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Abstract: In this work, energy time series forecasting competitions from the Schneider Company, the
Kaggle Online platform, and the American society ASHRAE were considered. These competitions
include power generation and building energy consumption forecasts. The datasets used in these
competitions are based on reliable and real sensor records. In addition, exogenous variables are
accurately added to the dataset. All of these ensure the richness of the information contained in
the dataset, which is crucial for energy management. Therefore, (1) We choose to study forecast
models suitable for energy management on these energy datasets; (2) Forecast models including
popular algorithm structures such as neural network models and ensemble models. In addition, as
an innovation, we introduce the Explainable AI method (SHAP) to explain models with excellent
performance indicators, thereby strengthening its trust and transparency; (3) The results show that
the performance of the integrated model in these competitions is more stable and efficient, and in
the integrated model, the advantages of LightGBM are more obvious; (4) Through the interpretation
of SHAP, we found that the lagging characteristics of the building area and target variables are
important features.

Keywords: time series forecasting; ensemble model; neural network; explainable AI

1. Introduction

At present, models based on different algorithms are widely used in time series fore-
casting competitions, including the boosting algorithm [1], bagging algorithm [2] and
neural network algorithm [3]. The performance of these algorithms [4] in different com-
petitions is not stable, which means they are difficult to compare and measure. Therefore,
choosing a better forecasting model by comparing different forecasting models is essential
to solve the actual problems of forecasting.

Energy management systems [5] rely heavily on time series forecasting, but conven-
tional methods cannot extract important feature information due to the complex feature
composition, leading to the failure of predictive capabilities [6–8]. This is also the cause
of the unstable performance of the forecast model on its dataset. This means that, on the
one hand, we need to conduct a comprehensive comparison of popular prediction models
to determine a better prediction model from a practical level. On the other hand, we
need to explain the forecast model in order to have a deeper understanding of the feature
information learned by the forecast model.

The energy time series forecasting competitions published by the Schneider company,
the ASHRAE society and the Kaggle online platform appropriately support this work.
The datasets from these competitions include both energy consumption data and solar
power generation data from power plants. Importantly, the data are all reliable records from
sensors, which guarantee the practical significance of the forecast model used. In addition,
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these competitions are time series forecasting competitions with the goal of optimizing
energy management, which ensures the adaptability of our work.

In order to achieve effective measurement and comparison, both neural networks and
ensemble models are considered. Among them, the neural network models Bi-RNN [9],
Bi-LSTM [10], and Bi-GRU [11] are selected as representative models. The ensemble model
is divided into the boosting algorithm and the bagging algorithm. The LightGBM [12]
algorithm is used as the representative of the boosting algorithm, and Random Forest [13]
is used as the representative of the bagging algorithm. Explainable AI technology provides
a new perspective for the measurement of forecast models, and the importance of its output
features can help users understand the basis of forecast models [14,15]. For example, in a
field with extremely high safety requirements, such as medical care, Explainable AI technol-
ogy is applied to assisted diagnosis, which is helpful for doctors to understand the analysis
and recognition of pathology by algorithms, and then make correct decisions [16–19].
The popularity of machine learning and deep learning has led people to pay more attention
to explainable artificial intelligence. Machine learning models and deep learning models
are usually regarded as “black boxes” with internally unknown features [20–22]. Therefore,
when applying these models, it is very important to gain people’s trust, clarify the specific
meaning of their errors, and the reliability of their predictions.

In order to achieve the determination of a better forecast model, the relevant com-
petitions information is introduced in detail in Section 2, including data description and
detailed rules of the competition; in Section 3, the forecast model is introduced in detail
with a pseudo code; in Section 4, the prediction results and the comparison results using
classic measurement indicators are displayed. After more stable prediction models are
determined, Explainable AI technology is used to explain them, so as to further determine
a better forecast model.

2. Competition
2.1. Data Description

The key description in the Schneider competition is that the premise of effective
operation is planning and forecasting, which means that accurate time series forecasting
is absolutely needed in the energy field. At the same time, ASHRAE (American Society
of Heating, Refrigerating and Air-Conditioning Engineers) pointed out in the building
energy prediction competition published on Kaggle that the current estimation method
is fragmented and cannot be extended well. This also leads us to be unable to determine
which model is better for time series forecasting.

A description of the energy dataset used in the prediction competition is as follows:

• ASHRAE—Great Energy Predictor III
The dataset from ASHRAE includes the use of various energy sources in the building:
chilled water, electric, hot water, and steam meters. The dataset covers more than
1000 buildings in three years. Among them, there are a total of 15 features used
for prediction, including internal features such as the building id, use, area, year of
completion, and floor count, as well as external features such as wind speed, wind
direction, temperature, and cloud cover. The more accurate the estimation of these
energy-saving investments, the more important investors, that is, financial institutions,
will pay more attention to this field, thereby promoting the improvement of building ef-
ficiency. (https://www.kaggle.com/c/ashrae-energy-prediction/overview (accessed
on 25 September 2021)).

• Power Laws: Forecasting Energy Consumption
The dataset features from Schneider include 14 features such as building id, tem-
perature, holiday and weekend information in about 3 years. The purpose of the
competition is to be able to improve the best estimate of the global consumption of
buildings. (https://shop.exchange.se.com/en-US/apps/54008/forecasting-building-
energy-consumption (accessed on 25 September 2021)).

https://www.kaggle.com/c/ashrae-energy-prediction/overview
https://shop.exchange.se.com/en-US/apps/54008/forecasting-building-energy-consumption
https://shop.exchange.se.com/en-US/apps/54008/forecasting-building-energy-consumption
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• Solar Power Generation Data
As a supplement, solar power plant data was taken into account in our work. The pur-
pose of this project is to predict the short-term solar power generation capacity for
better grid management. The dataset includes five features such as device number,
direct current, alternating current, temperature and radiation. (https://www.kaggle.
com/anikannal/solar-power-generation-data (accessed on 25 September 2021)).

2.2. Data Visualization

In this work, the specific time point is used as the boundary between the training set
and the test set, instead of rough random selection, which is more in line with the logic of
the time series itself. About 70% of the elements need to be added to the training set.

• ASHRAE—Great Energy Predictor III
Taking into account the different proportions of Nan values in different energy types,
under the premise of ensuring a sufficient number of features, the meters reading
of electricity type are forecasted as the target variable in this work (see Figure 1).
After determining a reasonable boundary, the ratio of the training set to the test set is
0.75:0.25.

• Power Laws: Forecasting Energy Consumption
As shown in Figure 2, there are obvious outliers in the original data, for this reason
only the data before 2014 was used in this work. After dividing by time points,
the ratio of training set to test set is 0.77:0.23.

• Solar Power Generation Data
Under the condition of daily yield and total yield in the original dataset, we chose
daily yield as the target variable (see Figure 3). On the one hand, considering the
real-time characteristic of the forecasting model, on the other hand, the total yield can
be obtained by adding the daily yield. Therefore, we are not inclined to choose total
yield as the target variable. The ratio of training set to test set is 0.7:0.3.

Figure 1. The trend of the target variable of the ASHRAE.

Figure 2. The trend of the target variable of the Power Laws.

https://www.kaggle.com/anikannal/solar-power-generation-data
https://www.kaggle.com/anikannal/solar-power-generation-data
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Figure 3. The trend of the target variable of the Solar Power Generation.

3. Solution Approach
3.1. Known Methods

At present, in these competitions, the structures of neural networks and ensemble
models are widely used. Therefore, it is necessary to select representative models in these
structures to comprehensively compare the performance of forecast models. Among them,
about the neural network model we choose Bi-RNN, Bi-LSTM, Bi-GRU as the representative
model, in view of their higher accuracy than the unidirectional structure. The ensemble
model is divided into the boosting algorithm and the bagging algorithm and we chose the
Lightgbm algorithm as the representative of the boosting algorithm. In view of its excellent
performance in the M5 competition, random forest is used as the representative of the
bagging algorithm.

In general, in this work, LightGBM, Random Forest, Bi-RNN, Bi-LSTM and Bi-GRU
are used as research objects. In addition, the version of the LightGBM model, the champion
in the M5 competition [23], is directly used by us, M5 LightGBM compared with the
normal version, is more applicable to complex feature structures, and the prediction effect
is significantly improved.

Essentially, the ensemble model and the neural network model both deal with prob-
lems through progressive deconstruction, instead of dividing the entire dataset through
complex boundaries such as support vector machines or logistic regression. Obviously,
the tree-based method gradually divides the feature space along different features to op-
timize the information gain. What is less obvious is that neural networks also handle
tasks in a similar way. Each neuron monitors a specific part of the feature space (there are
multiple overlaps). When input enters this space, certain neurons will be activated. Neural
networks view this piece-by-piece model fitting from a probabilistic perspective, while
tree-based methods use a deterministic perspective. In any case, the performance of both
depends on the depth of the model, because their components are related to various parts
of the feature space.

3.2. M5 LightGBM

LightGBM is a gradient boosting framework that uses tree based learning algorithms.
LightGBM optimizes the XGBoost algorithm to achieve efficient processing of large-scale
data. Theoretically, the accuracy will be sacrificed while increasing the speed. How-
ever, due to the proper optimization method, the accuracy has not dropped significantly.
The histogram algorithm [12] obviously improves the running speed of LightGBM.

First of all, the reduction of memory consumption caused by the histogram algo-
rithm significantly improves the running speed of LightGBM. In this process, the memory
consumption is saved by only saving discrete values of features instead of traditional
pre-sorting results because the discrete value itself can store an 8-bit integer; in other words,
its memory consumption can be reduced to one-eighth. On the other hand, the existence of
the GOSS algorithm [12] can also ensure the balance between the speed and performance
of LightGBM by means of a way that only keeps instances with more obvious gradients,
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but randomly samples instances with less obvious gradients. By doing this, we focus more
on the under-trained instances without changing the original data distribution too much.

The M5 LightGBM version does not refer to the regression version of LightGBM
(lgb.LGBMRegressor), but extracts high-quality data information through meticulous
feature engineering and optimizes the parameters. Finally, an advanced version was
obtained based on the traditional LightGBM (lgb.train) model. (https://github.com/
Mcompetitions/M5-methods (accessed on 15 August 2021)).

3.3. Random Forest

The establishment of the Random Forest algorithm [13] is based on independent deci-
sion trees. Unlike LightGBM’s internal tree models, multiple calculation results generated
by independent decision trees are integrated, and the final result is selected through a
“voting” mechanism, which is the mode. On the other hand, the random sampling method
ensures that it has a strong generalization ability, which also means that it can obviously
control the variance of the forecasting results; however, due to the independence between
decision trees, it is lacking in the ability to control variability. Therefore, the fitting effect of
Random Forests will be worse, especially on datasets with large noise or datasets with a
wide range of values within the feature.

3.4. Bi-RNN, Bi-LSTM, Bi-GRU

The idea of Bidirectional is to split the neurons of the traditional neural network
model into two parts, one of which is responsible for the positive time direction (forward
states) [9] and the other is responsible for the negative time direction (backward states) [9].
It should be noted that the output of the forward states is not connected to the input of the
backward states. Compared with the traditional RNN, LSTM and GRU, the difference in
Bidirectional is the addition of a backward layer.

Bi-RNN, Bi-LSTM and Bi-GRU can be seen as two layers of neural networks—the first
layer from the left as the starting input of the series, in time series this can be understood
as input from the beginning of time, while the second layer is from the right as the starting
input, in time series processing this can be understood as input from the last time series,
reversed to perform the same processing as the first layer. Finally, the two results obtained
are processed.

4. Simulation Results

For calculations we used a computer with CPU—Quad-Core Intel Core i5 @ 1.4 GHz;
RAM—256GB; OS—macOS Catalina 10.15.7; For implementation of the forecast models
Python—JupyterLab 2.2.6 was used.

In this section, considering the simplicity, only the loss value results of the ASHRAE
competition are shown as examples. Considering the computing power of the computer,
we select part of the data (training set: 242214; test set: 79514) and construct a total of
98 features on this basis. The learning curve of all models showed a uniform decline (see
Figure 4). Among them, the performance of the Bi-RNN validation set is even better than
that of the training set. Considering the demand for comprehensive comparison, a detailed
quantitative index comparison is needed.

https://github.com/Mcompetitions/M5-methods
https://github.com/Mcompetitions/M5-methods
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Figure 4. ASHRAE: Learning curves of forecast models. Note: The ensemble algorithm learning
curve within the LightGBM model is RMSE, and the neural network is MSE.

It can be easily seen that all forecasting models have produced an excellent perfor-
mance (see Figure 4 and Table 1) on ASHRAE (mainly measured from the perspective of
variance), among which Bi-RNN has the best performance. However, on the other hand,
the running time of M5 LightGBM is significantly less than that of random forest and
neural network models, which means that in ASHRAE, M5 LightGBM can achieve an
accuracy close to that of neural network models at a small time cost.

Table 1. Forecast Quality of Power ASHRAE.

ASHRAE R2 MSE TimeSpent

M5LightGBM 0.9676 2516.83 39.5 s
Random Forest 0.9673 2538.70 3 min 8 s

Bi-RNN 0.9688 2426.72 6 min 33 s
Bi-LSTM 0.9655 2678.17 13 min 47 s
Bi-GRU 0.9568 3358.26 12 min 11 s

Subsequently, we continued to apply these forecasting models to different datasets,
including the Schneider competition and the solar power plant dataset published on Kaggle.
In the Schneider dataset, we select part of the data (training set: 271,803; test set: 78,380),
and construct a total of 28 features on this basis. In the solar power dataset, we use all the
data (small dataset) (Plant 1-training set: 2393; test set: 864. Plant 2-training set: 2293; test
set: 862), and construct a total of 19 features on this basis.

After that, measure the performance of these forecasting models (see Table 2). On the
one hand, accuracy is compared in each dataset, on the other hand, stability is compared
in all datasets. Because the data values of the target variable in the Schneider and Kaggle
dataset are too large, the loss optimization of all forecast models is almost invalid. Therefore,
in the process of forecasting, the target variable and feature data are processed separately
using the MinMax algorithm.
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Table 2. Forecast Quality of Power Schneider.

Schneider R2 MSE TimeSpent

M5LightGBM 0.9381 0.0001 42.1 s
Random Forest 0.9297 0.0001 1 min 34 s

Bi-RNN 0.8595 0.0003 55.2 s
Bi-LSTM 0.9146 0.0001 1 min 19 s
Bi-GRU 0.9165 0.0001 1 min 48 s

In the solar power datasets, for power plant 1, all forecasting models show an excellent
performance (see Table 3), and M5 LightGBM is leading in terms of accuracy and time cost;
for power plant 2, under the premise of maintaining high accuracy (0.9005), M5 LightGBM
can still maintain the most efficient operation (see Table 4) (minimum time cost).

Table 3. Forecast Quality of Solar Power Generation—Plant 1.

Plant 1 R2 MSE TimeSpent

M5LightGBM 0.9928 0.0008 0.74 s
Random Forest 0.9723 0.0034 0.99 s

Bi-RNN 0.9665 0.0041 6.17 s
Bi-LSTM 0.9887 0.0013 12.9 s
Bi-GRU 0.9865 0.0016 8.36 s

Table 4. Forecast Quality of Solar Power Generation—Plant 2.

Plant 2 R2 MSE TimeSpent

M5LightGBM 0.9005 0.0081 0.16 s
Random Forest 0.8689 0.0107 1.19 s

Bi-RNN 0.9329 0.0055 6.39 s
Bi-LSTM 0.8917 0.0088 13.7 s
Bi-GRU 0.9185 0.0066 8.76 s

It can be seen from the results that M5 LightGBM has obvious advantages. From the
perspective of accuracy, M5 LightGBM occupies leading positions in the two datasets
(see Tables 2 and 3), and it takes much less time than other algorithms, especially when
compared with neural network algorithms. Although its performance is not the best in
some datasets (see Tables 1 and 4), the same level of forecasting performance (R2 > 0.9)
can still be achieved at a lower time cost. Therefore, through comprehensive comparison,
we believe that M5 LightGBM is a better forecasting model. Although the idea of ensemble
learning algorithm seems simple, it can often produce excellent performance in practice.
This is due to the combination of multiple basic algorithm ideas that can form a reasonable
framework to strengthen the advantages while weakening the weaknesses. In this way,
the robustness and generalization ability of the original basic algorithm can be effectively
optimized, thereby promoting the stable operation of the model.

5. Explaining the Better Forecasting Model
5.1. Explainable AI

Explainable AI strives to improve the transparency of the black box model through
different approaches. At present, the more popular way is to calculate the contribution
of each feature. The greater the contribution, the greater the influence on the forecasting
result. At the same time, the mutual influence relationship between features can also be
expressed. When the logical and common sense feature contribution is output with the
forecasting result, people’s trust in the black box model will increase accordingly. It is
worth noting that Explainable AI is not intended to show all the details and processes in
the black box model, but to focus more on the presentation of these in a way that humans
can understand.
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According to the different objects that need to be explained, Explainable AI is divided
into local and global. Local is the explanation of a single instance, and the global is the
explanation of all datasets. For example, in a time series forecasting task, local explanation
reveals how the forecast results at each point in time are affected by features (the contribu-
tion of features at each point in time), which can be applied to the real-time monitoring
of time series data. The global explanation is the average degree of influence of each
feature on the forecasting results in a certain period of time, which can comprehensively
evaluate the black box model, so it is used as an auxiliary technology in the comparison of
model performance.

According to different explanation principles, Explainable AI methods can be divided
into Intrinsic and Post − hot. Intrinsic refers to the model’s own explanation ability.
For example, white box models, such as linear regression and decision trees, naturally
belong to Intrinsic. On the other hand, for the black box model, Intrinsic’s purpose is
to embed the explanation technology into the black box model; therefore, it is a unique
explanation method for this model or this type of model, while Post − hot is dedicated to
the development of model-agnostic explanation methods. That is, the method that can
explain all types of black box models. The main way to achieve this is to add a regular
‘perturbation’ for each feature in the dataset, and then measure the degree of change in
the forecasting result (ignore the model and only focus on the forecasting result), and then
calculate the contribution of the feature.

In view of the purpose of explaining the existing prediction model, we choose the
SHAP [24] technology belonging to the Post − hot method as the explanatory method of
this work, considering that it has a theoretical system supported by cooperative games
and a complete code practice tool (https://github.com/slundberg/shap, (accessed on 15
August 2021)).

5.2. Explanation Results Based on SHAP

SHAP (SHapley Additive exPlanation) is an explanation method developed based
on Shapley values. It uses cooperative games as the theoretical basis, treats the black box
model as a “game”, and treats each feature as a “player”. Through the calculation of the
Shapley value, we can determine the contribution degree of each player (feature) in the
game process (black box model operation), and then know the contribution degree of
each feature.

The above is to measure the forecasting model by traditional methods, including
variance and bias. In order to be able to study the interior of the model more deeply,
Explainable AI technology is used by us. Originally, we were not clear about the working
process of the black box model of M5 LightGBM. We could not determine which features
were effectively learned by it, nor could we know the mutual influence between the
internal features of the model, and so on. All of these hinder us from fully understanding
the forecasting model.

In the explanation results output by SHAP (see Figures 5–8), the transition from
blue to red represents the increase in the feature value, and the SHAP value measures
the impact of each feature on the model’s prediction results, and the features can be
sorted according to the SHAP value. For example, in Figure 5, “square feet” is the feature
with the greatest contribution, and its feature value is proportional to the target variable.
In addition, the interactive results between features can show the features that have a
significant impact on the feature with the greatest contribution, and use this approach to
explain the interactive impact between features.

https://github.com/slundberg/shap
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Figure 5. ASHRAE. (Left): global explanation; (Right): inter-feature interaction. In the left figure, 1: square feet; 2: floor
count 3; 3: Hour; 4: primary use Education; 5: floor count-4; 6: floor count-5; 7: primary use Entertainment; 8: floor count 6;
9: year built 1930; 10: sum of 89 other features. The global explanation result shows that “square feet” has the greatest impact
on the energy consumption forecast result, and the smaller its value, the smaller the forecast value of energy consumption.
Interaction result show that “wind speed” has a significant effect on “square feet”, and this effect generally occurs when
“square feet” < 100,000. In this case, the existence of “wind speed” makes the influence of “square feet” on the prediction
result weaker.

Figure 6. Forecasting Energy Consumption. (Left): global explanation; (Right): inter-feature interaction. In the left figure, 1:
Surface; 2: SiteID; 3: ForecastID; 4: Hour; 5: Sampling 15; 6: Sampling 5; 7: Minute; 8: Month; 9: Sampling 30; 10: sum of
16 other features. The global explanation result shows that “Surface” has the greatest impact on the energy consumption
forecast result, and the smaller its value, the smaller the forecast value of energy consumption. Interaction result show that
“Minute” has a significant effect on “Surface”, and this effect generally occurs when “Surface” < 100,000.
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Figure 7. Solar Plant 1. (Left): global explanation; (Right): inter-feature interaction. In the Left figure, 1: lag DY1; 2: Hour;
3: lag DC1; 4: lag MT2; 5: lag DC2; 6: lag DY2; 7: lag AT1; 8: lag IR1; 9: lag AT2; 10: sum of 8 other features. The global
explanation result shows that “lag DY1” has the greatest impact on the solar power generation result, and the smaller its
value, the smaller the forecast value of solar power generation. The interaction result shows that “lag MT1” has a significant
effect on “lag DY1”. At the same time, the small “lag MT1” will increase the influence of “lag DY1” on the prediction results.

Figure 8. Solar Plant 2. (Left): global explanation; (Right): inter-feature interaction. In the Left figure, 1: lag DY1; 2: Hour;
3: lag DY2; 4: lag AT2; 5: lag DC1; 6: Day; 7: lag DC2; 8: lag AT1; 9: Minute; 10: sum of 8 other features. The global
explanation result shows that “lag DY1” has the greatest impact on the solar power generation result, and the smaller its
value, the smaller the forecast value of solar power generation. Interaction result show that “Hour” has a significant effect
on “lag DY1”. At the same time, a small “Hour” will significantly weaken the influence of “lag DY1” on the prediction
results, while a large “Hour” will significantly strengthen the influence of “lag DY1” on the prediction results. This means
that, before noon, “lag DY1” has little effect on the prediction results, while after noon and until the evening, “lag DY1” has
a significant impact on the prediction results.

6. Conclusions

The main contribution of our work is not limited to comparing time series forecasting
models in different energy data, but also includes an in-depth understanding of forecasting
models from the explainable level, thereby increasing the transparency of the black box
forecasting models and helping users judge whether the features learned by the model are
effective. Through conventional measurement methods, we believe that M5 LightGBM
is currently a better forecasting model in energy time series forecasting tasks. Through
the explanation results of SHAP, we can know the contribution of each feature when M5
LightGBM is applied in specific tasks, which helps us identify important features in specific
cases. Take the explanation results in this work as an example. The datasets of ASHRAE
and Schneider both forecast the energy consumption of buildings. The explanation results
show that their most important features are square f eet and sur f ace, which are essentially
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the area of the building. Therefore, we believe that building area is the most important
feature in building energy consumption forecasting. In addition, SHAP can also output the
features that are most relevant to the most important features and the relationship between
the two, which is more helpful for us to understand the internal workings of M5 LightGBM.

In the solar power data, according to the explanation result of the SHAP output, we
believe that the first-order lag feature (lag 1) of the target variable is the most important
feature of the solar power plant in the forecasting. This result is not only applicable to
power plant 1, but the same result exists in the dataset of power plant 2; however, there are
differences in the feature related to lag 1. In power plant 1, temperature is the most relevant
to power generation and Hour is the most relevant feature in power plant 2.

In this work, the explanation is based on the global situation, and the purpose is to
obtain the feature contribution over a period of time. In the future, we will pay attention
to the local explanation in the time series forecasting task, that is, output the explanation
results at each moment to form a real-time explanation, hoping that it can reveal the reasons
for concept drift and other negative problems in time series forecasting.

Author Contributions: Investigation, K.K.; supervision, O.P.; writing–original draft, Y.Z., R.M., J.L.
and X.L.; methodology, Y.Z., J.L.; software, Y.Z., R.M., J.L. and X.L.; validation, R.M., J.L., X.L.; data
curation, Y.Z., R.M.; resources, Y.Z., R.M.; visualization, Y.Z., J.L., R.M. All authors have read and
agreed to the published version of the manuscript.

Funding: Research funded by Ministry of Science and Higher Education of the Russian Federation
(075-15-2020-93).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: This work was supported by the Ministry of Science and Higher Education
of the Russian Federation by the Agreement No. 075-15-2020-933 dated 13 November 2020 on the
provision of a grant in the form of subsidies from the federal budget for the implementation of state
support for the establishment and development of the world-class scientific center «Pavlov center»
“Integrative physiology for medicine, high-tech healthcare, and stress-resilience” technologies.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Robinzonov, N.; Tutz, G.; Hothorn, T. Boosting techniques for nonlinear time series models. AStA 2012, 1, 99–122. [CrossRef]
2. Inoue, A.; Kilian, L. How useful is bagging in forecasting economic time series? A case study of US consumer price inflation. J.

Am. Stat. Assoc. 2008, 482, 511–522. [CrossRef]
3. Georg, D. Neural Networks for Time Series Processing. Neural Netw. World 1996, 6, 447–468.
4. Zhang, Y.; Xu, F.; Zou, J.; Petrosian, O.L.; Krinkin, K.V. XAI Evaluation: Evaluating Black-Box Model Explanations for Prediction.

In Proceedings of the IEEE NeuroNT, Saint Petersburg, Russia, 16 June 2021; pp. 13–16.
5. Barry, P.; Prodanovic, M. State forecasting and operational planning for distribution network energy management systems. IEEE

Trans. Smart Grid 2015, 7, 1002–1011.
6. Chan, S.C.; Tsui, K.M.; Wu, H.C.; Hou, Y.; Wu, Y.C.; Wu, F.F. Load/price forecasting and managing demand response for smart

grids: Methodologies and challenges. IEEE Signal Process. Mag. 2012, 29, 68–85. [CrossRef]
7. Ghalehkhondabi, I.; Ardjm, E.; Weckman, G.R.; Young, W.A. An overview of energy demand forecasting methods published in

2005–2015. Energy Syst. 2017, 8 , 411–447. [CrossRef]
8. Ahmed, R.; Sreeram, V.; Mishra, Y.; Arif, M.D. A review and evaluation of the state-of-the-art in PV solar power forecasting:

Techniques and optimization. RaSER 2020, 124, 109792. [CrossRef]
9. Schuster, M.; Paliwal, K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [CrossRef]
10. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
11. Cho, K.; Van, M. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014,

arXiv:1406.1078.
12. Ke, G.; Meng, Q. Lightgbm: A highly efficient gradient boosting decision tree. Neural Comput. 2017, 30, 3146–3154.
13. Tin, K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844.
14. Arrieta, A. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI.

Inf. Fusion 2020, 58, 82–115. [CrossRef]
15. Das, A.; Rad, P. Opportunities and challenges in explainable artificial intelligence (xai): A survey. arXiv 2020, arXiv:2006.11371.

http://doi.org/10.1007/s10182-011-0163-4
http://dx.doi.org/10.1198/016214507000000473
http://dx.doi.org/10.1109/MSP.2012.2186531
http://dx.doi.org/10.1007/s12667-016-0203-y
http://dx.doi.org/10.1016/j.rser.2020.109792
http://dx.doi.org/10.1109/78.650093
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/j.inffus.2019.12.012


Mathematics 2021, 9, 2794 12 of 12

16. Zou, J.; Xu, F.; Zhang, Y. High-Dimensional Explainable AI for Cancer Detection. ResearchGate 2021. Available online: https:
//www.researchgate.net/publication/349715168_High-Dimensional_Explainable_AI_for_Cancer_Detection (accessed on 20
September 2021).

17. Holzinger, A.; Biemann, C.; Pattichis, C.S.; Kell, D.B. What do we need to build explainable AI systems for the medical domain?
arXiv 2017, arXiv:1712.09923.

18. Folke, T.; Yang, S.C.H.; Anderson, S.; Shafto, P. Explainable AI for medical imaging: Explaining pneumothorax diagnoses with
Bayesian teaching. arXiv 2021, arXiv:2106.04684.

19. Hossain, M.; Muhammad, G.; Guizani, N. Explainable AI and mass surveillance system-based healthcare framework to combat
COVID-I9 like pandemics. IEEE Netw. 2020, 34, 126–132. [CrossRef]

20. Lin, Y.C.; Liang, Y.J.; Chen, M.S.; Chen, X.M. A comparative study on phenomenon and deep belief network models for hot
deformation behavior of an Al-Zn-Mg-Cu alloy. Appl. Phys. Mater. Sci. Proc. 2017, 123, 68. [CrossRef]

21. Lin, H.; Dai, Q.; Zheng, L.; Hong, H.; Deng, W.; Wu, F. Radial basis function artificial neural network able to accurately predict
disinfection by-product levels in tap water: Taking haloacetic acids as a case study. Chemosphere 2020, 248, 125999. [CrossRef]
[PubMed]

22. Deng, Y.; Zhou, X.; Shen, J.; Xiao, G.; Hong, H.; Lin, H.; Liao, B.Q. New methods based on Back Propagation (BP) and Radial
Basis Function (RBF) Artificial Neural Networks (ANNs) for predicting the occurrence of haloketones in tap water. Sci. Total
Environ. 2021, 772, 145534. [CrossRef] [PubMed]

23. Makridakis, S.; Spiliotis, E.; Assimakopoulos, V. The M5 accuracy competition: Results, findings and conclusions. Int. J. Forecast. 2020,
in press. [CrossRef]

24. Lundberg, S.; Lee, S. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4768–4777.

https://www.researchgate.net/publication/349715168_High-Dimensional_Explainable_AI_for_Cancer_Detection
https://www.researchgate.net/publication/349715168_High-Dimensional_Explainable_AI_for_Cancer_Detection
http://dx.doi.org/10.1109/MNET.011.2000458
http://dx.doi.org/10.1007/s00339-016-0683-6
http://dx.doi.org/10.1016/j.chemosphere.2020.125999
http://www.ncbi.nlm.nih.gov/pubmed/32006834
http://dx.doi.org/10.1016/j.scitotenv.2021.145534
http://www.ncbi.nlm.nih.gov/pubmed/33571763
http://dx.doi.org/10.1016/j.ijforecast.2019.05.006

	Introduction
	Competition
	Data Description
	Data Visualization

	Solution Approach
	Known Methods
	M5 LightGBM
	Random Forest
	Bi-RNN, Bi-LSTM, Bi-GRU

	Simulation Results
	Explaining the Better Forecasting Model
	Explainable AI
	Explanation Results Based on SHAP

	Conclusions
	References

