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Abstract: NP-complete problems in graphs, such as enumeration and the selection of subgraphs with
given characteristics, become especially relevant for large graphs and networks. Herein, particular
statements with constraints are proposed to solve such problems, and subclasses of graphs are
distinguished. We propose a class of prefractal graphs and review particular statements of NP-
complete problems. As an example, algorithms for searching for spanning trees and packing bipartite
graphs are proposed. The developed algorithms are polynomial and based on well-known algorithms
and are used in the form of procedures. We propose to use the class of prefractal graphs as a tool for
studying NP-complete problems and identifying conditions for their solvability. Using prefractal
graphs for the modeling of large graphs and networks, it is possible to obtain approximate solutions,
and some exact solutions, for problems on natural objects—social networks, transport networks, etc.

Keywords: NP-complete problems; prefractal graphs; subgraph search algorithms

1. Introduction

The beginning of the study of intractable problems is associated with the possibility of
eliminating enumeration to find the optimal solution and create a polynomial algorithm. In
the case of an exponential number of variants of solutions, the exhaustive algorithm does
not allow one to find the optimal solution in an acceptable time and becomes intractable or
even unsolvable. The efficiency of finding a solution and the complexity of the algorithm
are estimated based on the solution time, limited by a function of the size of the problem. In
discrete mathematics, two classes of problems are considered: the NP class of all exhaustive
problems and the class P of exhaustive problems solvable in polynomial time (in classical
terminology, with a Turing machine). In the NP class, typical (NP-complete) problems
that set the “standard” of complexity are distinguished. Any problem from NP reduces
polynomially to an NP-complete problem [1].

In [2], using the examples of the simple max cut, node cover, and directed Hamiltonian
path problems, it was shown that a number of NP-complete problems remain NP-complete
even when their domains are substantially restricted. In [3], a special class of indefinite
quadratic programs with simple constraints and integer data was proposed. It was shown
that the problem of checking that a given feasible solution is not a local minimum (or
that the objective function is not bounded from below on the set of feasible solutions)
in this class is NP-complete. In [4] some new graph problems (the optimal linear cut
arrangement, optimal directed tree arrangement and arrangements on a grid) were added
to the list of known NP-complete problems. Despite the significant amount of work on
NP-completeness in the past years, research on this topic remains relevant. This also
applies to graph problems. Among the modern approaches are the following. To study
such NP-complete problems as the min dominating set, max independent set, max clique,
etc., the effectiveness and ineffectiveness of all nodes in the given graph are computed in [5].
The use of modern methods and capabilities of computer science for solving well-known
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graph NP-complete problems should be noted. For example, a new iteration-parallel-
based method was been used for reconfigurable computer systems [6]. Graph-theoretic
intractable problems are also common in application areas. For example, the study of a
hierarchical subsystem decomposition problem with a genetic algorithm allows for a better
understanding of large-scale software systems [7].

For solving NP-complete problems, it is customary to define subclasses of graphs for
which solvability conditions are possible. Another approach is the formulation of particular
problems with additional restrictions [8–10]. NP-complete problems are explored in various
subject areas to find solutions to applied problems [11–13].

The prospects and significance of research related to fractal sets can be assessed by
means of regular conferences and periodicals. For example, the magazine Chaos, Solitons
& Fractals is entirely devoted to this topic [14–16]. This allows us to speak about the
range of model problems based on fractal sets. Among these, problems and models have
been distinguished, in which fractal sets are presented as self-similar (fractal) graphs of
large dimensions. In addition, fractal graphs often act as models of structures of complex
multielement systems such as communication networks. Research is carried out in three
main areas: the recognition of fractal graphs, the properties and characteristics of fractal
graphs, and multicriteria optimization problems.

Self-similar graphs are a subclass of prefractal graphs. Various authors have intro-
duced independent definitions of self-similar graphs and have called them families. They
have considered special cases of families of self-similar graphs, such as Farey graphs,
2-dimensional Sierpiński gasket graphs, Hanoi graphs, modified Koch graphs, Apollonian
graphs, pseudofractal scale-free webs, fractal scale-free networks, etc. [17–19]. In our
terminology, the graphs of these families are noncanonical prefractal graphs, for which
special generation conditions are specified.

Prefractal graphs [20–22] represent a relatively new subclass of large dynamic graphs [23–25].
With large prefractal graphs, it is possible to build graph-theoretic models of the structure
of social networks and solve various optimization problems on them [26–28]—finding
the shortest paths, highlighting subgraphs, multicriteria optimization, etc. Separate tasks
include the visualization of a dynamic graph and the generation of a sequence of a dynamic
graph with the preservation of characteristics and properties, including the stability of
solutions when moving through the sequence [29,30].

The concepts of fractal and prefractal graphs should be considered separately. Since
fractal graphs are infinite, more research is required, the result of which should be methods
of visual display, the storage of information about the structure of a fractal graphs, the
possibility of compressing this information, etc. At the same time, a fractal graph is a
continuation of a prefractal graph. On the other hand, a sequence of prefractal graphs is a
dynamic graph. This direction also requires additional study.

In this paper, attention is paid to the class of prefractal graphs, as graphs with self-
similar properties. A flexible procedure for generating prefractal graphs allows one to
combine in this class families of self-similar graphs, for which different authors introduce
separate generation rules. As mentioned above, such families belong to noncanonical
prefractal graphs. Figure 1 shows noncanonical G′3 (a) and canonical G3 (b) prefractal
graphs. A noncanonical prefractal graph (a) corresponds to the Sierpinski triangle in the
terminology of self-similar graphs.

It should be noted that the first studies of Sierpinski carpets were carried out back
in the 1990s [31,32]. In those publications, geometric objects were considered as one of
the types of fractals [33]. Later, in the 2000s, publications appeared offering definitions of
Sierpinski graphs from the classical point of view, when a graph is given sets of vertices
and edges [34–36]. Recently, researchers have proposed a uniform definition of Sierpinski
graphs [37,38]. As mentioned above, Sierpinski graphs belong to the class of prefractal
graphs, and for which specific generation rules are given, that is, Sierpinski graphs are also
prefractal graphs. All results obtained for Sierpinski graphs apply to the corresponding
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type of prefractal graphs, including optimization problems—finding the shortest paths,
Hamiltonian subgraphs, coloring, etc. [39–41].
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Figure 1. (a) Noncanonical prefractal graph G′3; (b) canonical prefractal graph G3.

Sierpinski graphs generated by a triangle (complete 3-vertex graph) or square (com-
plete 4-vertex graph or 4-vertex cycle) are often considered. Following the rules for gen-
erating a prefractal graph, both simple graphs with 3–4 vertices and complex graphs
with a large number of vertices and connections can act as a basis, where it is possible
to specify the preservation of the edge adjacency or to specify an arbitrary adjacency. In
the case of weighing a prefractal graph, a similarity coefficient is set, which changes the
weights of the edges at each step. The following are some commonly used definitions of
prefractal graphs.

The generally accepted definitions and notation G = (V, E) for graphs are used [42,43].
Most of the definitions of a class of prefractal graphs are shown in [44,45]. A seed is a
connected graph H = (W, Q) with unlabeled vertices v ∈W. Seeds—also called graphlets—
are small connected non-isomorphic induced subgraphs of a large graph or network [46–48].
Graphlets were first used to design highly sensitive measures of network local structural
similarities [49]. However, graphlets are used more often in specific formulations of
problems; therefore, in this work, a general definition of a seed is used.

A prefractal graph is denoted as GL = (VL, EL), where VL is the set of vertices, and EL
is the set of edges. In what follows, a simplified notation GL is used for known (canonical)
prefractal graphs GL = (VL, EL). In the process of constructing a prefractal graph, a
trajectory is formed G1, G2, . . . , GL. The graph constructed at step l = 1, 2, . . . ., L is called a
prefractal graph Gl of rank l. The new edges of the graph GL are the edges of rank L, and
the remaining edges are the old edges of the rank l.

As l → ∞ , the graph Gl is fractal. The first mentions of fractal graphs can be found
in [50]. A fractal graph, like a fractal, is an infinite object. For a fixed value of rank l, a
pre-fractal graph is considered. For example, as shown above for l = L the graph GL
is considered.

Figure 2 shows an example of replacing the vertices of a graph G1 with a full 3-vertex
seed H with an arbitrary adjacency of old edges: (a) small dashed circles outline the
vertices replaced by the seed; (b) the middle dashed circles outline the seeds that replace
the vertices; (c) old edges of the graph are marked with bold lines.
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The essential characteristics of a prefractal graph GL = (VL, EL) are the number of its
vertices (1) and edges (2).

N = N(n, L) = |VL| = nL, (1)

where n = |W| is the number of vertices of seed H.

M = M(n, q, L) = |EL| = q
(

1 + n + n2 + · · ·+ nL−1
)
= q

(
nL − 1

)
/(n− 1), (2)

where q = |Q| is the number of edges of seed H.
This article explores some NP-complete problems in the class of prefractal graphs and

conditions for their solvability for particular statements. The purpose of this work is to lay
the foundations for creating rules for determining conditions for the polynomial solvability
of problems on prefractal graphs, and also to acquaint readers with these kinds of graphs
as prefractal graphs.

Further, we present new theorems for particular problems in the class of prefractal
graphs. The classical formulations of intractable problems are taken from [1].

2. Particular Problems in the Class of Prefractal Graphs
2.1. Subgraph Isomorphism

INSTANCE: Graphs G = (V1, E1), H = (V2, E2).
QUESTION: Does G contain a subgraph isomorphic to H?
An algorithm for the minimal numbering of the vertices is proposed to formulate and

prove the theorem on the question of isomorphism. Let prefractal graph GL be generated
by a complete seed, preserving the adjacency of the old edges.

Figure 3 shows a prefractal graph G3 generated by a 4-vertex seed—a complete graph
where old edges are adjacent. The bold lines mark the edges of the seed of the first rank,
and the dashed circles outline the seed of the second and third ranks. Following Algorithm
1 (NUM), the vertices of the prefractal graph G3 are numbered by n = 4.
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Algorithm 1 Algorithm for the Minimal Numbering of the Vertices (NUM)

Input : prefractal graph GL = (VL, EL).
Output : the minimum numbering of the vertices of GL by a number n.

1. Sequentially number the vertices of the seed z(1)1 of the first rank with numbers 1, 2, . . . , n.

2. At the output of step 1, one vertex of the seed z(2)s of the second rank is numbered, which

also belongs to the seed z(1)1 .

Sequentially number the remaining (n− 1) vertices of z(2)s , s = 1, n with numbers from the set
{1, 2, . . . , n} different from the already numbered vertices.
for l = 3 to L do:
l. At the output of step l − 1, one vertex of the seed z(l)s of the rank l is numbered, which also

belongs to the seed z(l−1)
s .

Sequentially number the remaining (n− 1) vertices of z(l)s , s = 1, nl−1 with numbers from the set
{1, 2, . . . , n} different from the already numbered vertices.
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Theorem 1. Algorithm 1 enumerates the vertices of the prefractal graph generated by the complete
seed with minimal numbers, while preserving the adjacence of the old edges.

Proof of Theorem 1. Since the seed is a complete graph, the minimum possible number for
numbering the vertices is at least n = |W|. At the first step, the vertices of the graph G1 or,
in another way, the seed z(1)1 of the first rank are numbered with 1, 2, . . . , n. In the second
step, we consider a graph G2 in which the n vertices are already numbered. Each vertex of
z(1)1 is included in only one seed of the second rank z(2)s , s = 1, n due to the preserving of

the adjacency of the old edges of the first rank. The vertices common for z(1)1 and z(2)s are

already numbered, that is, in each seed z(2)s one vertex is numbered with a number from
{1, 2, . . . , n}. Then the remaining n− 1 vertices of z(2)s are numbered differently from those
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already numbered in z(1)1 . Since the seed is a complete graph, the vertices of z(2)s can be
numbered at least with n. At the following steps l = 3, 4, . . . , L the order of numbering
is repeated, in each Gl seeds z(l)s , s = 1, nl−1 are added. Since the added seed z(l)s is a
complete graph, the minimum possible number for numbering the vertices of Gl is at least
n. Furthermore, the preservation of the adjacence of the old edges of Gl guarantees the
numbering of the vertices, the newly added seeds, by numbers 1 + (n− 1) = n. �

Consequence 1. Algorithm 1 enumerates the vertices of a prefractal graph, the adjacency of the
old edges of which is preserved, no more than n numbers.

Theorem 2. Any two prefractal graphs G1
L =

(
V1

L , E1
L
)

and G2
L =

(
V2

L , E2
L
)

are isomorphic if the
adjacence of the old edges is preserved, the seeds H1 = (W1, Q1), H2 = (W2, Q2) that generate
them are complete graphs, and |W1| = |W2|.

Proof of Theorem 2. Following the definition of isomorphism of two graphs, it is necessary
to set a one-to-one mapping f : V1

L → V2
L such that any two vertices u and v of G1

L are
adjacent if and only if the vertices f (u) and f (v) are adjacent in G2

L. In other words, if there
is an edge e ∈ E1

L between two vertices in G1
L, then there is an edge f (e) ∈ E2

L in G2
L.

Seeds H1, H2 and, accordingly, graphs G1
1 , G2

1 are isomorphic since they are complete
graphs according to the conditions of the theorem. Using Algorithm 1, the vertices of G1

1
and G2

1 are numbered with the minimum number n = |W1| = |W2|.
Next, we consider the graphs G1

2 , G2
2 of the second rank in the trajectory l = 1, 2, . . . , L.

Seeds of the first rank are isomorphic due to the isomorphism G1
1 and G2

1 . Seeds of the
second rank are isomorphic due to the isomorphism H1 and H2. Thus, for any edge
between a pair of vertices in G1

2 , there is an edge between a pair of vertices in G2
2 that is

confirmed by the numbering of the vertices of both graphs.
The adjacency of the old edges in G1

L, G2
L and the generation by complete n-vertex seeds

in the trajectory l = 1, 2, . . . , L provides, due to isomorphism H1 and H2, the isomorphism
of prefractal graphs. In other words, at each step of the trajectory l = 1, 2, . . . , L, isomorphic
seeds are added to the isomorphic graphs G1

l , G2
l . �

Consequence 2. Any two prefractal graphs G1
l , G2

l are isomorphic in the trajectory l = 1, 2, . . . , L,
if the adjacency of the old edges is preserved, and the seeds that generate them are complete
n-vertex graphs.

Theorem 2 deals with unweighted prefractal graphs. In the case of prefractal graphs
weighted by the similarity coefficient, we will talk about interval isomorphism when the
weights of two compared edges lie on the same interval.

A prefractal graph GL = (VL, EL) is called weighted if a real number
w(el) ∈

(
θl−1a, θl−1b

)
is assigned to each of its edges el ∈ EL, where l = 1, 2, . . . , L is

the rank of the edge, a > 0, θ < a/b.

Consequence 3. Any two weighted prefractal graphs are interval isomorphic if the adjacency of
the old edges is preserved; the seeds that generate them are complete n-vertex graphs.

2.2. Degree Constrained Spanning Tree

INSTANCE: Graph G = (V, E), positive integer K ≤ |V|.
QUESTION: Is there a spanning tree for G in which no vertex has degree larger

than K?
An algorithm for finding a spanning tree is proposed to formulate and prove the

theorem on the degree constrained spanning tree. Let prefractal graph GL be generated
with an arbitrary adjacency of the old edges.

As a procedure, instead of Prim’s algorithm, it is possible to use any other known
algorithms for finding a spanning tree on a graph.

Figure 4 shows a prefractal graph G3 generated by the 4-vertex seed—a complete
graph, the old edges of which are not adjacent. At the first step of the algorithm
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(Figure 4a) spanning trees of the seeds of the third rank are selected, at the second step
(Figure 4b) the spanning trees of the second rank seeds are selected. At the third step
(Figure 4c), the spanning tree is selected on the graph G1, which corresponds to the selec-
tion of the spanning tree of the entire prefractal graph G3.
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graph GL.
Prim’s Procedure. Procedure for Finding a Spanning Tree (MST)
Input: graph G = (V, E).
Output: spanning tree T = (V, E∗) of G.

Proof of Theorem 3. Algorithm 2 finds the spanning trees T(l)
s , l = 1, 2, . . . , L, s = 1, nl−1

in GL. Prim’s procedure is used in the classical form to find the spanning tree of an
arbitrary graph. Spanning trees T(L)

s , s = 1, nL−1 selected on the seeds z(L)
s form a spanning

forest consisting of connected nL−1 components—blocks of the first rank. Next, T(L−1)
s ,

s = 1, nL−2 selected on z(L−1)
s form a spanning forest of connected nL−2 components—

blocks of the second rank. Since spanning trees are added to spanning trees from high to
low rank through one vertex, the new components are also spanning trees without cycles.
Thus, passing step-by-step from L to the second rank, we obtain n spanning trees—blocks
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of the (L− 1) rank. At the last step, the spanning tree T(1)
1 of the seed z(1)1 connects n

components into one spanning tree TL of GL. �

Remark 1. Algorithm 2 selects the spanning trees in the trajectory G1, G2, . . . , GL.

Figure 5 shows the steps of the sequential selection of spanning trees for G1, G2, G3.
At the first step, a spanning tree is selected for G1 and the same edges are highlighted by a
bold line on G3 (a). At the second and third steps, the spanning trees for G2 (b), G3 (c) are
respectively selected.
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Consequence 4. Algorithm 2 selects a minimum weight spanning tree of a prefractal graph
weighted by a similarity coefficient θ < a/b.

Prim’s procedure uses the weights of the spanning trees obtained in the previous
steps and maintains a minimum weight at each rank l = L, L− 1, . . . , 1. At rank L, the
procedure corresponds to the classical Prim algorithm. At rank L− 1, the procedure uses
the spanning trees obtained in the seeds of rank L. Each vertex in the seeds of the rank
L− 1 is assigned a weight of the minimum spanning tree of the corresponding seed of the
rank L. Furthermore, the search for the minimum spanning tree of the current seed of the
rank L− 1 is carried out, taking into account the total weight of the vertex-edge-vertex.

Figure 6 shows an example of the calculation of the total weight of a vertex-edge-
vertex. To search for the minimum spanning tree z(2)1 the weights of the vertices v′, v′′ , v′′′

are used, w(v′) = w(T(3)
1 ), w(v′′ ) = w(T(3)

2 ), w(v′′′ ) = w(T(3)
3 ). Prim’s procedure uses the

total weight of an edge e′′ : w(v′) + w(e′′ ) + w(v′′ ). It is assumed that the prefractal graph
is connected; otherwise, the algorithm will result in a spanning forest of minimum weight.
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Consequence 5. Algorithm 2 takes O(c·N) time, where N = nl and parameter c = 4n2.

At each step, the algorithm selects the minimum spanning trees for z(l)s , s = 1, nL−1.
Prim’s algorithm takes less than O

(
n2) time. Prim’s procedure includes two additional

operations for adding the weights of the vertices: (2n)2 = 4n2. In total, one will perform
(nL − 1)/(n− 1)·2n2 ≤ nL·4n2 = 4n2·N operations.

Theorem 4. If the old edges are not adjacent, there is a spanning tree for any prefractal graph GL
in which no vertex has a degree larger than K = k + 1, where k—the maximum degree of vertices of
a spanning tree of the seed.

Proof of Theorem 4. The maximum degree of vertices of a spanning tree of seed H is k
following the conditions of the theorem. In the process of generating a prefractal graph
at each step l = 1, 2, . . . , L, each vertex can be incident to only one old edge due to the
condition that any old edges are not adjacent. Thus, any vertex of spanning tree in the
trajectory G1, G2, . . . , GL has a degree k or k + 1 in the case of incidence with the old edge. In
other words, the spanning tree of GL contains only vertices with degrees at most K = k + 1. �

Consequence 6. If the old edges are not adjacent, there is a spanning tree for any prefractal graph
Gl , l = 1, 2, . . . , L in which no vertex has a degree larger than K = k + 1.

Remark 2. If the old edges are adjacent, there is a spanning tree for any prefractal graph GL in
which vertexes have a degree from k to k·L.

2.3. Maximum Leaf Spanning Tree

INSTANCE: Graph G = (V, E), positive integer K ≤ |V|.
QUESTION: Is there a spanning tree for G in which K or more vertices have degree 1?

Lemma 5. Leaf vertices of any spanning tree of GL are placed in seeds of the rank L.

Proof of Lemma 5. Let a prefractal graph generated by a seed be a connected graph.
Otherwise, since the prefractal graph will consist of several connected components, it is
impossible to select a connected spanning tree. Following the procedure for replacing
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vertices with a seed, each vertex of G1 is replaced with a seed H. The old edges are adjacent
to the new edges in an arbitrary order. In G2 each vertex is incident with new edges, and
some of the vertexes are incident with old edges. Thus, vertices incident to both old edges
and new ones cannot be leaf vertices. Only the vertices incident to the new edges are
leaf vertices. Continuing the procedure for generating a prefractal graph, at each step
l = 1, 2, . . . , L the vertices are replaced with seed. Vertices of GL−1 were replaced by seeds,
and only vertices incident to new edges can be a leaf. In other words, the leaf vertices of
GL are placed in seeds of the rank L. In the case of generating a spanning tree, leaf vertices
are also placed in seeds of the rank L, as in any arbitrary case described above.

Consider the case of the selection of a spanning tree of an arbitrary GL. Suppose that
any leaf vertex is incident only to the old edge, but this contradicts the definition of a
connected prefractal graph. Any vertex is incident to a new edge. Thus, any vertex incident
to the old edge is also incident to the new edge and is not a leaf vertex, and the leaf vertex
of the spanning tree can only be incident to a new edge. In other words, leaf vertices of any
spanning tree of a prefractal graph are placed in seeds of the rank L. �

Theorem 6. If there is a spanning tree for the seed H with at least k ≤ n leaf vertices and
the adjacency of old edges is preserved, then there is a spanning tree for the prefractal graph Gl ,
l = 1, 2, . . . , L with at least K = (k− 1)·nl−1 leaf vertices.

Proof of Theorem 6. According to the lemma, the leaf vertices of any spanning tree are
placed in the seeds of the rank L. Let us consider step-by-step the procedure for generating
a prefractal graph and selecting its spanning tree.

There is a spanning tree T1 = T1
1 of G1 = H with at least k ≤ n leaf vertices according

to the hypothesis of the theorem. At the next step, all vertices G1 are replaced with a seed
H and G2 is formed while preserving the adjacence of the old edges. The same goes for
T1. The spanning trees T2

s in seeds of the second rank and T1 forms spanning tree T2 in
G2. Only leaf vertices in T2

s can be leaf vertices in T2. T2
s are actually attached to T1 by

one vertex. In the minimal case, T2
s can be attached with its leaf vertex, then the number

of leaf vertices of T2 is equal to (k− 1)·n. By selecting Tl
s in the trajectory l = 1, 2, . . . , L

the spanning trees Tl of Gl are formed. Thus, a spanning tree Tl with at least (k− 1)·nl−1

vertices are selected for each Gl , l = 1, 2, . . . , L. �

Consequence 7. For any Gl , l = 1, 2, . . . , L where old edges are not adjacent, there are at most
K = nl − 2nl−1 + 2 leaf vertices.

When the old edges are not adjacent and the seed is the star, there is the maximum
increase of leaf vertices in GL. Then there are (n− 1) leaf vertices in G1. The old edges
are at first not incident to leaf vertices, and then are incident to leaf vertices. Then there
are n2 − 2(n− 1) leaf vertices in G2 and n

(
n2 − 2(n− 1)

)
− 2(n− 1) in G3. Furthermore,

K = nl − 2nl−1 + 2 leaf vertices remain in Gl , l = 1, 2, . . . , L.

Consequence 8. When the conditions of Theorem 6 are satisfied, the parameterized polynomial
algorithm selects a spanning tree for Gl with at least K = (k− 1)·nl−1 leaf vertices in time O(c·N),
where N = nl and parameter c = 2n.

The selection of spanning trees with the maximum number of leaf vertices in seeds
can be carried out by means of any known algorithm. In the worst case, it will require 2n

operations. In total, there are nl = N seeds in Gl .
Figure 7 shows several examples of the generation of spanning trees, and the numbers

of leaf vertices for them are calculated:

(a) K3 = 2 ≤ K = 23 − 2·22 + 2 = 2;
(b) K3 = 33 ≤ K = 43 − 2·42 + 2 = 34;
(c) K3 = 132 ≤ K = 63 − 2·62 + 2 = 146.
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2.4. Balanced Complete Bipartite Subgraph

INSTANCE: Bipartite graph G = (V, E), positive integer K ≤ |V|.
QUESTION: Are there two disjoint subsets V1, V2 ⊆ V such that |V1| = |V2| = K and

such u ∈ V1, v ∈ V2 implies that {u, v} ∈ E?

Theorem 7. A complete bipartite subgraph exists only on the seed for any prefractal graph.

Proof of Theorem 7. The complete bipartite subgraph G′1 =
(
V1

1 , V2
1 , E′1

)
of graph G1

matches with the complete bipartite subgraph H′ =
(
W1, W2, Q′

)
of the seed H according

to the conditions of the theorem.
Next, we consider the case of generating a prefractal graph while preserving the

adjacency of old edges. Spanning complete bipartite subgraphs are selected in the seeds
(including all vertices) of G2. Otherwise, the subgraph of G2 may split into separate
components. Let one vertex w′ ∈ W1 be incident to the old edges of G′1 or, in another
way, w′ also belongs to the part V1

1 (see Figure 8). Then, to preserve the bipartition, set
W1 is included in V1

1 : W1 ⊂ V1
1 . The second set W2 is included in V2

1 : W2 ⊂ V2
1 . Since
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the adjacence of the old edges is preserved, vertices of W2 are not adjacent to vertices V1
1

(except vertices W1). Then the definition of completeness of a bipartite graph is violated,
where each vertex of one part must be adjacent to each vertex of the second part. Thus, the
selection of a complete bipartite subgraph of any seed in G2 does not allow the formation
of a complete bipartite subgraph G′2 in G2. Adhering to the proof of violation of the
completeness in Gl , l = 1, 2, . . . , L it is impossible to select a spanning complete bipartite
subgraph G′l . �
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Figure 8. Prefractal graph G2 generated by a complete bipartite seed, preserving the adjacency of
old edges.

Next, we consider the case of generating a prefractal graph, the adjacency of the old
edges of which is not preserved. The old edges e1 and e2 the adjacent ones in G′1 are not
adjacent in G2 (see Figure 9). The ends w′1 and w′2 of the old edges belong to the same
part W2. Otherwise, the condition of bipartition is violated, and the vertices w′1, w′2 will be
adjacent. The second end w′′2 of the old edge e2 in a bipartite seed should be adjacent to w′1.
However, such an edge does not exist since the old edges are not adjacent, and the new
edges are present only in the seeds. Thus, the condition of completeness of the bipartite
graph is violated. Thus, when the adjacency of the old edges in G2 is not preserved, it is
impossible to form a complete bipartite subgraph G′2. Following the proof of violation
of the completeness, it is impossible to select a spanning complete bipartite subgraph G′l ,
l = 1, 2, . . . , L.

For each graph Gl with an arbitrary adjacency of old edges, it is possible to select a
complete bipartite subgraph separately on each seed of rank l = 1, 2, . . . , L. It corresponds
to generating a prefractal graph by a seed, and is thus a complete bipartite graph.

If the adjacency of the old edges is preserved, a complete bipartite subgraph can be
selected only in a single seed of any rank, and in the case when the old edges are not
adjacent, only in a single seed of rank L.

Consequence 9. A balanced complete bipartite subgraph exists only in a single seed of any
prefractal graph.
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2.5. Bipartite Subgraph

INSTANCE: Graph G = (V, E), positive integer K ≤ |E|.
QUESTION: Is there a subset E′ ⊆ E such that G′ = (V, E′) is bipartite?
An algorithm for selecting a bipartite subgraph is proposed to formulate and prove

the theorem. Let prefractal graph GL be generated with preserving the adjacency of the
old edges, and there is a spanning bipartite subgraph on the seed. The following is a
description of an algorithm for packing a prefractal graph into a bipartite graph.

Algorithm 3 can be immediately applied to a prefractal graph generated by a bipartite
seed. Any known algorithm for selecting a bipartite subgraph can be used as a procedure.

Algorithm 3 Algorithm for Packing a Bipartite Graph

Input: prefractal graph GL = (VL, EL).
Output: spanning bipartite subgraph G′L =

(
V1

L , V2
L , E′L

)
of GL.

1. Select a bipartite subgraph G′1 =
(
V1

1 , V2
1 , E′1

)
of G1 using the procedure. This action

corresponds to the selection of a bipartite subgraph H′ =
(
W1, W2, Q′

)
of H.

for l = 2 to L do:
for s = 1 to nl−1 do:
l.s. Select a bipartite subgraph H(l)

s =
(

W1
l,s, W2

l,s, Ql,s

)
of seed z(l)s using the procedure.

G′l =
(
V1

l , V2
l , E′l

)
is formed as follows: one part W1

l,s is added to the part of G′l−1 with which it
intersects; the second part W2

l,s is added to the part of G′l−1 that has no common vertices.
If V1

l ∩W1
l,s 6= ∅ then V1

l = V1
l + W1

l,s and V2
l = V2

l + W2
l,s.

Else V1
l ∩W2

l,s 6= ∅ then V2
l = V2

l + W1
l,s and V1

l = V1
l + W2

l,s.
L + 1. At the output of step L, spanning bipartite subgraphs G′1, G′2, . . . , G′L are selected, which
corresponds to the selection of a bipartite subgraph of the prefractal graph GL.
Procedure for Selecting a Spanning Bipartite Subgraph
Input: graph G = (V, E).
Output: spanning bipartite subgraph G′ =

(
V1, V2, E′

)
of G.

Figure 10 shows subgraphs G′1, G′2, G′3 that correspond to prefractal graphs generated
by a bipartite seed. G′1 is a bipartite subgraph H′. Algorithm 3 for packing bipartite graphs
G′2, G′3 is applied.
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Theorem 8. If there is a bipartite subgraph H′ =
(
W1, W2, Q′

)
for the seed H and the adjacency

of old edges is preserved, then there is a bipartite subgraph G′l =
(
V1

l , V2
l , E′l

)
for the prefractal

graph Gl , l = 1, 2, . . . , L with
∣∣E′l ∣∣ = K where K = k·

(
nl − 1

)
/(n− 1), k = |Q′|.

Proof of Theorem 8. There is a bipartite subgraph G′1 =
(
V1

1 , V2
1 , E′1

)
of G1 under the condi-

tion of existence of a bipartite subgraph H′ =
(
W1, W2, Q′

)
of seed H and∣∣E′l ∣∣ = |Q′| = k. Next, graph G2 is considered. Bipartite subgraph H(1)

1 =
(

W1
1,1, W2

1,1, Q1,1

)
is selected in seed z(1)1 (corresponding to G′1). Vertices W1

1,1 are added to one part V1
2 and

vertices W2
1,1 to another V2

2 . H(2)
1 =

(
W1

2,1, W2
2,1, Q2,1

)
in z(l)s is selected. One part W1

2,1 is

added to the part of G′1 with which it intersects; the second part W2
2,1 is added to the part of

G′1 that has no common vertices:
if V1

2 ∩W1
2,1 6= ∅ then V1

2 = V1
2 + W1

2,1 and V2
2 = V2

2 + W2
2,1;

else V1
2 ∩W2

2,1 6= ∅ then V2
2 = V2

2 + W1
2,1 and V1

2 = V1
2 + W2

2,1.

Since the adjacency of the old edges is preserved, then H(2)
1 intersects G′1 in a common

vertex. Adding the parts W1
2,1, W2

2,1 to the corresponding parts V1
2 , V2

2 does not violate

the definition of a bipartite graph. The total number of edges H(2)
1 and G′1 is equal to∣∣E′1∣∣+ |Q2,1| = k + k = 2k. The selection of alternately bipartite subgraphs H(2)

s in the

remaining seeds z(2)s and the addition of parts W1
2,s, W2

2,s to V1
2 , V2

2 in the same way corre-
sponds to the selection of a bipartite subgraph G′2 in G2. Furthermore, since G2 contains
one seed of the first rank and n seeds of the second rank, |E′2| = k·|Q′| = k·(n + 1). Next,
G3, G4, . . . , GL are sequentially considered, for which G′3, G′4, . . . , G′L are selected in accor-
dance with the described approach. Adding bipartite subgraphs H′ of seeds H does not
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violate the definition of a bipartite graph. All vertices within one part are not adjacent, and
adjacency exists only between vertices of two different parts.

At each step G1, G2, . . . , GL, nl−1 seeds are added; that is, there entire 1+ n+ n2 + . . .+
nl−1 =

(
nl − 1

)
/(n− 1) seeds in GL. Thus, there is a bipartite subgraph G′l =

(
V1

l , V2
l , E′l

)
of Gl , l = 1, 2, . . . , L, with

∣∣E′l ∣∣ = k·
(

nl − 1
)

/(n− 1) = K. �

Consequence 10. The proof of Theorem 8 is the justification of Algorithm 3.

2.6. Planar Subgraph

INSTANCE: Graph G = (V, E), positive integer K ≤ |E|.
QUESTION: Is there a subset E′ ⊆ E with |E′| ≥ K such that G′ = (V, E′) is planar?

Lemma 9. The union of two planar graphs at one common vertex is also a planar graph.

Proof of Lemma 9. When two planar graphs G1 = (V1, E1) and G2 = (V2, E2) are united at
one common vertex w∗ no new edges appear in G∗ = G1 ∪ G2 (see Figure 11). �
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Figure 11. Operation of replacing a vertex with a seed or union of a graph G1 and a seed H in
one vertex.

The operation of replacing a vertex with a seed (RVW) while preserving the old edges’
adjacency corresponds to the union of two graphs G1 = (V1, E1) and H = (W, Q) at one
common vertex in a new graph G∗ = (V∗, E∗): V∗ = (V1 ∪W)− {w∗}, E∗ = (E1 ∪Q), or,
in another way, joining a seed H. Under the condition of planarity H, the new graph G∗ is
also planar.

Consequence 10. When two arbitrary graphs are united at one common vertex, their planar
subgraphs are united into a planar graph.

Theorem 10. If there is a planar subgraph H′ = (W, Q′) in seed H = (W, Q), and the adjacency
of old edges is preserved, then there is a planar subgraph G′l =

(
V, E′l

)
in prefractal graph Gl ,

l = 1, 2, . . . , L, for which
∣∣E′l ∣∣ = K, where K = k·

(
nl − 1

)
/(n− 1), k = |Q′|.

Proof of Theorem 10. There is a planar subgraph G′1 in Gl under the conditions for the
existence of a planar subgraph H′ in seed H, where

∣∣E′1∣∣ = |H′| = k. Since the adjacency of
the old edges is preserved, for constructing the prefractal graph Gl , l = 2, 3, . . . , L a seed H
is alternately attached to each vertex of Gl−1. G′l−1 is planar, and joining planar subgraphs
H′ to its vertices does not violate the planarity of G′l following Lemma 9 and Consequence
10. At each step l = 1, 2, . . . , L, nl−1 seeds are added, that is, total 1 + n + n2 + . . . + nl−1 =
(nl − 1)/(n− 1) seeds in Gl .
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Thus, there is a planar subgraph G′l =
(
V, E′l

)
in prefractal graph Gl , for which∣∣E′l ∣∣ = k·

(
nl − 1

)
/(n− 1).

Figure 12 shows the procedure for isolating a planar subgraph of a prefractal graph.
Following Theorem 10, a planar subgraph H′ is selected in the seed H (a), and a planar

subgraph G′2 in G2 (b), where |E2| = 10· (52−1)
5−1 = 10·24/4 = 60 and K =

∣∣E′2∣∣ = 9· (52−1)
5−1 =

9·24/4 = 54.
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3. Results and Discussion

In this paper, we have discussed six known NP-complete problems in relation to the
class of prefractal graphs. For each of the problems, conditions are proposed under which
we can answer the question positively or negatively. Algorithms for finding a solution are
proposed for some problems.

In the problem of the isomorphism of a subgraph, an algorithm for numbering the
vertices of a prefractal graph and a figure with an example are proposed. A theorem is also
proposed for the isomorphism of two prefractal graphs, provided that the adjacency of the
old edges is preserved.

In the second problem, on a degree constrained spanning tree, an algorithm for
finding a spanning tree of minimum weight (MST) of any prefractal graph is proposed.
The complexity of the algorithm is shown, where any known MST algorithm, including
the modern one, can be used as a procedure. The procedure is applied to the seeds, and
then the subgraphs are united into the MST of the entire prefractal graph. The execution
time of the algorithm is linear O(c·N) and depends on the number of vertices N = nl . The
parameter c = 4n2 is a constant since the number of seed vertices n is fixed before building
the prefractal graph. In the theorem, conditions are proposed under which there exists a
spanning tree with vertex degrees at most K = k + 1, where the number k is the maximum
vertex degree of the generating seed.

In the problem of a maximum leaf spanning tree, a lemma is proposed that any
leaf vertex is on a seed of the last rank. This property is associated with the process of
constructing a prefractal graph when at each step, the vertices are replaced by seeds. As
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for other problems, the characteristics of the entire prefractal graph depend on the seed.
This dependence is key and requires additional study.

For the problem of a balanced complete bipartite subgraph, we have proved the
theorem that it can be distinguished only on one separate seed. The rule for construct-
ing a prefractal graph preserves this property throughout the entire trajectory. As one
of the conclusions, we can suggest the impossibility of identifying a balanced full bi-
partite subgraph, for example, in social networks. This claim requires research and
additional evidence.

For the problem of selecting a bipartite subgraph, a packing algorithm is proposed
in the case of preserving the adjacency of old edges. These results can be reformulated as
constructing a graph with given characteristics. That is, how can one construct a graph so
that a bipartite subgraph exists in it? For such a constructed graph, a packing algorithm
can be applied.

The problem of the planarity of a prefractal graph is also related to the design of
graphs with predetermined characteristics. If the seed is a planar graph and the adjacency
of the old edges is preserved, then for the entire sequence l = 1, 2, . . . , L the graphs Gl
are planar.

As one of the results, we can single out the possibility of developing algorithms for
solving optimization problems with polynomial complexity. Such a modular execution
of sequential algorithms on subgraphs (seeds) will allow them to be parallelized in the
future. Furthermore, the use of well-known algorithms in the form of procedures will allow
researchers in the future to change them to new ones with improved characteristics.

It is assumed that the study of individual NP-complete problems on prefractal graphs
will make it possible to form a set of rules for identifying solvability conditions for any
known NP-complete problem in this class of graphs, and also to approve the class of
prefractal graphs as a special class for which there are conditions for the solvability of
NP-complete problems. An example of this is demonstrated in [51] for inherited classes.

Therefore, for all theorems, consequences are proposed with a generalization of the
results to the sequence G1, G2, . . . , GL. Since GL is a dynamic graph that changes in the
trajectory l = 1, 2, . . . , L and for each Gl an algorithm and a solution to the problem are
proposed. In further studies, we plan to pay more attention to the formulation of problems
for dynamic graphs, to definitions of solutions to dynamic problems and to the study of
the characteristics and properties of prefractal graphs as a subclass of dynamic graphs.

4. Conclusions

The paper considers and investigates NP-complete problems for one of the classes
of dynamic graphs—prefractal graphs. For each of the problems, solvability conditions
are given under which it is possible to obtain an existing answer for some subproblems,
as well as to construct polynomial algorithms for finding solutions for some. A number
of corollaries generalize the results obtained, or provide conditions for the absence of
a solution.

In this paper, we study only a small part of the known NP-complete problems. The
study of the entire set of problems and the selection of solvability conditions for this class
of dynamic graphs—prefractal graphs—will essentially allow us to talk about the selection
of an entire subclass of graphs with conditions for the solvability of NP-complete problems.

The development of polynomial algorithms for dynamic graphs will make it possible
to solve with improved characteristics such well-known applied problems as the selection
of subgraphs in large dynamic networks [52,53]; the detection of communities in social
networks [54–56]; the solution of multicriteria problems in large-scale transport and lo-
gistics systems [57]; the searching and highlighting of DDoS attacks in cryptocurrency
systems [58,59] and many other problems.

In the future, we plan to introduce definitions for a dynamic prefractal graph, setting
a multicriteria graph-theoretic problem, solving a dynamic problem and the concept of
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topological time. Furthermore, we also aim to define families of dynamic problems for
prefractal graphs.

The number of applied problems in large networks is only growing. With the develop-
ment of the direction of big data analysis, the increase in the number of subscribers and the
complication of networks, the study of problems on dynamic graphs of large dimensions
is becoming more and more urgent. Thus, we propose to use all the available tools of
dynamic prefractal graphs to solve optimization problems in large networks, as well as to
design networks with given characteristics, including predicting the development of real
networks [60,61].

It should be noted separately that it is necessary to define fractal graphs and related
concepts. Since a fractal graph is an infinite object, what does the formulation of the
optimization problem look like, how do the algorithms work and what is the solution?
For this purpose, we plan to publish a separate article on fractal and prefractal graphs to
familiarize the scientific community with this class of special graphs and to consecrate their
properties and characteristics.
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39. Xue, B.; Zuo, L.; Wang, G.; Li, G. Shortest paths in Sierpiński graphs. Discret. Appl. Math. 2014, 162, 314–321. [CrossRef]
40. Xue, B.; Zuo, L.; Li, G. The hamiltonicity and path t-coloring of Sierpiński-like graphs. Discret. Appl. Math. 2012, 160, 1822–1836.
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