and security, and operating with
the euro as the single currency (general information from the LATIBEX website). For the
typical investor holding a position in the FTSE LATIBEX (henceforth, LATIBEX) Index who
is searching for diversification possibilities, it will be important to characterize hedging
strategies that allow for an efficient reduction in risk. However, in the absence of futures
contracts on the LATIBEX index, it is necessary to analyze cross-hedging possibilities using
futures contracts on other markets. Cross-hedging has been studied extensively, Anderson
and Danthine [1] were among the first to discuss cross-hedging in a theoretical way, later
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Eaker and Grant [2] delved into the treatment of cross currency hedging, measuring the
effectiveness of hedging when there are no futures on a currency, and, recently, there have
been several applications of cross-hedging of: Commodities, such as [3], who evaluated
the effectiveness of cross-hedging of commodities between the metal and spot futures
markets; Energy, such as [4], who analyzed the cross-hedging of aviation fuel with com-
modity futures; Stock Indices, such as [5], who examined the effectiveness of cross-hedging
between a UK stock index and global stock index futures from developed and emerging
markets; Real Estate, such as [6], who analyzed the effectiveness of cross-hedging real
estate securities with ETFs, among other various applications..

Hence, this paper tries to answer four questions: (1) Is it effective to hedge a position in
the LATIBEX index with a futures contract on another stock market index? If so, (2) Which
index should be employed to hedge the LATIBEX portfolio? If such a successful hedge
exists, (3) How should it be implemented? and (4) Is a dynamic hedge ratio based on
conditional moments more efficient than a hedge ratio based on unconditional moments?

To address these questions in our paper, as potential stock market indices for the hedge
mechanism, we consider the EUROSTOXX 50 and S&P500 series because of their relevance
as international financial markets. We also consider two indices from emerging stock
markets, Brazil and Mexico, as a result of the large number of firms from both countries that
trade in LATIBEX. Furthermore, we characterize the dynamic cross correlations between
the LATIBEX index and other stock market indices. To the best of our knowledge, this
is the first time that the performance of alternative models describing the time evolution
of correlations between Latin American markets grouped in LATIBEX, and developed
markets, as well as their volatilities, is analyzed. Furthermore, while cross-hedging has been
studied in many instances for currency portfolios, and agricultural or energy commodities,
it has not been often considered for emerging stock markets, which lacks an associated
market on futures. Another contribution of our paper is that we consider high volatile
periods such as the Global Financial Crisis and the recent economic and financial downturn
caused by the Covid Crisis, where hedging strategies with financial derivatives just as
options become too expensive, with futures contracts then being the obvious alternative as
a hedging asset.

We evaluate the cross-hedging possibilities by estimating the minimum variance
hedge ratio (henceforth, MVHR) to construct a hedged portfolio that is rebalanced daily.
We start by computing least squares MVHR estimates using first order (daily) differences
of spot and futures prices as it is usual in the literature, e.g., [7]. However, in the presence
of autoregressive conditional heteroskedasticity in the return series of spot and futures mar-
kets, conditional and unconditional probability distributions of returns will differ, and the
MVHR should be estimated using time-varying conditional second order moments, e.g., [8],
for a significantly better hedging performance, as shown for fixed income markets [9–11],
commodity and energy markets [12–15], stock market indices [16–20], green bonds [21],
and currency markets [22–26]. We follow this approach by employing asymmetric and
bivariate GARCH specifications for the LATIBEX portfolio and the futures contract being
used as a hedge. These models allow for negative shocks to have a higher effect on volatility
than positive shocks of the same size, a very well-known stylized fact of daily financial
returns named as the “leverage effect”.

The asymmetric and multivariate GARCH models employed in our study are the
Constant Conditional Correlation (CCC) model [27], the Dynamic Conditional Correlation
(DCC) model [28], the Diagonal VEC (DVEC) model [29], and the BEKK model [30]. We
compare the performance of the four GARCH specifications among them, as well as with
the hedge based on the unconditional variance–covariance matrix estimated with the
available information at each point in time, the naïve unitary hedge and the unhedged
portfolio. We repeat the exercise for the futures contract on either EUROSTOXX 50, S&P500,
BOVESPA, or the IPC indices being used as a hedge.

The structure of the rest of this paper is as follows. Section 2 describes the methodology
employed to characterize the optimal hedge ratio. The data, the descriptive statistics
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of spot and futures and the results on the effectiveness of the static and the dynamic
hedge, are described in Section 3. Finally, Section 4 summarizes the results and presents
the conclusions.

2. Materials and Methods

To evaluate cross-hedging possibilities, we compute the MVHR to construct a hedged
portfolio, allowing for a daily rebalancing of the hedge. MVHR estimates were initially
obtained as the slope of a regression between first order differences of spot and futures
prices, e.g., [7], among others. If market prices for the portfolio to be covered and for the
futures contract to use in the hedge are cointegrated, this should be taken into account in
an error correction model that integrates the long-term equilibrium relationships between
the portfolio to be covered and the futures contract used in the hedge with their short-
term interactions. In both cases, the hedge ratio is obtained from the estimate of the
unconditional variance–covariance matrix at each point in time.

2.1. Methodology for Hedging with Futures
2.1.1. Models for First and Second Order Moments

To examine the possibility for cross-hedging a LATIBEX portfolio, we consider a model
that simultaneously captures the evolution of LATIBEX together with prices of futures
contracts on an alternative stock market index. Since the time series for the LATIBEX prices
as well as those for the futures contracts are all nonstationary, their logarithmic returns are
estimated. If LATIBEX and the stock index futures to be used as a hedge were cointegrated,
an Error Correction model [31] would need to be employed to avoid biases in estimation of
the minimum variance hedge ratio [32]. To this aim, we apply the Dickey–Fuller test on
the spot and future series in logarithms, finding clear evidence of cointegration between
LATIBEX and futures contracts for BOVESPA and IPC indices, while cointegration for
S&P500 and EUROSTOXX 50 indices is more dubious. Anyway, to simplify the comparison,
we follow the more conservative approach of estimating an Error Correction model to
characterize the relationship between LATIBEX and futures returns for each of the four
stock market index futures. With the daily observations, one lag seems to be enough to
obtain non-autocorrelated residuals. Even though standard lag length criteria such as AIC
would sometimes suggest a longer lag, the residuals of such model show a correlation
above 98% with those of a simpler Vector-Autoregressive VAR(1) model, which is the
model we finally decided to estimate.

[
rs,t
rf,t

]
=
[

µs
µf

]
+
[

α11 α12 α13
α21 α22 α23

] rs,t−1
rf,t−1

ECTt−1

 +
[

εs,t
εf,t

]
(1)

where rt =
(
rs,t,rf,t

)
denotes the returns on LATIBEX and on the futures market that is used

for the hedge at time t, µ =
(
µs,µf

)
is a vector of constants, εt =

(
εs,t,εf,t

)
~N(0,ht) is a vector

of normally distributed innovations, and A =
[

α11 α12 α13
α21 α22 α23

]
is a 2 × 3 matrix of

parameters. Moreover, ECT denotes the error correction term, which are estimated as the
lagged residual from the long-term equilibrium relationship between the LATIBEX index
and the futures contract on each stock market index.

As a basic benchmark, we consider a least squares approach that computes the MVHR
using the standard, unconditional variance–covariance matrix estimated at each point
in time the hedge is established, using only the information available at that point. In
addition, given the evidence on the fact that negative shocks produce a larger increase in
volatility than positive shocks of the same size, we follow the suggestions in [33–35], among
others, to estimate versions of CCC–, DCC–, DVEC–, and BEKK–GARCH(1,1) models
incorporating this asymmetry. With the estimated conditional second order moments,
we then characterize the conditional MVHR. Details on these models are reviewed in the
Appendix A.
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2.1.2. The Dynamics of the Optimum Hedge Ratio

To characterize the dynamics of the MVHR, we consider a two-period hedge problem
where the only hedge instrument available is a futures contract. It is worth mentioning that
the multiperiod hedge ratios have been studied by [36,37], who incorporate cointegration
relationships between spot and futures markets. The authors of [38] conclude that in
the presence of heteroskedasticity, the current hedge ratio depends on the relationship
between current changes in prices and the subsequent hedge ratios. The hedge ratio
must then be calculated backwards from the end of the investment period to the time the
hedge is implemented. To simplify the discussion, we have just considered a two-period
hedge problem.

We build a portfolio made up by a long position in the spot stock market index and
a short position in futures. The objective for the investor is to maximize the expected
utility of the portfolio, EtU

(
Rp,t

)
. Following [39], we approximate this function by an

expression that depends positively on the expected portfolio return E
(
Rp,t

)
, and negatively

on the conditional return variance hRp,t , with a λ coefficient representing the degree of risk
aversion: EtU

(
Rp,t

)
= Et

(
Rp,t

)
−λhRp,t .

The return on the hedged portfolio is given by Rp,t = rs,t + bt−1rf,t, where rs,t and rf,t
denote the returns between t − 1 and t for the spot and futures position, respectively, while
bt−1 denotes the position in futures between t− 1 and t. Therefore, the conditional variance
of the portfolio is hRp,t = hs,t + b2

t−1hf,t + 2bt−1hsf,t, and

EtU
(
Rp,t

)
= Et(rs,t) + bt−1Et

(
rf,t
)
−λ
(

hs,t + b2
t−1hf,t + 2bt−1hsf,t

)
(2)

where Et(ri,t), hi,t, and hij,t, i = s,f denote the expectations, variances, and covariance for
spot and futures contract returns, conditional on the information available at time t − 1,
Ωt−1. Hence, the expression for the hedge ratio maximizing expected utility is

b*
t−1 =

Et
(
rf,t
)

2λhf,t
−

hsf,t

hf,t
(3)

a function of sample first and second order moments, as well as of the investor’s risk
aversion, λ. As pointed out by [1,40], the first part of this expression captures the pure
speculative component, while the second term captures the pure hedge component. If
we assume that the conditional expected return is zero: Et

(
rf
)

= 0, so that the price of
the futures contract follows a martingale process, Et(Ft + 1) = Ft, or if the risk aversion
parameter is very large ( λ→ ∞ ), the speculative component disappears, and we are left
with the pure hedge component, the MVHR

b*
t−1 = −

hsf,t

hf,t
(4)

The expression for the MVHR in Equation (4) is used in our empirical analysis. This
is the counterpart of the least squares hedge ratio, with unconditional moments being
substituted by conditional moments. We estimate these second order moments using the
alternative GARCH specifications described in the previous section. Variations in condi-
tional variances and covariances lead to a different performance of hedge ratios, and this is
shown in our application of the alternative GARCH specifications and the performance of
the futures contracts on the four stock market indices. It is worth mentioning that estimates
for second order moments will change with the available information set Ωt−1, with an
implied change in the hedge ratio.

3. Data and Results

We use the FTSE LATIBEX ALL SHARE index (namely LATIBEX) elaborated by
Bolsas y Mercados Españoles and regulated by the Spanish Ley del Mercado de Valores as
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representative of the LATIBEX market. As data for the futures contracts to be used in the
hedge, we use daily closing prices for EURO STOXX 50 INDEX FUTURES (EUROSTOXX
50 Index Futures), S&P500 FUTURES index (S&P500 Index Futures), IBOVESPA FUTURES
index (BOVESPA Index Futures) and S&P/BMV IPC FUTURES index (IPC Index Futures).
The sample covers the period January 2005 to August 2020, which includes the Global
Financial Crisis and the Covid-19 Financial Crisis. Price quotes were obtained from the
Bloomberg platform and log returns are estimated as rt = ln(St)− ln(St−1), where St is
the closing price; all series are dollar-denominated.

Table 1 displays some descriptive statistics, showing daily negative returns, on average,
for the futures contract on EUROSTOXX 50, at a difference of the other indices, but close to
zero. The highest average returns were obtained for the futures on S&P500 and BOVESPA.
This was to be expected since the North American market obtained positive and growing
evolution during most of the sample we considered. Return distributions show fatter tails
than the normal density, and the hypothesis of normality is overwhelmingly rejected as a
result of the Jarque–Bera test statistic values.

Table 1. Descriptive statistics for returns on LATIBEX and on stock market futures indices.

Latibex Index EuroStoxx 50
Index Future

S&P 500 Index
Future

Bovespa
Index Future

Ipc
Index Future

Observations 4082 4082 4082 4082 4082
Average 0.007% −0.001% 0.026% 0.015% 0.010%
Median 0.031% 0.014% 0.042% 0.000% 0.000%

Maximum 14.391% 12.450% 13.197% 17.149% 14.626%
Minimum −25.113% −12.874% −10.954% −20.493% −12.011%

Annual volatility 32.898% 25.130% 19.502% 37.926% 26.639%
Skewness −0.658 −0.235 −0.330 −0.614 −0.313

Excess kurtosis 9.854 8.556 16.326 8.254 7.115
Jarque−Bera 8284.5 5288.2 30,279.4 4951.5 2946.9

Sample: 3 January 2005 to 28 August 2020, with a total of 4082 daily observations.

3.1. Minimum Variance Hedge Ratios

To analyze the hedging possibilities using futures contracts on other stock market
indices, we estimated the MVHR following the previous methodology described for the
four different futures indices EUROSTOXX 50, S&P500, BOVESPA, and IPC. To gain some
insight into the relationship between the LATIBEX index and the futures markets on
each of these indices, we started by estimating bivariate GARCH models over the whole
sample. The GARCH model parameters are estimated by maximum likelihood under
the assumption of normality of the innovations vector, so they should be interpreted as
quasi-maximum likelihood estimates. Using alternative probability distributions, such as
Student’s t, increases the computational cost without leading to noticeable differences in
hedging results. Moreover, capturing the leverage effect in volatility seems to be more
important in producing better hedging results. Figure 1 shows monthly moving averages
of the conditional correlation between LATIBEX and each futures contract, estimated using
the full sample (3 January 2005–25 August 2020; 4082 data points) with the asymmetric
DCC– and BEKK–GARCH(1,1) models. For sake of space, we present the two models that
exhibited important differences between them, that is, the asymmetric DCC– and BEKK–
GARCH(1,1). The graphs for the asymmetric CCC– and DVEC–GARCH(1,1) models are
available upon request.
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Figure 1. Conditional correlation coefficient between LATIBEX and the futures contract on each stock
market index. Estimated with asymmetric DCC–and BEKK–GARCH(1,1) models. Monthly moving
averages. Full sample (1 March 2005–25 August 2020; 4082 data points).

As observed in Figure 1, in the first half of the sample (2005–2012), the correlations
have medium–high levels around 0.7, with the exception of S&P500 future, which in this
period, exhibits a value close to 0.5. A decrease in correlations at the beginning of the
Global Financial Crisis (2008–2009) is also noticed, and, then, an increase at the end of
this period. Then, in the second half of the sample (2013–August 2020) the correlations
tend to decrease, with EUROSTOXX 50 and IPC index futures with values around 0.5
and S&P500 future at 0.36. The exception is with the BOVESPA futures index, which
remains around 0.7. Nevertheless, an increase of correlations in the last part of the graph
can be noticed, as a consequence of the Covid-19 Financial Crisis, as expected. In sum,
conditional correlations from the asymmetric BEKK–GARCH(1,1) specification display
larger short-term fluctuations.

To perform the hedging exercise, we split the whole sample period into two sub-
samples. The first ranged between 3 January 2005 and 25 August 2017 (Friday), which
comprises 3300 data points. The model parameters were estimated, then used to compute
one-period ahead forecasts of conditional moments and the minimum variance hedge ratio
on the last day in the estimation sample. After that, we eliminated the first data point,
3 January 2005, and added a new observation at the end of the sample, 28 August 2017
(Monday), to maintain the sample size in 3300 observations. This is a real time exercise,
in which the hedge is based on forecasts obtained using only the available information at
each point in time. The analysis was repeated until we reached the last sample observation,
25 August 2020, for a total of 783 one-step ahead forecasts. Specifically, we started by esti-
mating an Error Correction Model (ECM) with one lag of returns. After that, we used the
Berndt, Hall, Hall, and Hausman (BHHH) algorithm to estimate asymmetric CCC–, DCC–,
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DVEC–, and BEKK–GARCH(1,1) specifications by quasi-Maximum Likelihood (QML) for
the residuals from the ECM. From each conditional variance model, we generated second
order moments. As mentioned, we performed 783 estimations of each of the four bivariate
GARCH models and for each of the four futures markets indices (12,528 estimations in
total), which required a noticeable computational effort.

Figure 2 shows the monthly moving average of forecasts for conditional correlations
between LATIBEX and the other four futures markets indices for this sample, as estimated
from asymmetric DCC– and BEKK–GARCH(1,1) models.

Figure 2. Conditional correlation coefficient between LATIBEX and the futures contract on each stock
market index. Estimated with asymmetric DCC– and BEKK–GARCH(1,1) models (783 forecasts).
Monthly moving averages (28 August 2017–25 August 2020).

These time series represent the sequence of correlations that arise from one-day ahead
forecasts of variances and covariances. The forecasted conditional correlations are at levels
of 0.5 for the EUROSTOXX 50 and IPC index futures, and 0.4 and 0.7 for the S&P500 and
BOVESPA index futures, respectively. As is the case with the full sample data in Figure 1,
conditional correlations from the asymmetric BEKK–GARCH(1,1) specification display a
higher short-term volatility.

The least squares ECM ratio (the least squares hedge ratio is always very close to
that obtained from the Error Correction model, so we have just shown the latter) for the
28 August 2017–25 August 2020 period was −0.88 for EUROSTOXX 50 futures, −0.71 for
S&P500 futures, −0.64 for BOVESPA futures, and −0.77 for IPC futures, all of them well
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below the naïve hedge ratio of −1.00. These amounts are average values of one-day ahead
hedge ratios estimated over the analyzed sample. As we can observe in Table 2, average
values for dynamic hedge ratios estimated from conditional volatility models are lower in
absolute value to the least squares ratio for EUROSTOXX 50 futures, BOVESPA futures,
and IPC futures, while being higher than the least squares for S&P500 futures contracts.

Table 2. Characteristics of estimated Minimum Variance Hedge Ratios.

MVHR

Index Future (IF) ECM Asy CCC(1,1) Asy DCC(1,1) Asy DVEC(1,1) Asy BEKK(1,1)

Average
Eurostoxx50 IF −0.88 −0.90 −0.70 −0.73 −0.74

S&P500 IF −0.71 −0.90 −0.79 −0.71 −0.82
Bovespa IF −0.64 −0.56 −0.55 −0.55 −0.50

Ipc IF −0.77 −0.68 −0.49 −0.57 −0.60

Minimum
Eurostoxx50 IF −0.85 −0.48 −0.09 −0.11 0.09

S&P500 IF −0.66 −0.22 −0.19 0.00 −0.10
Bovespa IF −0.61 −0.31 −0.31 −0.30 0.09

Ipc IF −0.75 −0.32 −0.18 −0.02 −0.06

Maximum
Eurostoxx50 IF −0.89 −1.38 −1.32 −1.28 −1.24

S&P500 IF −0.74 −1.91 −1.74 −1.75 −1.65
Bovespa IF −0.65 −0.75 −0.79 −0.78 −1.20

Ipc IF −0.79 −1.14 −1.04 −0.98 −0.99

Standard Deviation
Eurostoxx50 IF 0.01 0.13 0.20 0.18 0.18

S&P500 IF 0.02 0.33 0.33 0.32 0.26
Bovespa IF 0.01 0.06 0.09 0.08 0.24

Ipc IF 0.01 0.13 0.17 0.17 0.16

Note: The table shows average, maximum, and minimum values as well as standard deviations of estimated minimum variance hedge
ratios based on one-day ahead forecasts of variances and covariances. Sample: 28 August 2017 to 25 August 2020, with a total of 783 daily
observations.

Figure 3 shows that the hedge ratio based on the BOVESPA and IPC futures contracts
is very often the lowest, never surpassing the unit threshold. Estimated MVHR with
multivariate asymmetric GARCH models are time varying, as new information arrives. In
fact, the wide range between the maximum and minimum values of the hedge ratios in
Table 2 for each model reflects the fact that hedge ratios display noticeable variation over
time, as shown in Figure 3.

Linear correlations between any two MVHR obtained from asymmetric DCC–, DVEC–,
and BEKK–GARCH(1,1) specifications when using EUROSTOXX 50, S&P500, and IPC
futures or between their daily fluctuations are “relatively” high (see Table 3), anticipating
that they might provide a similar hedge for LATIBEX. Since the MVHR follow unit root
processes, only correlations between their daily fluctuations are statistically justified.

In the case of the BOVESPA futures, the highest linear correlations are presented
with the asymmetric CCC–, DCC–, and DVEC–GARCH(1,1) specifications. Surprisingly,
for the case of Eurostoxx50 IF, the linear correlation coefficients between the MVHRs for
the asymmetric CCC and other models are so small, contrary to the findings of [41] for
example, though the authors examine exchange rates and employ the original CCC and
DCC versions. However, this topic is little explored in the literature, as stated by [42], and,
thus, more research is needed to find the plausible reasons for this result. On the other
hand, Table 3 further shows that the correlations between the MVHR obtained for a given
GARCH specification from different futures contracts or between their daily fluctuations
are not too high, reflecting the fact that the various stock market indices may provide a
different hedge for LATIBEX positions.
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In what follows, we explore the properties of hedging a LATIBEX position with futures
contracts on the other four indices.

Figure 3. Minimum variance hedge ratios for each futures contract, with sign changed. Estimated
with asymmetric DCC– and BEKK–GARCH(1,1) models (783 forecasts). Monthly moving averages
(28 August 2017–25 August 2020).

Table 3. Minimum Variance Hedge Ratios of the different futures contracts. (a). Linear correlation coefficients between
Minimum Variance Hedge Ratios estimated from different volatility models. (b). Linear correlation coefficients between
Minimum Variance Hedge Ratios for different stock market futures.

(a)

Index Future (IF) GARCH
Specifications Asy CCC(1,1) Asy DCC(1,1) Asy DVEC(1,1) Asy BEKK(1,1)

Eurostoxx50 IF

Asy CCC(1,1) 1.00 0.05 0.09 0.02
Asy DCC(1,1) 0.67 1.00 0.90 0.87

Asy DVEC(1,1) 0.62 0.92 1.00 0.95
Asy BEKK(1,1) 0.41 0.78 0.81 1.00

S&P500 IF

Asy CCC(1,1) 1.00 0.92 0.76 0.54
Asy DCC(1,1) 0.68 1.00 0.82 0.61

Asy DVEC(1,1) 0.62 0.82 1.00 0.84
Asy BEKK(1,1) 0.25 0.59 0.63 1.00

Bovespa IF

Asy CCC(1,1) 1.00 0.77 0.76 0.08
Asy DCC(1,1) 0.91 1.00 0.89 0.17

Asy DVEC(1,1) 0.81 0.93 1.00 0.20
Asy BEKK(1,1) 0.07 −0.01 0.03 1.00
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Table 3. Cont.

(a)

Index Future (IF) GARCH
Specifications Asy CCC(1,1) Asy DCC(1,1) Asy DVEC(1,1) Asy BEKK(1,1)

Ipc IF

Asy CCC(1,1) 1.00 0.59 0.59 0.20
Asy DCC(1,1) 0.89 1.00 0.80 0.55

Asy DVEC(1,1) 0.55 0.70 1.00 0.73
Asy BEKK(1,1) 0.34 0.52 0.38 1.00

Note: The table shows linear correlation coefficients between Minimum Variance Hedge Ratios (MVHR) from different conditional
volatility models when using different stock market futures. Values above the diagonal are correlations between MVHR. Values
below the diagonal are correlations between daily changes in MVHR. Sample: 783 daily forecasts between 28 August 2017 and
25 August 2020.

(b)

GARCH
Specification Index Future (IF) Eurostoxx50 IF S&P500 IF Bovespa IF Ipc IF

Asy
CCC(1,1)

Eurostoxx50 IF 1.00 0.66 −0.01 0.43
S&P500 IF 0.54 1.00 −0.03 0.51
Bovespa IF 0.17 0.21 1.00 0.06

Ipc IF 0.45 0.40 0.27 1.00

Asy DCC(1,1)

Eurostoxx50 IF 1.00 0.18 0.40 0.55
S&P500 IF 0.31 1.00 0.01 0.39
Bovespa IF 0.22 0.27 1.00 0.31

Ipc IF 0.32 0.33 0.32 1.00

Asy DVEC(1,1)

Eurostoxx50 IF 1.00 0.17 0.22 0.46
S&P500 IF 0.34 1.00 0.10 0.39
Bovespa IF 0.20 0.22 1.00 0.22

Ipc IF 0.25 0.22 0.18 1.00

Asy BEKK(1,1)

Eurostoxx50 IF 1.00 0.09 0.20 0.46
S&P500 IF −0.09 1.00 0.00 0.26
Bovespa IF −0.04 −0.08 1.00 0.22

Ipc IF 0.01 0.13 0.06 1.00

Note: The table shows linear correlation coefficients between the Minimum Variance Hedge Ratios for different stock market
indices, estimated using different conditional volatility models. Values above the diagonal are correlations between MVHR values.
Values below the diagonal are correlations between their daily changes. Sample: 783 daily forecasts between 28 August 2017 and
25 August 2020.

3.2. Hedging Efficiency

To compare the effectiveness of the different hedge methods, we start by follow-
ing [43,44], who suggest analyzing the reduction in the variance of returns achieved by the
hedged position, relative to the uncovered spot position. Thus, given a class of models
indexed by i, i = 1, 2, . . . , m we should prefer model i such that

min
i

Var
(
rp,i
)
= σ2

p,i (5)

where Var(rp,i) denotes the variance of returns for the hedged portfolio estimated with
model i. Table 4 displays the results, as well as for the unhedged position (bt−1 = 0) and for
the naïve hedge (bt−1 = 1), together with the percent reduction in variance relative to the
unhedged position in LATIBEX, Var(rs) = σ2

s .
Table 4 further presents the same information but in terms of annual volatility. We can

deduce that the naïve hedge of taking the opposite position in the selected futures contract
reduces volatility when using futures on the EUROSTOXX 50 and IPC but not with the
S&P500 and BOVESPA. On the other hand, the hedging provided by the least squares
estimates of the second order unconditional moments achieves a significant reduction in the
variance of the return relative to the unhedged position for all four futures contracts, while
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in relation to the naive hedge, the reduction in variance is appreciable with all contracts,
except for EUROSTOXX 50.

Table 4. Hedging effectiveness of the different futures contracts. (a) Variance of daily returns from different portfolios.
(b) Annual volatility of different portfolios.

(a)

Eurostoxx50 IF S&P500 IF Bovespa IF Ipc IF

Variance of
the

Hedged
Portfolio

Reduction
from

Unhedged
Position

Variance of
the

Hedged
Portfolio

Reduction
from

Unhedged
Position

Variance of
the

Hedged
Portfolio

Reduction
from

Unhedged
Position

Variance of
the

Hedged
Portfolio

Reduction
from

Unhedged
Position

Unhedged 0.362 0.362 0.362 0.362
Naïve
Hedge 0.236 34.7% 0.366 −1.0% 0.397 −9.8% 0.297 17.9%

ECM 0.232 36.0% 0.325 10.2% 0.238 34.3% 0.260 28.2%
Asy

CCC(1,1) 0.238 34.3% 0.323 10.8% 0.212 41.4% 0.264 27.0%

Asy
DCC(1,1) 0.237 34.6% 0.319 11.9% 0.214 40.9% 0.254 29.7%

Asy
DVEC(1,1) 0.239 33.9% 0.320 11.8% 0.213 41.2% 0.262 27.6%

Asy
BEKK(1,1) 0.238 34.2% 0.318 12.1% 0.252 30.5% 0.249 31.3%

Note: The left column in each panel shows, under the variance of the LATIBEX index, the variance of each hedged portfolio. All
variances have been multiplied by 103. The right column presents the reduction in variance relative to the unhedged position.
Sample: 783 daily observations between 28 August 2017 and 25 August 2020.

(b)

Eurostoxx50 S&P500 IF Bovespa IF Ipc IF

Annual
Volatility

of the
Hedged
Portfolio

Reduction
from

Unhedged
Position

Annual
Volatility

of the
Hedged
Portfolio

Reduction
from

Unhedged
Position

Annual
Volatility

of the
Hedged
Portfolio

Reduction
from

Unhedged
Position

Annual
Volatility

of the
Hedged
Portfolio

Reduction
from

Unhedged
Position

Unhedged 30.21% 30.21% 30.21% 30.21%
Naïve
Hedge 24.41% 19.20% 30.36% −0.50% 31.65% −4.77% 27.37% 9.40%

ECM 24.17% 19.98% 28.63% 5.22% 24.48% 18.97% 25.60% 15.27%
Asy

CCC(1,1) 24.48% 18.97% 28.53% 5.56% 23.12% 23.46% 25.82% 14.55%

Asy
DCC(1,1) 24.43% 19.13% 28.36% 6.13% 23.22% 23.14% 25.32% 16.18%

Asy
DVEC(1,1) 24.55% 18.72% 28.38% 6.07% 23.17% 23.31% 25.71% 14.90%

Asy
BEKK(1,1) 24.51% 18.88% 28.32% 6.26% 25.19% 16.62% 25.03% 17.14%

Note: The left column in each panel shows, under the annualized volatility of the LATIBEX index, the volatility of each hedged
portfolio. The right column presents the reduction in volatility relative to the unhedged position. Bold figures indicate the model
providing the highest hedge effectiveness for each futures contract. Sample: 783 daily observations between 28 August 2017 and
25 August 2020.

What is of greater significance is the reduction in variance from the four GARCH
specifications relative to: the least squares models, the unhedged portfolio, and the naïve
hedge portfolio. This happens when the portfolio is hedged with futures contracts on
S&P500, BOVESPA and IPC. But with futures contracts on EUROSTOXX 50, the largest
reductions in variance are achieved with the least squares model followed by naive hedging.
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As expected from the high correlations among MVHR, hedge ratios from asymmetric
CCC–, DCC–, DVEC– and BEKK–GARCH(1,1) models achieve similar annualized volatility
reductions for three futures contracts: EUROSTOXX 50, S&P500, and IPC (see Table 4).
Meanwhile, the asymmetric CCC–, DCC– and DVEC–GARCH(1,1) models perform the
same for BOVESPA futures contracts.

Therefore, the best models in terms of largest variance reduction per each index futures
contract to hedge the LATIBEX index may be identified. For EUROSTOXX 50 IF, the best
models are the Error Correction Model (ECM) and Naive Hedging, while for the S&P500
futures, the best models are the asymmetric BEKK– and DCC–GARCH(1,1) specifications.
The asymmetric CCC– and DVEC–GARCH(1,1) models outperform other models for the
BOVESPA futures, and the asymmetric BEKK– and CCC–GARCH(1,1) models work well
for the IPC futures. Even more importantly, the IF candidates that seem to provide the best
hedge for LATIBEX positions are the BOVESPA and EUROSTOXX 50 futures contracts.

An interesting result is the reduction in variance found with the EUROSTOXX 50
futures since the LATIBEX market has its trading platform in Europe as well as the EU-
ROSTOXX 50 futures.

3.3. Further Results

In what follows, the Certainty Equivalent (CE) concept is applied to obtain further
results in our study. The CE is usually defined as the amount that investors are indifferent
to for taking the risk of their investments or to receive such an amount [45]. Among
the different utility functions to model the wealth (W) of an investor, let us consider an
exponential utility function, given by

U(W) = − exp(−γW) (6)

where γ is the coefficient of absolute risk aversion and it is positive. By considering higher
order moments (i.e., τ: skewness and κ: kurtosis), the CE is approximately

CEi ≈ µi −
1
2

γσ2
i +

τi
6

γ2σ3
i −

κi − 3
24

γ3σ4
i (7)

where µi and σi denote the mean and standard deviation of a given portfolio return,
respectively, for the hedged portfolio estimated with model i. As observed in Equation (7),
the CE is lower when volatility and/or kurtosis are higher. In addition, the CE is also lower
when skewness is negative. Stylized facts of equity daily returns show that the distribution
of these returns is leptokurtic and negatively skewed, which can result in incorrect hedging
and high losses in the underlying portfolio.

Table 5 displays the mean daily return and volatility, as well as skewness, excess
kurtosis, and the Certainty Equivalent (in annual and daily terms) for each hedged portfolio
as well as for the unhedged LATIBEX position with a specific level of risk aversion, e.g.,
γ = 4, since [46] states that the risk aversion parameter is between 2 and 4.

As we have already seen, hedging reduces volatility relative to the unhedged position
in all cases. Moreover, kurtosis values increase significantly in the hedged position with
BOVESPA futures and to a lesser extent with the EUROSTOXX 50 futures, indicating
the possibility of large positive or negative returns in these portfolios. On the contrary,
with futures contracts on IPC and S&P500, the portfolio distributions are less leptokurtic.
On the other hand, all of the portfolios exhibit negative asymmetry, suggesting the low
possibility of large positive returns. In addition, from September 2017 to August 2020,
the Certainty Equivalent is negative, despite the improvement achieved in the statistical
properties of the portfolio because of the hedge. The only exception is with BOVESPA
futures contracts when an asymmetric BEKK–GARCH(1,1) specification is used, obtaining
a positive Certainty Equivalent.
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Table 5. Main statistics and Certainty Equivalent for hedged portfolios.

Index Future
(IF) CE Unhedged Naïve

Hedge ECM Asy
CCC(1,1)

Asy
DCC(1,1)

Asy
DVEC(1,1)

Asy
BEKK(1,1)

Eurostoxx50 IF

Average −0.031% −0.026% −0.026% −0.020% −0.023% −0.020% −0.018%
Standard
Deviation 1.90% 1.54% 1.52% 1.54% 1.54% 1.55% 1.54%

Skewness −0.75 −0.57 −0.63 −0.71 −0.67 −0.60 −0.57
Excess

Kurtosis 4.99 5.13 5.05 5.09 4.89 5.27 5.29

CE (daily) −0.11% −0.07% −0.07% −0.07% −0.07% −0.07% −0.07%
CE

(annual) −26.52% −18.71% −18.45% −17.14% −17.99% −17.28% −16.68%

S&P500 IF

Average −0.031% −0.075% −0.061% −0.072% −0.069% −0.062% −0.069%
Standard
Deviation 1.90% 1.91% 1.80% 1.80% 1.79% 1.79% 1.78%

Skewness −0.75 −0.45 −0.58 −0.68 −0.69 −0.70 −0.56
Excess

Kurtosis 4.99 5.68 4.56 4.69 4.77 4.80 4.40

CE (daily) −0.11% −0.15% −0.13% −0.14% −0.13% −0.13% −0.13%
CE

(annual) −26.52% −37.64% −32.02% −34.62% −33.66% −32.13% −33.75%

Bovespa IF

Average −0.031% −0.003% −0.012% −0.015% −0.017% −0.024% 0.055%
Standard
Deviation 1.90% 1.99% 1.54% 1.46% 1.46% 1.46% 1.59%

Skewness −0.75 0.28 −0.59 −0.92 −0.93 −0.96 0.96
Excess

Kurtosis 4.99 25.37 14.94 7.40 7.49 6.98 18.26

CE (daily) −0.11% −0.08% −0.06% −0.06% −0.06% −0.07% 0.00%
CE

(annual) −26.52% −20.84% −15.31% −14.75% −15.27% −16.93% 1.25%

Ipc IF

Average −0.031% 0.034% 0.019% 0.007% −0.006% −0.009% 0.009%
Standard
Deviation 1.90% 1.72% 1.61% 1.63% 1.60% 1.62% 1.58%

Skewness −0.75 −0.17 −0.36 −0.50 −0.59 −0.64 −0.49
Excess

Kurtosis 4.99 2.82 3.01 3.61 3.76 3.94 3.09

CE (daily) −0.11% −0.03% −0.03% −0.05% −0.06% −0.06% −0.04%
CE

(annual) −26.52% −6.41% −8.33% −11.80% −14.42% −15.70% −10.38%

Note: The table shows average daily return and volatility, as well as skewness, kurtosis, and the Certainty Equivalent for hedged portfolios,
as well as for the unhedged LATIBEX portfolio. The first column displays statistics for the LATIBEX portfolio, the second column presents
statistics for the unit (naïve) hedge. The remaining columns refer to the hedge obtained with the model indicated in the heading. Figures in
bold indicate the model that provides the highest Certainty Equivalent (CE). Risk aversion parameter: γ = 4. Sample: 783 daily forecasts
between 28 August 2017 and 25 August 2020.

Hedging with S&P500 futures leads to an even more negative Certainty Equivalent
than the unhedged position, suggesting the inappropriateness of the S&P500 hedge ac-
cording to this criterion. The estimated hedge with the asymmetric BEKK–GARCH(1,1)
specification is best when using futures contracts on BOVESPA and EUROSTOXX 50, with
a significant reduction in the absolute value of the Certainty Equivalent, relative to the
unhedged position. The asymmetric BEKK–GARCH(1,1) specification is also best among
the GARCH models for the IPC hedge, although the unit hedge ratio then produces an even
better Certainty Equivalent. The most plausible reason for this result is that the IPC futures
contract has a much higher value in dollars than the other futures contracts. The price fall
over the sample then leads to a substantial gain in the futures position, which is especially
large in the unit hedge case since the hedge ratios in all other strategies remain well below
one. However, of course, this is an ex-post analysis. Even more importantly, hedging with
BOVESPA futures also reduces the Certainty Equivalent very significantly with respect to
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the other three futures contracts, and, hence, BOVESPA futures contracts provide the best
hedge according to this criterion. Once again, futures contracts for EUROSTOXX 50 and
S&P500 perform significantly worse than futures contracts from the two emerging markets,
leading to a more negative Certainty Equivalent.

In summary, evaluating hedging effectiveness according to both criteria variance
reduction and the Certainty Equivalent leads to a consistent conclusion: for investors with
positions in the LATIBEX market, it is better to implement a dynamic hedge rather than
a least squares hedge, a naive hedge, or no hedge at all. The evidence on what might be
the best GARCH specification is mixed, with asymmetric versions of the CCC–, DCC–,
DVEC– and BEKK–GARCH(1,1) models performing best for different criteria of hedging
effectiveness (see Table 6).

Table 6. Performance of pairs (futures contract; hedge ratio), according to two hedging efficiency measures.

Position Index Future
(IF) Performance Volatility

(Annual) Futures Index Performance
Certainty

Equivalent
(Annual)

1 Bovespa IF Asym CCC 23.12% Bovespa IF Asym BEKK 1.25%
2 Bovespa IF Asym. DVEC 23.17% Ipc IF Naïve Hedge −6.41%
3 Bovespa IF Asym DCC 23.22% Ipc IF ECM −8.33%
4 Eurostoxx50 IF ECM 24.17% Ipc IF Asym BEKK −10.38%
5 Eurostoxx50 IF Naïve Hedge 24.41% Ipc IF Asym CCC −11.80%
6 Eurostoxx50 IF Asym DCC 24.43% Ipc IF Asym DCC −14.42%
7 Eurostoxx50 IF Asym CCC 24.48% Bovespa IF Asym CCC −14.75%
8 Bovespa IF ECM 24.48% Bovespa IF Asym DCC −15.27%
9 Eurostoxx50 IF Asym BEKK 24.51% Bovespa IF ECM −15.31%
10 Eurostoxx50 IF Asym DVEC 24.55% Ipc IF Asym DVEC −15.70%
11 Ipc IF Asym BEKK 25.03% Eurostoxx50 IF Asym BEKK −16.68%
12 Bovespa IF Asym BEKK 25.19% Bovespa IF Asym DVEC −16.93%
13 Ipc IF Asym DCC 25.32% Eurostoxx50 IF Asym CCC −17.14%
14 Ipc IF ECM 25.60% Eurostoxx50 IF Asym DVEC −17.28%
15 Ipc IF Asym DVEC 25.71% Eurostoxx50 IF Asym DCC −17.99%
16 Ipc IF Asym CCC 25.82% Eurostoxx50 IF ECM −18.45%
17 Ipc IF Naïve Hedge 27.37% Eurostoxx50 IF Naïve Hedge −18.71%
18 S&P500 IF Asym BEKK 28.32% Bovespa IF Naïve Hedge −20.84%
19 S&P500 IF Asym DCC 28.36% Eurostoxx50 IF Unhedged −26.52%
20 S&P500 IF Asym DVEC 28.38% S&P500 IF Unhedged −26.52%
21 S&P500 IF Asym CCC 28.53% Bovespa IF Unhedged −26.52%
22 S&P500 IF ECM 28.63% Ipc IF Unhedged −26.52%
23 Eurostoxx50 IF Unhedged 30.21% S&P500 IF ECM −32.02%
24 S&P500 IF Unhedged 30.21% S&P500 IF Asym DVEC −32.13%
25 Bovespa IF Unhedged 30.21% S&P500 IF Asym DCC −33.66%
26 Ipc IF Unhedged 30.21% S&P500 IF Asym BEKK −33.75%
27 S&P500 IF Naïve Hedge 30.36% S&P500 IF Asym CCC −34.62%
28 Bovespa IF Naïve Hedge 31.65% S&P500 IF Naïve Hedge −37.64%

Note: The table shows the results for two measures of hedging efficiency. Pairs (futures contract; hedge ratio) are ordered from most
efficient to least efficient according to each criterion.

Nevertheless, it seems that futures contracts on BOVESPA provide the best hedge.
This can be explained by the fact that most firms included in LATIBEX are from Brazil.
The presence of Mexican firms is also important, but Brazilian firms have the largest
weights in the composition of the LATIBEX index. As of August 2020, 22 stocks were
listed in the LATIBEX All Share index, of which 15 were from Brazil (68.2%), 5 were from
Mexico (22.7%), 1 from Argentina (4.5%), and 1 from Peru (4.5%). However, regarding the
weighting in the index by capital, 72.7% corresponded to Brazilian companies, 26.9% to
Mexican companies, 0.3% Argentine, and 0.2% Peruvian (see Table 7).
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Table 7. Stock market and LATIBEX index information. (a) Information from the Brazilian and
Mexican Stock Exchanges. (b) Information from LATIBEX index.

(a)

B3—Brasil Bolsa Balcão Bolsa Mexicana de Valores

Domestic market capitalization
(USD millions) (a) 832,365 306,771

Number of listed companies 331 144
Value of share trading (USD

millions) (b) 814,621 60,127

Note: (a) Data for July 2020. (b) Data accumulated in the period January–July 2020.

(b)

Number of Listed
Companies Capitalization Weighting

Brazil 15 72.7%
Mexico 5 26.9%

Argentina 1 0.3%
Peru 1 0.2%
Total 22 100.0%

Note: Composition of the FTSE LATIBEX All Share index at the close of the session on
28 August 2020.

On the other hand, the “B3—Brasil Bolsa Balcão” stock market is also more liquid.
Being almost triple the size of “Bolsa Mexicana de Valores” in capitalization, it contains
more than twice as many listed companies and the value of shares traded during the first
half of 2020 was almost ten times greater (see Table 7).

The higher liquidity of the market and the relevant representation in the LATIBEX
index might support our results.

4. Conclusions

In the absence of futures contracts on LATIBEX, an investor must consider the use of
futures contracts on some other stock market index to hedge the LATIBEX portfolio. To
try to solve this important issue for LATIBEX investors, we have found successful cross-
hedging strategies employing futures contracts based on two developed stock markets,
EUROSTOXX 50 and S&P500 indices, as well on two Emerging Latin American stock
market indices, BOVESPA (Brazil) and IPC (Mexico).

To this end, we have estimated the error correction model for daily quotes on LATIBEX
and futures contracts on each of the four mentioned indices under different asymmetric
multivariate specifications for the conditional second order moments between the inno-
vations in both assets. The implied dynamic minimum variance hedge ratios have been
compared with the unconditional least squares ratios, as well as with the unit hedge and
with the unhedged position in terms of Ederington’s effectiveness measure [7]. We have
also compared the different hedging models in terms of the Certainty Equivalent of returns
for the implied hedged portfolios. Our empirical exercise was designed to simulate a real
time analysis, by estimating the hedge ratio each day over a three-year rolling sample. This
gives us a close approximation to the hedging operation that could have been followed by
an investor with a portfolio replicating LATIBEX.

Our results suggest that dynamic hedge ratios estimated from asymmetric CCC–,
DCC–, DVEC– and BEKK–GARCH(1,1) models lead to improvements over the hedge
provided by unconditional moments for LATIBEX portfolios. They are also clearly prefer-
able to the unit hedge or to the unhedged position in terms of all the criteria we have
employed, no matter whether the objective is to reduce volatility or the level of risk emerg-
ing from the higher order moments of the distribution of returns, summed up in the
Certainty Equivalent.
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The important result for practical purposes is that futures contracts on the Brazilian
index BOVESPA provide the most effective cross-hedge for LATIBEX positions, which
might be expected from the fact that 68% of LATIBEX is made up by Brazilian firms (73% in
capital weight). The presence of Mexican firms is also important in LATIBEX but they have
lower weights. Furthermore, the higher liquidity of the Brazilian market is an additional
reason that facilitates the implementation of a hedge based on that market. A significant
reduction in volatility is also achieved when hedging the LATIBEX in the portfolio with
EUROSTOXX 50 futures. This could be especially interesting for European investors who
might prefer hedging strategies using futures contracts denominated in their own currency
and trading in a market they know well. Future research can be focused on alternative
models for dependence, such as copulae, and alternative financial hedging instruments.
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Appendix A. Multivariate Asymmetric GARCH Models for
Variance–Covariance Matrices

Appendix A.1. CCC Model

The CCC model [27] starts with k univariate GARCH models for each of k indices.
In our case with p = q = 1 and incorporating negative asymmetry volatility [47], we use a
GJR-GARCH(1,1) model for each k index, whose expression is

hkk,t = δk1 + δk2ε2
k,t−1 + δk3hkk,t−1 + δk4nk,t−1 (A1)

where εt are innovations in period t, hkk,t is the conditional variance of asset k,
nkt = max[0,−εkt], and δ are the parameters. In this model the conditional correlations
matrix R static, as defined

R =


1 ρ12

ρ21 1
· · · ρ1k

ρ2k
...

. . .
...

ρk1 ρk2 · · · 1

 (A2)

where ρij is the correlation coefficient between variables i and j. Then, the conditional
variance matrix Ht is defined as: Ht = DtRDt, where Dt is the diagonal matrix

Dt =


√

h11,t √
h22,t

. . . √
hkk,t

 (A3)
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In the bivariate case, which is used in this study, k = 2 for the LATIBEX index and
either one of the four index futures. Given that p = q = 1, the matrix representation of the
model becomes

Ht =

[
h11,t h12,t
h21,t h22,t

]
=

[ √
h11,t 0
0

√
h22,t

][
1 ρ12

ρ21 1

][ √
h11,t 0
0

√
h22,t

]
(A4)

With this representation, it is ensured that Ht will be positive definite if certain
restrictions on the parameters are met. The basic idea of this model is to keep constant the
conditional correlation coefficients, which is its main disadvantage.

Appendix A.2. DCC Model

The DCC model is a generalization of the CCC model proposed by Bollerslev. The
main difference is that now the correlation matrix R is time varying. The specification for the
covariance matrix, Ht, can be written as: Ht = DtRtDt where Dt is the matrix of expression
(A3) and Rt =

{
ρij
}

t is the matrix of time-varying conditional correlations. In our case, as
with the CCC model, we start by estimating (A1) using a GJR-GARCH(1,1) model for the
individual conditional variance. Once we have these estimates, we obtain the standardized
residuals zt and calculate sample correlations of the residuals: Q = 1

T ∑ zt−1z′t−1, to be
taken to the DCC specification model according to

Qt = (1− θ1 − θ2)Q + θ1zt−1z′t−1 + θ2Qt−1 (A5)

where Rt = diag
[

Q−1/2
t QtQ−1/2

t

]
. θ1 and θ2 are scalar parameters, zt is the matrix of the

standardized residuals, and Qt is the covariance matrix of zt. The parameters θ1 and θ2
capture the effect of past shocks and past conditional correlations on current conditional
correlations. In the DCC(1,1) model, θ1 and θ2 are positive and their sum is smaller than
unity, ensuring that Qt is positive and it presents mean reversion. This implies that after a
shock, the correlation unconditional returns to long-term values. When θ1 = θ2 = 0, the
DCC model reduces to the CCC model. The correlation estimators are of the form

ρij,t =
qij,t

√qii,tqjj,t
(A6)

hij,t = ρij,t

√
hii,thjj,t (A7)

for i,j = 1,2, . . . , n with i 6= j. In our application, n = 2 for the LATIBEX index and either
one of the four index futures.

Appendix A.3. Diagonal VEC Model (DVEC)

Reference [29] suggests reducing the number of parameters in the multivariate GARCH
model by imposing that the matrices of coefficients of these models are diagonal. In our
case, with p = q = 1 and incorporating negative asymmetry volatility [47], we have an
asymmetric DVEC(1,1) model that can be expressed in terms of Hadamard (If A =

(
aij
)

and B =
(
bij
)

are m × n matrices, then A�B is a matrix m × n with
(
aij·bij

)
elements)

products as
Ht = C + A�εt−1ε′t−1 + B�Ht−1 + G�nt−1n′t−1 (A8)

where C, A, B, and G are matrices that accumulate only the lower triangular part of the
matrices. In our case, these are 2 × 2 lower triangular matrices of parameters. By � we
denote the Hadamard product. Ht is a 2 × 2 variance–covariance matrix, εt is a 2 × 1
vector of innovations obtained from the return equations, nt is a 2× 1 vector containing the
threshold term nkt = max[0,−εkt], and k = 1,2 where we consider k = 1 for spot LATIBEX
index and k = 2 as one of the four index futures. This asymmetrical DVEC(1,1) requires the
estimation of 12 parameters.
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Appendix A.4. BEKK Model

Reference [30] proposes a new parameterization of Ht ensuring positivity. In our
case with p = q = 1 and also incorporating negative asymmetric volatility [33], we have an
asymmetric BEKK(1,1) as

Ht = C′C + A′εt−1ε′t−1 A + B′Ht−1B + G′nt−1n′t−1G (A9)

where C, A, B, and G are 2 × 2 parameters matrices, with C being lower triangular. Ht is
the 2 × 2 variance–covariance matrix, εt is a 2 × 1 vector of innovations obtained from the
return equations, and δt is a 2 × 1 vector containing the threshold term nkt = max[0,−εkt]
with k = 1,2 for the LATIBEX index and k = 2 for either one of the four index futures. It is
not necessary to impose restrictions on the parameters of matrices C, A, B, and G, to ensure
that Ht is positive definite since the model appears expressed in terms of quadratic forms.
This asymmetric BEKK(1,1) model requires the estimation of 15 parameters, and it is a
model that allows dynamic dependency between the volatility series.
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