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Abstract: The robustness of a complex network measures its ability to withstand random or targeted
attacks. Most network robustness measures operate under the assumption that the nodes in a
network are homogeneous and abstract. However, most real-world networks consist of nodes
that are heterogeneous in nature. In this work, we propose a robustness measure called fitness-
incorporated average network efficiency, that attempts to capture the heterogeneity of nodes using
the ‘fitness’ of nodes in measuring the robustness of a network. Further, we adopt the same measure
to compare the robustness of networks with heterogeneous nodes under varying topologies, such
as the scale-free topology or the Erdős–Rényi random topology. We apply the proposed robustness
measure using a wireless sensor network simulator to show that it can be effectively used to measure
the robustness of a network using a topological approach. We also apply the proposed robustness
measure to two real-world networks; namely the CO2 exchange network and an air traffic network.
We conclude that with the proposed measure, not only the topological structure, but also the fitness
function and the fitness distribution among nodes, should be considered in evaluating the robustness
of a complex network.

Keywords: complex networks; network robustness; network efficiency; node heterogeneity

1. Introduction

Most real-world networks exhibit self-organizing and emergent behavior. Further, they
possess non-trivial complex topological features [1–3]. Such networks can be observed in
domains ranging from social networks, neural networks and collaboration networks [3–5].

Network science attempts to model the structure and function of complex networks.
Under network analysis, numerous structures properties such as the centrality, assortativity
and robustness can be measured [3,6]. Further, the dynamic growth models such as the
Barabasi-Alert model attempt to model the growth and evolution of complex networks [7,8].

One of the key functional and structural characteristics that is widely studied is the
robustness of a complex network [3,9]. Robustness measures a network’s ability to with-
stand random and targeted attacks or failures. Numerous robustness measures have been
proposed in the literature that attempt to quantify a network’s ability to withstand attacks
or failures. Accurately quantifying the robustness of a network may be critical in under-
standing its structure. Further, depending on the application of a network, understanding
its robustness may be useful in avoiding failures. For instance, in software networks [10],
the robustness measure may help to compare multiple software systems in their ability to
withstand failures. Transport networks like air traffic networks [11–17] may be another
example where the quantification of the robustness could be applicable.
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However, most of the existing measures make the assumption that the nodes in the
network are homogeneous and abstract entities. While this ensures that the topological
effect on the robustness is captured, most real-world networks may have nodes with
heterogeneous characteristics. For instance, individuals in a social network may vary
in their cognitive capacity, wealth or creativity, which may not be apparent from their
social structure [18]. Therefore, it may be important to consider these heterogeneous and
node-specific features, in order to quantify the robustness in a holistic and accurate manner.

In this paper, we present a robustness metric that could incorporate the heterogeneity
of nodes. We extend the average network efficiency measure using a generic node fitness
function to capture the heterogeneous characteristics of nodes. We then apply the proposed
metric on a simulated wireless sensor network to test whether it adequately captures the
heterogeneity of nodes in quantifying the network robustness. We apply the proposed
measure on real-world networks to further test their applicability. The proposed measure
may be used to accurately measure the robustness of a network, particularly if the nodes
are heterogeneous in nature.

This paper is organized as follows. Section 2 provides the background on the complex
networks and robustness of networks. Section 3 elaborates on the proposed measure and
explains the experiments conducted to test the proposed measure both on synthetic and
real-world networks. In Section 4, we present the results, followed by a discussion of the
results including some directions for potential future work.

2. Background

Networks offer a generalized and a scalable method to model complex systems across
multiple domains. Complex networks are graphs consisting of nodes and links with
non-trivial topological features [3,7]. The study of the structure and function of complex
networks has gained momentum in the recent past due to its wide applicability in numerous
fields such as biology, social sciences and supply chains [3,19–21].

The topological structure of complex networks is one of the most important and widely
studied characteristics of networks. The two most widely studies topologies are scale-free
networks and Erdős–Rényi random networks [6,8]. These topologies are characterized by
the degree distributions of a network. A scale-free network is a network whose degree
distribution is a power law distribution, at least asymptotically. That is, the fraction P(k)
of nodes in the network having k connections to other nodes, in such a manner where
P(k) ∼ k−γ. γ is the scale-free parameter and it has been observed that for most real-world
networks 2 < γ < 3 [3].

Preferential attachment and growth model have been conjectured as the mechanisms
to explain the scale-free topology in real-world network. Preferential attachment suggests
that more connected a node is, the more likely it is to receive new links [8]. Erdős–Rényi
Random graphs on the other hand, could be represented by a binomial degree distribution,
where the degree distribution may fit a Poisson distribution as the network grows in
size [8].

However, recent studies suggest that fitness-based generative models that treat a
node’s ability to attract links as being dependent on node fitness, with fitness being a more
abstract and general concept than degree, may be better able to describe the emergence of
scale-free behaviour in real-world networks [22,23]. While fitness may be represented by
topological attributes of a node, it may also represent topologically independent ‘inherent’
features of a node, or even a combination of the two [22,24].

The Lognormal Fitness Attachment (LNFA) model proposed in [25] is a fitness based
generative model that considers the node’s ability to attract links to be purely fitness
based. In this model, the fitness Φi representing the ability of node i to attract links formed
multiplicatively from a number of factors {Φ1,Φ2,. . . ,ΦL} as follows [22]:

Φi =
L

∏
l=1

Φl (1)
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Here, each factor Φl is a real non-negative value. The number of such factors is
assumed to be reasonably large and statistically independent of each other. Under such
conditions the fitness distribution will be a lognormal distribution of the form [22]

f (x) =
1√

2πσx
e
(loge x−µ)2

2σ2 (2)

This lognormal distribution has parameters µ and σ where the associated normal
distribution f (y) with y = loge x has a mean µ and a standard deviation σ. The range
of the lognormal distribution is x ∈ (0, ∞). Further, it can be assumed without loss of
generality that µ = 0. Then, by varying the σ values it is possible to generate power-law to
winner-take-all [22].

Note that the robustness measure suggested here is equally applicable to planar
networks and non-planar networks. Planar networks [26] are a widely studied sub-domain
of networks with the key property that they have links that do not intersect. This feature is
significant in certain domains, such as transport analysis, where the links have a physical
interpretation (roads or railways) and must lie on a plane, and thus their layout is important.
In networks from many other domains however (such as biological networks, online social
networks and shareholding networks), the links or edges do not have a physical form
and represent a conceptual relationship. In yet other domains (such as the Internet),
the links do have a physical interpretation, but do not lay on a plane, and their layout
thus is immaterial. The robustness measure suggested here is applicable to all networks,
and focuses on topological characteristics that are primarily encapsulated by the relevant
degree distributions, rather than spatial layout. Therefore, while the suggested measure is
applicable to planar networks, it is not specifically designed to analyze the robustness of
networks in which the spatial layout is important.

Robustness is a key characteristic of a network that is useful in determining its ability
to withstand attacks, failures or perturbations [27]. The attacks on a network may be
random or targeted, where a node or link may be removed based on a topological property,
such as degree. Networks such as the world wide web, metabolic networks and most of
the communication networks are potentially subject to unrealistically high failure rates.
Most of these attacks are unpredictable random attacks. Robustness against random decay
therefore is very relevant in monitoring the evolution and the existence of a given network.
On the other hand, robustness may help to quantify the ability of a network with a negative
utility, such as infectious disease networks, to withstand attacks aimed to dismantle them.

Most of the network failures can be described as disconnecting of components from
the network. This will disorganize the network and may sometimes cause the network to
collapse into sub-networks leading to malfunctions and disruptions. However, it has been
observed that, while most of the graphs collapse under random attacks or failures, scale-
free networks tend to shrink and demonstrate higher level of robustness [27]. Further, such
behavior can be observed in some naturally occurring networks such as metabolic systems.
As metabolic systems tend to stabilize under regularly occurring drastic environmental
interventions [27].

Where the analysis of network robustness is concerned, the current studies con-
sider nodes to be abstract homogeneous entities [27–29]. Based on that premise, it has
already been established that the network topology plays an important role in determining
network resilience in multiple domains expanding from social networks to economic net-
works [27,30]. For instance, it has been shown that the scale-free networks are more resilient
against random node failures, compared to random networks, but are more vulnerable
to targeted attacks [27]. Vulnerability of a network is its inability to withstand random
failures of the nodes or links or persistent targeted attacks that may eliminate the nodes or
links. If a network has lower robustness, it may be more vulnerable to random failures and
targeted attacks.

Numerous attempts have been made to analyze and quantify the robustness of net-
works. Albert et al. [27] evaluated the error and attack tolerance of complex networks by
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removing the nodes from complex networks one by one until all nodes are extracted or
a sustained attack, and studied the variation of topological properties in networks under
these perturbations.

Topological properties such as the network diameter, size of the largest component
and the average size of the rest of the components have been used in profiling the network
robustness under sustained attacks, among others [9,11,17,31,32].

However, these measures have largely relied on profiles of quantities, rather than a
single robustness measure. Following their work, a plethora of metrics have been proposed
to measure the topological robustness of networks as a single quantity. However, these
measures typically measure the averaged effects of single node removals, rather than
effects of sequential removals, or are too simplistic. For instance, the network efficiency,
which is a measure that we employ in this work, is the average of inverted shortest path
lengths [33], and it has been used for quantifying the robustness of a network. However,
network perturbations have not been explicitly considered for this measure.

Likewise, Dekker and Colbert [31] introduced two concepts of connectivity for a
graph which can be used to model network robustness: the node connectivity and link
connectivity, which are the smallest number of nodes and links, respectively, whose removal
results in a disconnected or single-node graph. The robustness coefficient [32] gives a single
measure by obtaining the ratio between the area under the curve (AUC) of the plot showing
the variation of the size of the largest connected component under sustained attacks and
the area under the ideal curve where the largest connected component degrades in a linear
fashion. In this work, we adopt the network efficiency in a similar approach to obtain a
single measure of robustness.

While the existing generalized robustness measures assume that the nodes in a net-
work are homogeneous, heterogeneity of nodes have been addressed in network optimiza-
tion [34]. It has been observed that when designing an optimal network with maximum
efficiency, the network becomes heterogeneous. Thus, network efficiency may be vital in
determining the robustness of a network against failures or attacks [34], particularly when
it consists of heterogeneous nodes.

The existing literature discusses a particular example where failure in node hetero-
geneity with respect to power grids [35]. However, this model may only be applicable for
power grids and may not be generalized easily. Further, there have been simulations on the
dynamic nature of systems illustrating on the crashing of the network from a probabilistic
point of view in [35]. Still, such an approach fails to incorporate the heterogeneity of node
attributes. Musmeci et al. [36] proposed a fitness model that is used on network subsets of
a synthetic network, without considering the significance of node heterogeneity.

Furthermore, our work has focused on wireless sensor networks where the model
could be implemented to distinguish the most prominent nodes. Guidoni et al. [37]
proposed a resilience-optimized wireless sensor network as a heterogeneous network,
which inspired us to consider wireless sensor networks as a possible application to validate
a robustness metric that incorporates the heterogeneity of nodes.

The notion of an abstract fitness function to evaluate the optimality of agents is
used in heuristic-based and population-based optimization algorithms such as genetic
algorithms [38]. In this work, we adopt a similar approach to model and quantify the
heterogeneity of nodes.

Based on our survey, incorporating node heterogeneity in a generic robustness metric
has not been addressed in the existing work. This paper extends the current standard
methods in robustness analysis to include node heterogeneity. By utilizing the proposed
metric, we further investigate the effect of node fitness, and thereby the node heterogeneity,
on the robustness of complex networks with varying topological features.
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3. Methodology
3.1. Fitness-Incorporated Average Network Efficiency

The average efficiency proposed in [39] is a measure of network resilience. In this
model, a network is represented as a generic weighted graph G described by two matrices
to represent whether two nodes are connected and if so, to quantify the distance between
each pair of nodes. These two matrices are the adjacency matrix

{
aij

}
and the matrix{

lij
}

. Here, lij can be the space distance between the two vertices i and j or the strength
of their possible interaction. The shortest path length dij between the two vertices i and
j is the smallest sum of the distances between them throughout all possible paths in the
graph. The efficiency εij with respect to the vertices i and j is defined as being inversely
proportional to the shortest distance between them: εij =

1
dij
∀i, j. When there is no path

defined between i and j, dij = +∞. Extending from this definition, the average efficiency
of a network G can be defined as [39]

E(G) =
1

N(N − 1) ∑
i 6=j∈G

εij (3)

where N denotes the number of nodes in the network.
We define the fitness-incorporated average efficiency for directed networks, as a

metric of network robustness. Thus, the undirected networks could be transformed to
bidirectional directed networks, prior to applying this measure. In the formulation of the
fitness-incorporated average efficiency, the matrix

{
lij
}

of average efficiency derivation is
replaced by the matrix of edge weights

{
wij

}
. In a directed network each node has outgoing

links and incoming links. The node heterogeneity is transformed into each outgoing link
weight wij of node i with a neighbor j as follows:

wij = k
(

f (Ai), g
(

Aij
))

; i ∈ M, j ∈ Ki (4)

Here, Ai is the node attribute vector node i and Aijis the link attribute vector of link
j. Ai holds the attribute values of a node such as node size, capacity or age. Aij holds
the attribute values of a link such as link length, capacity or strength. Here, M is the set
of nodes of the network, while Ki is the set of outgoing neighbors of a particular node
i. The function f and g are the node attribute function and the link attribute function,
respectively. These functions map the corresponding attribute values into the respective
fitness values. The function k is used to derive a link weight that captures the cumulative
node fitness and link fitness but projecting the node fitness to the outgoing links and
combining that with the original link weights. The weighted shortest path length dij
between two generic nodes i and j is defined as

dij = ∑
kl∈Dij

wkl (5)

Here, kl is a link along the shortest path Dij from i to j and wkl is the weight of that
link. Then, the fitness-incorporated efficiency can be defined as εij =

1
dij

. We define the
fitness-incorporated average efficiency EF of a network G as

EF(G) =
1

N(N − 1) ∑
i 6=j∈G

εij (6)

Thus, EF can be regarded as a measure of network robustness that encapsulates the
node fitness and thereby the node heterogeneity. We define it for directed networks so that
the link weights of all outgoing links along each directed shortest path are accumulated.
Thus, the weight of a link connecting two nodes, that is obtained by combining both the
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original link weight and the derived weight from node fitness, would vary depending on
the link direction.

In order to obtain a measure the robustness of a network under sequential and contin-
uous attacks, we plot the fitness-incorporated average efficiency over the number of nodes
removed, under random or targeted failures. Then we compute the area under the curve
(AUC) to obtain a single measure of the robustness. Figure 1 depicts a sample plot of the
variation of the fitness-incorporated average efficiency.
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Figure 1. Sample plot showing the variation of the fitness-incorporated average efficiency.

Similarly, in order to quantify the impact on the robustness of the removal of a
particular node or a link, we measure the percentage of reduction of fitness-incorporated
average efficiency due to the removal of that node or link. We can rank a node or a link in
terms of its relative importance using this method.

In the following sub-sections, we use the proposed metric to observe the effect of
topology and fitness on the robustness of scale-free and random networks.

3.2. Effect of Network Topology on Fitness-Incorporated Average Efficiency

In this section, we examined the effects of topology on the fitness-incorporated robust-
ness by comparing the scale-free topology and Erdős–Rényi random network topology.
Each network consisted of 100 nodes with 130 links and 300 links, respectively, and the node
fitness values were assigned based on an equivalent lognormal distribution. The analysis
is performed on fifty networks of each topology and the average values noted.

In this experiment, we assumed that the network has uniform link weights and the
node fitness values are divided equally to each outgoing link from each node. The cumula-
tive link weights to derive the fitness-incorporated average efficiency is obtained by adding
the original link weight and the link weight derived by propagating node fitness to the
outgoing links of each node.

In other words, based on the notation given in the Equation (4), f (Ai) is the node
fitness value assigned using a lognormal distribution, g(Aij) = 1 as links have uniform
weights. The node fitness propagated to each of the outgoing link weights is f (Ai)/di,
where di is the degree of node i and j ∈ Ki where Ki is the neighborhood of node i. Further,
k
(

f (Ai), g
(

Aij
))

was defined as f (Ai)/di + g(Aij).
First, we investigated the effect of node heterogeneity on node robustness. We ranked

the five most prominent nodes of a scale-free network in terms of node efficiency under
both heterogeneous and homogeneous node configurations. In order to rank the nodes in
terms of their effect on the robustness of the network, we used the percentage reduction of
the robustness upon their removal.

Once the effect of heterogeneity is thus established, we performed robustness analysis
under random and targeted attacks on the selected networks. Under random failures,
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we removed nodes randomly from the networks and with respect to targeted attacks, we
ranked the nodes on order of prominence based on topological measures such as degree or
node fitness or a combination of a topological measure and fitness. The network is subjected
to the sustained removal of nodes and the EF calculated after each node removal, until the
network is completely dismantled. The plot of EF against the number of nodes removed is
plotted and the area under the resulting curve (AUC) is taken as the quantitative singular
measure of robustness. It has to be noted that this approach of computing the AUC of a
robustness profile has been used previously to obtain a singular value for the robustness
of a network [40]. We then compare the results obtained using the fitness-incorporated
efficiency measure of both topological structures against the network efficiency without
considering the node fitness, under both random and targeted attacks.

3.3. Applying the Fitness-Incorporated Network Efficiency to Simulated Wireless Sensor Networks

We applied the proposed robustness measure on a simulated wireless sensor network,
in order to validate its effectiveness. For this purpose, we used two simulated wireless
sensor networks with a random and a scale-free topology. The two networks consist of
100 nodes and 1630 links and 46 nodes and 41 links, respectively. The scale-free network
size had to be limited due to the limitations in the simulation environment. Fitness of
the nodes in both networks were assigned from a lognormal distribution. All simulations
were done using the NS3 wireless network simulator [41]. The NS3 simulator is a tool
that’s widely used to simulate the network communication of wireless sensor networks
that use wireless communication models to emulate the signal transmission and routing in
a wireless environment. As there’s no direct topological arrangement in a wireless sensor
network, the position and a threshold radius were assign around each node to infer a
topological arrangement.

The simulated wireless sensor networks were designed to have a predefined amount
of power. Thereafter, we assigned variable amounts of packets to each node to simulate
varying level of fitness, where node fitness was assumed to be the number of data packets
stored, to be transmitted, in a given node.

Applying the notation given in the Equation (4), f (Ai) is the node fitness value
assigned, which is the number of packets stored in each node, and g(Aij) = 1 as links were
assumed to have uniform weights, originally. The node fitness of each node propagated as
link weights into outgoing links would be f (Ai j)/d. Here, di is the degree of node i and
j ∈ Ki where Ki is the neighborhood of node i. Further, k

(
f (Ai), g

(
Aij

))
was defined as

f (Ai)/di + g(Aij).
First, we assigned the data packets to all of the nodes randomly and then made the

nodes send their respective data packets from each node to the entire network. Thereafter,
we measured the number of packets received by the network from this node. This process
is applied for all of the nodes and the nodes are ranked based on the number of packets
transmitted by them and receive by the other nodes in the network. As the number of
packets that each node can transmit is distributed randomly, we consider this scenario to
have the node fitness being uncorrelated to the node degree.

In the second arrangement, we assign the number of data packets stored in each node
or fitness of each node such that the node fitness would be correlated to its degree. Then,
we used the same ranking technique mentioned above to rank the nodes with respect to
their prominence.

To compare the simulator generated ranking with the rankings obtained using the
average efficiency and fitness-incorporated average efficiency, we rank the nodes based
on the percentage reduction of the robustness calculated using these measures, upon the
removal of each node.

By ranking the nodes with respect to the packets they generated that were successfully
received, we can order nodes based on the effect they have on the network, using the data
transmission model used in the simulator. Then, we can compare those rankings against
the node rankings obtained using the proposed fitness-incorporated average efficiency,
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in order to check how much the rankings correlate with each other. If the rankings correlate
better when fitness values are considered, that is, when using the proposed metric against
the existing average efficiency metric, that may justify the usage of the proposed fitness-
incorporated average efficiency as a means of quantifying robustness in a network with
heterogeneous nodes.

3.4. Applying the Fitness-Incorporated Network Efficiency to Real-World Networks

In order to further investigate the utility of the proposed robustness measure, we
applied it on two real-world networks and analyzed the results. Unlike simulated networks,
for real-world networks, we derive the fitness from the actual node attributes. The CO2
exchange network [42] quantifies the transfer of CO2 across countries in terms of goods and
services. It is essentially a supply chain network where the commodity CO2 is embedded
with the products and services exchanged among countries. The countries are modeled as
nodes with connecting links provided that there are CO2 transfers between them. A link is
weighted by a measure of how much of ones country’s production emission corresponds
to the connecting country’s consumption emission. The size of the network, N, is 112. We
define the node fitness as the CO2 produced and consumed within the same country.

Despite being designed systems, air traffic can be modeled as complex self-organizing
networks [43]. The air traffic network that we consider is an undirected weighted network
as obtained by considering the 500 US airports with the largest amount of traffic from pub-
licly available data. Nodes represent US airports and edges represent air travel connections
among them. The dataset contains an anonymized list of connected pairs of nodes and
the weight associated to the edge, expressed in terms of number of available seats on the
given connection on a yearly basis. Therefore, fitness of one such airport was taken as the
cumulative number of seats corresponding to a given airport.

In each of the above scenarios, the node fitness propagated to outgoing link weight
were calculated by f (Ai)/di where f (Ai) is the node fitness in the respective scenarios
and di is the degree of node i. Similar to the previous experiments, k

(
f (Ai), g

(
Aij

))
was

defined as the additive function f (Ai)/di + g(Aij).

4. Results and Discussion
4.1. Effect of Network Topology and Node Fitness on Robustness Analysis

In Table 1, we present the results of the ranking of nodes in the scale-free network
considered, under both homogeneous and heterogeneous node configurations, with more
prominent nodes considered as being the ones that are more influential to the network
robustness. We compare the ranking of nodes when the average efficiency, where node
fitness is not considered, with the fitness-incorporated average efficiency based rankings.

Table 1. Rankings of nodes based on each robustness method in the scale-free network with 100 nodes
and 130 links.

Rank
Node ID

Avg. Efficiency Fitness-Incorporated Avg. Efficiency

1 29 85

2 74 54

3 96 89

4 97 36

5 41 20

These results indicate that the prominence and the robustness of nodes differ under
heterogeneous and homogeneous node configurations.
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In order to compare the robustness using the fitness-incorporated average efficiency
and average efficiency, we subject the synthetic Erdős–Rényi random network and scale-
free network to multiple attacks and failures. In each attack, nodes are removed sequentially
based on a selection criteria. The selection criteria include random failures, degree-based
attacks, betweenness-based attacks, fitness-based attacks, fitness and degree-based attacks,
and fitness and betweenness-based attacks. In each timestep, the node with the highest
centrality value is selected to be removed until the entire network is dismantled. The vari-
ation of the robustness is plotted against the timestep and the area under the curve is
calculated to obtain an aggregated robustness value based on the robustness measure in
concern. The two robustness columns represent the area under the curve of the variation
of the efficiency metric, under sustained attacks. The fitness-incorporate robustness uses
the fitness-incorporated average efficiency and the topology-based robustness is measured
using the average efficiency, without considering node fitness.

Tables 2 and 3 present the results of the resilience analysis on the simulated random
and scale-free networks, respectively.

Table 2. Robustness analysis of the Erdős–Rényi random network topology with 100 nodes and
300 links, under different attacks.

Node Removal Criteria

Fitness-
Incorporated
Robustness
(Units)

Topology-Based
Robustness
(Units)

Random failures 875.1 29.2

Degree Centrality 8641.4 11.5

Betweeness Centrality 7381.1 11.3

Fitness 29,127.7 27.8

Fitness + Degree centrality 8805.5 14.2

Fitness + Between. centrality 9707.6 13.8

Table 3. Robustness analysis of the scale-free network topology with 100 nodes and 130 links,
under different attacks.

Node Removal Criteria

Fitness-
Incorporated
Robustness
(Units)

Topology-Based
Robustness
(Units)

Random failures 363.5 14.9

Degree Centrality 1550.4 0.9

Betweenness Centrality 3321 1.2

Fitness 14,859.7 2.4

Fitness + Degree centrality 2001.3 2.2

Fitness + Between. centrality 3067.9 2.5

The results depict that both random and scale-free topologies depict less robust-
ness against random failures when measuring robustness using the proposed fitness-
incorporated average efficiency measure. However, the average efficiency measure gives
higher robustness against random failure, in both topologies.
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In random topology, random failures seem to affect the robustness most, when using
the fitness-incorporated average efficiency, while betweenness based attacks are most
effective when the fitness is not considered. On the other hand scale-free networks seem to
be least robust against random failures when the node fitness is considered, while it appears
to be more vulnerable against degree-based attacks, when node fitness is not considered.

In general, these results depict that incorporating the fitness of the nodes may be
critical in analyzing the robustness of a network against a given type of failure or an attack.

4.2. Analysis of Robustness Based Node Rankings

We present the rankings obtained for for the first few nodes in both random and
scale-free networks that were simulated using NS3 simulator in Tables 4–7. We compare
each network with the robustness-based node rankings made when the node fitness is
distributed in a degree-correlated and a random manner. The nodes with highest rankings
have the most impact on robustness upon their removal. The results indicate that the
fitness-incorporated average efficiency based node rankings may depend on the node
fitness distribution in the network.

Table 4. Node ranking comparison in the random topology (presented with Node IDs), based on
fitness-incorporated average efficiency, when the node fitness is distributed in a degree-correlated
and a random manner.

Node Rank

Degree-Correlated Randomly Assigned

NS3
Fitness-Inc.

Avg. Efficiency
Based Ranking

NS3
Fitness-Inc.

Avg. Efficiency
Based Ranking

1 45 45 56 56

2 46 47 57 48

3 47 46 45 58

4 48 48 44 99

5 49 49 43 26

Table 5. Node raking comparison in random topology, based on average efficiency, when the node
fitness is distributed in a degree-correlated and a random manner.

Node Rank

Degree-Correlated Randomly Assigned

NS3
Average

Efficiency
Based Ranking

NS3
Average

Efficiency
Based Ranking

1 45 45 56 45

2 46 44 57 44

3 47 43 45 43

4 48 42 44 42

5 49 4 43 4
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Table 6. Node ranking comparison of scale-free topology, based on fitness-incorporated average
efficiency, when the node fitness is distributed in a degree-correlated and a random manner.

Node Rank

Degree-Correlated Randomly Assigned

NS3
Fitness-Inc.

Avg. Efficiency
Based Ranking

NS3
Fitness-Inc.

Avg. Efficiency
Based Ranking

1 37 17 17 17

2 34 22 29 29

3 15 29 22 22

4 28 6 36 36

5 44 19 27 27

Table 7. Node ranking comparison in the scale-free topology, based on average efficiency, when the
node fitness is distributed in a degree-correlated and a random manner.

Node Rank

Degree-Correlated Randomly Assigned

NS3
Average

Efficiency
Based Ranking

NS3
Average

Efficiency
Based Ranking

1 37 17 17 17

2 34 36 29 36

3 15 27 22 27

4 28 29 36 29

5 44 22 27 22

Tables 8 and 9 denote the Pearson correlations of the rankings obtained using different
robustness rankings. The NS3 simulator based rankings are used as the ground truth as the
robustness rankings based on the NS3 simulator is based on the number of packets received,
which in turn is calculated using the wireless communication based signal transmission,
error propagation and network quality related models. Each node in the simulator may
generate packets that could be received by the other nodes, and the percentage of packets
received by the rest of the nodes are used to quantify the robustness of the wireless network
in a more concrete manner. The node rankings that were used to obtain these correlation
coefficients are shown in the Appendix A.

By comparing the correlation of the rankings obtained using the simulator with
the average efficiency based rankings and fitness-incorporated average efficiency based
rankings, we can deduce whether incorporating node fitness in network efficiency can
provide a better understanding of a node’s relative importance in a network, with respect to
its impact on the network’s robustness. Thus, if the fitness-incorporated average efficiency
based rankings correlate more with the simulator based rankings, that may be used as
evidence for the effectiveness of using node fitness in measuring network robustness. We
do this comparison for both the scenarios where the node fitness is distributed in a manner
that correlates with the node degree and where the node fitness is distributed in a manner
that does not correlate with the node degree.
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Table 8. Ranking correlations for the Random topology, when the node fitness is distributed in a
degree-correlated and a random manner.

Correlation
Coefficient Type

Degree
Correlated Randomly Assigned

NS3 ranking and
fitness inc.
avg. efficiency
based ranking

0.5587 −0.1933

NS3 ranking and
average efficiency
based ranking

0.5430 −0.2587

Fitness and degree 0.995 0.2045

Fitness and betweenness −0.2587 −0.328

Table 9. Ranking correlations for the scale-free topology, when the node fitness is distributed in a
degree-correlated and a random manner.

Correlation Coefficient Type Degree-Correlated Randomly
Assigned

NS3 ranking and
fitness inc.
avg. efficiency
based ranking

0.7636 0.1491

NS3 ranking and average
efficiency based ranking 0.5430 −0.03156

Fitness and Degree 0.8882 0.1103

Fitness and Betweenness 0.5770 −0.0583

The results show that both for random and scale-free topologies, the NS3-based
ranking correlates more with the fitness-incorporated average efficiency based ranking,
in comparison with the average efficiency-based ranking, that does not take the node
fitness into account. This is particularly evident with the scale-free topology when the
node fitness is distributed in a manner that correlates with the degree. This may be used as
some evidence of the effectiveness of the proposed fitness-incorporated average efficiency
measure of robustness.

Note that the node rankings obtained using the fitness-incorporated average efficiency
depends on the fitness function used to derive node fitness. Nevertheless, incorporating
fitness to order nodes based on their relative importance, in terms of their effect on the
robustness of a network, may be useful in determining the significance of a node.

4.3. Robustness Analysis of Real-World Networks

Here, we present the results of the robustness analysis of two real-world networks;
the CO2 exchange network and the air traffic network. Table 10 presents the results of the
robustness analysis of the CO2 exchange network. The robustness analysis on the CO2
exchange network shows that it is more susceptible to random failures when the robustness
is measured using the fitness-incorporated average efficiency. Under the average efficiency
measure that does not take node fitness into account, degree based attacks prove to be
most effective. While these results may depend on the node fitness measure and the fitness
function used, it is evident that incorporating node fitness can give a significantly different
picture of network robustness in a real-world network.
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Table 10. Robustness analysis of the CO2 exchange network, N = 112.

Attack Type

Robustness
Based on
Fitness Inc.
Avg. Efficiency

Robustness
Based on
Avg. Efficiency

Random failures 2626.3 79.5

Degree Centrality 5233.5 42.3

Betweenness Centrality 4666.4 54.0

Fitness 8233.4 51.2

Fitness + Degree 6006.8 46.1

Fitness + Betweenness 5211.1 51.3

Table 11 presents the results of the robustness analysis of the air-traffic network. In this
network, the degree-based attack appears to be most effective in terms of the effect on
the network, when the fitness-incorporated average efficiency is used as the robustness
measure. On the other hand, betweenness centrality-based attacks are most damaging
when the average efficiency measure is used.

Table 11. Robustness analysis of the air traffic network, N = 500.

Attack Type

Robustness
Based on
Fitness Inc.
Avg. Efficiency

Robustness
Based on
Avg. Efficiency

Random failures 19,550.1 79.5
Degree Centrality 10,916.2 7.7
Betweenness Centrality 11,234.1 7.4
Fitness 59,883.0 29.8
Fitness + Degree centrality 13,018.1 9.0
Fitness + Betweenness centrality 12,209.1 9.6

The air traffic network is seen to be the most susceptible to attacks targeting the nodes
with higher fitness. It is interesting to note that attacks based on a topological measure
such as betweenness does not outperform the attacks made by combination of node fitness
with a topological measure such as betweenness, suggesting that considering node fitness
in combination with a topological centrality may not always be favorable in attacking
a network.

Unlike the CO2 exchange network, the air traffic network appears to be more sus-
ceptible to attacks targeting the nodes with the highest fitness value combined with the
topological centrality measures, in comparison to attacks based on fitness only. In the air
traffic network, the correlation between node degree and node fitness is relatively high,
compared to the CO2 exchange network. This suggests that the fitness of individual nodes
may be more relevant to determine network robustness, when the correlation of the node
fitness with the topological property is high. In such a scenario, the effect of node fitness
on the robustness may decrease.

Another important observation is that the power-law exponent of the degree distribu-
tion of the CO2 exchange network is comparatively high, shifting it towards the realm of
random networks (in a typical scale-free network the exponent value ranges between 2
and 3 [43], whereas that of the air traffic network is closer to a typical(scale-free) value.

In observing the resilience of real-world networks with heterogeneous nodes, it is
important to note that the robustness that we may observe is subjective to how we define
the node fitness. Thus, even the same network may show varying robustness features
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under different fitness functions. However, in general, the fitness distribution and the
topology both play key roles in the definition of the network robustness. Further, these
results suggest that not just the fitness distribution and topology, but also the correlation
between the fitness distribution and centrality distribution affects the robustness of the
overall network.

While we consider the topological centrality values and node fitness as two separate
classes of attributes in the experiments conducted, it is important to note that even the
centrality measures can be considered as a special case of node fitness. However, in this
work, we consider node fitness as an explicitly non-topologically derived value that is
based on the inherent heterogeneity of the nodes.

5. Conclusions and Future Work

In this work, we proposed a node fitness-based approach to capture the node het-
erogeneity in proposing a novel robustness measure. The results indicate that the fitness
function, network topology, fitness distribution and the correlation between the node
topological features and node fitness are all relevant in determining the robustness of a
network. Further, we use the proposed measure as a means of ranking nodes in a network
in terms of their impact on the robustness. The rankings derived from the proposed mea-
sure against the rankings obtained from a wireless sensor network based simulation, we
could empirically validate the proposed robustness measure. The proposed measure may
be useful in analyzing the real-world networks for their robustness, as most real-world
networks constitute of heterogeneous nodes.

The synthetic networks and the simulated wireless sensor networks may be limited in
their resemblance to real-world networks, which may be considered a limitation. Possible
future work may look into the applicability of the proposed measure in real-world networks
such as power-grid networks, social networks and financial networks where heterogeneous
nodes may be present and the heterogeneity may be defined in a context sensitive manner.
The effectiveness of the proposed measure may be further validated by comparing it with
the real-world robustness data, where available.

In this work, we predominantly focused on empirical analysis of the proposed metric,
rather than focusing on a more analytical approach in explaining it. The main reason for
this approach was the fact that robustness is an emergent property where not only network
topology, but also the node fitness function and fitness distribution may play a synergistic
role in determining it, based on the proposed measure. As possible future work, further an-
alytical analysis on the proposed measure could be conducted by quantifying its properties
and limiting conditions such as its expected value, variance and effective range, under dif-
ferent network conditions. Furthermore, the robustness values obtained from the proposed
measure can be compared with existing measures and also more failure/robustness data of
real-world networks to further validate its validity and applicability.

Another possible extension of this work may be to study how the node heterogeneity
incorporated network robustness varies when the degree distribution exponent of a scale-
free network is changed. Identifying the scale-free exponent value for which the robustness
is maximal, may be helpful in determining the optimal topological structure that would
be most robust in the presence of attacks. The knowledge of such an optimal topological
structure may be helpful in design considerations of complex engineered systems and in
quantifying the robustness of real-world networks.
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Appendix A

Figures A1 and A2 show the node ranking comparisons based on the random topology.
The Pearson correlation coefficients denoted in Table 8 are derived from these rankings.
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Figure A1. Node ranking comparison for random topology, when the fitness distribution correlates
with the degree. (a) Fitness incorporated average efficiency-based ranking vs. NS3 simulator ranking.
(b) Average efficiency-based ranking vs. NS3 simulator-based ranking.
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Figure A2. Node ranking comparison for random topology, when the fitness is distributed in a
manner that does not correlate with the degree. (a) Fitness incorporated average efficiency-based
ranking vs. NS3 simulator ranking. (b) Average efficiency-based ranking vs. NS3 simulator-
based ranking.

Figures A3 and A4 show the node ranking comparisons based on the scale-free topol-
ogy. The Pearson correlation coefficients denoted in Table 9 are derived from these rankings.
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Figure A3. Node ranking comparison for scale-free topology, when the fitness is distributed in a
manner that correlates with the degree. (a) Fitness incorporated average efficiency-based ranking vs.
NS3 simulator ranking. (b) Average efficiency-based ranking vs. NS3 simulator-based ranking.
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Figure A4. Node ranking comparison for scale-free topology, when the fitness is distributed in a
manner that does not correlate with the degree. (a) Fitness incorporated average efficiency-based
ranking vs. NS3 simulator ranking. (b) Average efficiency-based ranking vs. NS3 simulator-
based ranking.
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