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Abstract: In a previous paper, the problem of how the preventive maintenance organization for
the k-out-of-n: F system could be used, in order to maximize system availability, was considered.
The current paper continues these investigations using a different optimization criterion. The
proposed approach is based on decision making theory for regenerative processes. We propose a
general procedure for comparing different preventive maintenance strategies based on the ordered
statistics distributions, aiming to choose the best one with respect to cost-type criterion. The lifetime
distributions of system units are usually unknown and only one or two of their moments are
available. For this reason, we pay special attention to the sensitivity analysis of decision making
about preventive maintenance, taking into account the shape of the system unit lifetime distributions.
A numerical study of two examples based on a real-world system illustrates the results of the
proposed approach.

Keywords: k-out-of-n: F system; preventive maintenance; cost-type optimization criterion; reliability
function; lifetime distribution

1. Introduction and Motivation

Ensuring the reliability of systems, objects, and processes is one of the main problems
that must be solved during their creation and further operation. One of the ways to improve
their reliability is redundancy. A k-out-of-n: F model represents a system of n parallel-
connected units that fails when at least k of them fail. It can be considered as one of the types
of redundancy configuration. Such models are used in various fields of human activity:
their application can be seen in many real-world phenomena, including telecommunications,
transmissions, engineering constructions,transport, manufacturing, services, etc. Due to the
widespread areas of practical applications, a large number of papers have been devoted to
the study of k-out-of-n: F systems. The bibliography (on publications about these systems)
is extensive (see Trivedi [1], Chakravarthy et al. [2] and the bibliography therein). For a brief
overview of further investigations on this topic, please see, for example, [3]. An overview
of recent publications on k-out-of-n multi-state systems can be found in [4]. Engineering
applications of this model used to study real-world systems can be found in [5] for the
reliability of some structures in the oil and gas industry; for a remote monitoring system of
underwater sections of gas pipeline [6]; for the reliability of a rotary-wing flight module of a
high-altitude telecommunications platform [7].

Another method to improve the reliability of systems is preventive maintenance (PM)
organization. The PM optimization problem is a part of the general theory of stochas-
tic systems control. The latter originated and developed within the framework of the
decision-making theory, in particular, the Markov Decision Process (MDP). One of the first
research studies in this direction belongs to Kolmogorov, and was associated with product
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acceptance control. Famous scientists, such as as Bellman, Bleckwell, Derman, Dynkin,
Ross, Shiryaev, and others, took part in the construction and development of this theory.
An overview of the first steps in these investigations can be found in [8]. For the current
state of research in this area, jointly with their applications, please look in [9].

Without going into detail, the main result of the MDP theory is as follows. The
optimal strategy for MDP, with respect to additive optimization functional, belongs to the
class on non-randomized Markov strategies. This result opens up some perspectives for
constructing optimal strategies, and specific numerical methods. The basic ideas have been
developed by Howard [10], Wolf, and Danzig [11], and can be found in some monographs,
for example [12].

Regular applications of the theory of controllable random processes to queuing and
reliability models began with [13], (see also [14]). There, for the first time, a definition
of the concept of the controllable queuing system was proposed, and an overview of the
earlier investigations on this topic was given. Later, several special monographs appeared,
analyzing this topic [15–17] and others.

As a part of the general theory of the stochastic systems control, the specificity of
applications of the PM optimization problem leaves an imprint on their formulations and
ways for solutions. One can find an overview of various approaches and results of studying
PM of complex stochastic systems in Gertsbakh’s monograph [18]. There are different types
of PM scenarios based on the possibility of observing system states, available information
about the system, and other factors. Some of these scenarios are: (a) periodic replacement
of units; (b) age replacement of units; (c) PM based on system state observation.

Other scenarios are also possible, and different criteria are used for the best PM choice.
In a series of papers by Dudin, Krishnamurthy, et al. [19–24], the k-out-of-n non-

reliable queuing system with different types of service and repair strategies were considered.
Some optimal opportunistic maintenance strategies were introduced and investigated
in [25,26]. As for the development of the multi-state system—one can find it in [27]. Recent
developments on optimal PM policies can be found in [28–32]. For a review on the recent
investigations on maintenance optimization, see [33].

Usually the detailed initial information about lifetimes of the system units is not
available, and only one or two of their moments are known. Therefore it is fundamentally
important to study the sensitivity of the system reliability indicators with respect to the
shape of their unit lifetime distributions. Research in this direction can be found in a series
of our papers, references to which one can find in chapter 9 of [34], as well as in [3]. For an
overview of the recent research methods for queuing and reliability systems, one can find
it in [35].

Most research assumes that any system PM and repair lead to its full renovation.
This means that, after each complete repair, the system becomes as “new”. As a result of
this assumption, the mathematical formulation of the problem can be conducted within
the framework of regenerative or semi-regenerative processes. In [6], the problem of PM
organization for the k-out-of-n: F system was considered with respect to system availability
maximization. The present paper continues the ideas of previous investigations with the
aim of developing a mathematical model for organizing the best PM for this system, with
respect to a cost-type criterion and the available information. The novelty and features of
this study are:

• A method for PM investigations of k-out-of-n: F systems, whose failures depend on
the positions of failed units developed;

• A new approach based on ordered statistics is used to solve the problem;
• A cost-type criterion for PM strategies comparison is used;
• A study of the sensitivity of decision making to the type of system unit lifetime

distribution is carried out.

The paper is organized as follows. In the next section, the formulation of the problem
and notations and assumptions are presented. Further, in Section 3, the main result
concerning comparisons between different PM strategies and the strategy “to work up
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to the system failure“, jointly with the appropriate algorithm, are presented. In the last
Section 4, some numerical results and their graphic illustrations are presented for the
system considered in [6], with respect to the cost-type criterion. Thus, here we use the
same notation and descriptions.

2. The Problem Set Up, Assumptions, and Notations
2.1. Notations and Assumptions

Consider a k-out-of-n: F system, whose failures depend on the location of its failed
units. Let us denote by Ai : i = 1, 2, . . . a sequence of system unit random lifetimes.
Suppose that they are independent, identically distributed (i.i.d.) random variables (r.v.s)
with common cumulative distribution function (c.d.f) A(t) = P{Ai ≤ t}. After any
system failure, it is repaired with a single facility, and the repair times are i.i.d. r.v.s
B(0)

i : i = 1, 2, . . . with common c.d.f. B0(t) = P{B(0)
i ≤ t}.

To increase the productivity of the system, the possibility of PM based on the system
state observation is considered. We denote by L = {0, 1, . . . , L} the set of possible PM
strategies, including running to the system failure for l = 0. Let us denote by El the subset
of system states with l failed units. If the l-th PM begins after the l-th failure, then the set
El is the system “pre-failure” set, in which the l-th type of PM must be started. The times
of PM are i.i.d. r.v.s B(l)

i with c.d.f. Bl(t) = P{B(l)
i ≤ t}. It is also supposed that the system

gets a reward $ c during the unit of its operating time, and pays the cost $c0 for its repair,
and the cost $cl for its PM per unit time. The quality of any PM strategy l ∈ L during time
t is evaluated by

Vl(t) = {the income of the system operating during time t for l ∈ L}. (1)

To describe the functioning of a complex system, whose failure depends not only on
the number of its failed units, but also on their position in the system, let j = (j1, j2, . . . jn)
be the system state, where ji = 1, if the i-th unit is in a failed state, and ji = 0, if it is in
operational state. Thus, j = j1 + · · ·+ jn is the number of failed system units. We also
denote by

E = {j = (j1, j2, . . . jn) : (ji ∈ (0, 1))} (2)

the set of all system states, and by E0 and Ē0—subsets of its failed and operational states,
accordingly. Note that the description of these sets is an application-specific problem, and
should be considered in detail for each particular case.

The general assumptions are:

• At the very beginning the system is absolutely reliable, i.e., it is in zero state j = (0, . . . , 0);
• All sequences of r.v.s (unit lifetimes, repair, and PM times) are i.i.d. for each type of

r.v. Further, the letters without indexes are used for the representatives of appropriate
sequence of r.v.s;

• The mean values of the unit lifetimes, as well as these for repair and PM times
are finite,

a = E[A] < ∞, b0 = E[B(0)] < ∞, bl = E[B(l)] < ∞. (3)

It is supposed that the latter is less than the mean repair time, i.e., that bl ≤ b0, but
may or may not depend on the type of PM;

• It is assumed that the mean unit lifetime, as well as the mean repair and PM times
b0, bl are known to the decision maker (DM);

• After any repair and PM completion, the system starts working “as a new one”, i.e.,
returns into the zero state. In other words, the model of the perfect PM is considered.
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2.2. The Problem Set Up

The paper aims to investigate various PM strategies l ∈ L, and the goal is to choose
the best one with respect to the system average income per unit time to be maximized. The
strategies l = {1, . . . , L} are to start the PM when the system reaches the subset of states
Sl or to wait until the system fails for l = 0. To solve the problem, we define a random
process J = {J(t) : t ≥ 0} with a space set E by the relation

J(t) = j, if at time t the system is in the state j ∈ E. (4)

Note that, due to our assumptions, the process J is regenerative under any PM strategy.
Its regeneration epochs {S(l)

0 = 0, S(l)
i : i = 1, 2, . . . } are the times of the PM completion for

l = {1, 2, . . . , L} and the repair completion for l = 0. In other words, the values S(l)
i (l ∈ L)

are the times until the process reaches the set of states El ,

S(l)
i+1 = inf{t : t > S(l)

i , J(t) ∈ El}. (5)

Since the intervals S(l)
i − S(l)

i−1 are i.i.d. r.v.s, it is enough to study the process behavior

only on one of them, for example, within the first one, S(l)
1 .

In the paper, we are interested in calculating various characteristics of the system,
such as:

• System reliability function

R(t) = P{S(0)
1 > t} and its mean value M0 =

∞∫
0

R(t)dt. (6)

• Distributions of the times up to various PM starts and their mean values

Fl(t) = P{S(l)
1 ≤ t}, Ml =

∞∫
0

(1− Fl(t))dt; (7)

• System quality measure Vl for different PM strategies defined for l ∈ L as

Vl = lim
t→∞

1
t

E[Vl(t)]. (8)

As a result, we compare different strategies with respect to the system quality Vl and
choose the best one.

Because the initial information about the system unit lifetime is usually very limited
and available only up to knowledge of one, or two moments, our main focus is the study of
the sensitivity of any decision about the PM quality, with respect to the shape of the system
unit lifetime distributions.

3. The Problem Solution and the General Procedure for Comparing the Quality of
PM Strategies
3.1. The Problem Solution

We should note that, due to our assumptions, the process J is a regenerative for any
PM strategy l ∈ L. Let us denote by Π(l) = S(l) + B(l) the process regeneration period
for the system working under PM strategy l ∈ L. Thus, the income Vl(t) from the system
operating during some time t under the PM strategy l ∈ L is

Vl(t) =
t∫

0

[c1{J(u)∈Ēl} − cl1{J(u)∈El}]du, (9)

where 1{A} is the indicator function of the event A and Ēl = E \ El . To calculate the long
time average of mean income, we use the ergodic theorem for regenerative processes. A
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version of such a theorem for calculating the process steady state probabilities has been
proposed in [36]. We give here the version of this theorem for any additive functional on
trajectories of regenerative processes.

Theorem 1. For any admissible decision l ∈ L of the controllable (in regeneration points) regener-
ative process J = {J(t), t ≥ 0} with a finite expected regeneration period E[S(l)

1 ] < ∞ and any
integrable function g, defined on the process set of states E, the following ergodic property holds

lim
t→∞

1
t

t∫
0

g(J(u))du =
1

E
[
S(l)

1

]E


S(l)

1∫
0

g(J(u))du

. (10)

Proof. For regeneration points S(l)
i of the process J we denote by N(l)(t) = ∑i≥0 1

{S(l)
i ≤t}

its renewal function and represent the left hand part of equality (10) as follows

lim
t→∞

1
t

t∫
0

g(J(u))du =

= lim
t→∞

N(l)(t)
t

1
N(l)(t) ∑

1≤i≤N(l)(t)


S(l)

i∫
S(l)

i−1

g(J(u))du

+
1
t

t∫
S(l)

N(l)(t)

g(J(u))du.

Taking into account that, due to our assumptions, the last term in this equality tends
to zero, the proof follows from the limit theorem for the renewal function and the law of
large numbers for i.i.d. r.v.s used under the sign of sum.

The Theorem implies the following corollary.

Corollary 1. For any PM l ∈ L, the long time average income takes the form

Vl = lim
t→∞

1
t

Vl(t) =
cMl − clbl

Ml + bl
, (11)

where Ml = E[S(l)
1 ] is the mean time to the set of states El destination under PM strategy l ∈ L.

Proof. Indeed, in our case g(J(u)) = c1{J(u)∈Ēl} − cl1{J(u)∈El} and, therefore,

S(l)
1∫

0

g(J(u))du = cS(l)
1 − cl B(l). (12)

This, jointly with E[S(l)
1 ] = Ml and E[B(l)] = bl , leads to the right hand part of (11).

Let us introduce the following dimensionless indicators

m0 =
M0

b0
, ml =

Ml
bl

, c̄0 =
c0

c
, c̄l =

cl
c

, (13)

m∗l =
ml + 1
m0 + 1

and c∗l =
c̄l + 1
c̄0 + 1

. (14)

In these notations, the following theorem holds.

Theorem 2. The l-strategy is preferable to the 0-strategy : “to work up to the system failure” iff
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m∗l ≥ c∗l . (15)

Proof. Based on the quality of strategy l ∈ L given by Formula (11) in Corollary 1 the l-th
strategy will be preferable over the 0-strategy if and only if

cM0 − c0b0

M0 + b0
≤ cMl − clbl

Ml + bl
. (16)

Using simple algebra, the last expression can be represented equivalently as

c(M0bl −Mlb0) ≥ b0bl(c0 − cl) + c0b0Ml − clbl M0.

Dividing by cb0bl both sides, and then by m0, in terms of dimensionless indicators
introduced in (13), the last relation can be represented as

ml + 1
m0 + 1

≥ c̄l + 1
c̄0 + 1

(17)

Hence, due to (14), Formula (15) follows, which completes the proof.

Remark 1. This result can be extended to compare any two strategies PM i, j ∈ {1, 2, . . . , L}(i 6= j).
For this, it is sufficient, by analogy with (13 and 14), to consider the dimensionless indicators

mi =
Mi
bi

, mj =
Mj

bj
, c̄i =

ci
c

, c̄j =
cj

c
,

m∗ij =
mi + 1
mj + 1

and c∗ij =
c̄i + 1
c̄j + 1

.

Thus, the i-th strategy is preferable over the j-th strategy iff

m∗ij ≥ c∗ij. (18)

Further, Theorem 2 will be used to propose an algorithm for comparing any PM
strategy with the strategy "to work up to the system failure" in order to choose the preferable
one. Since, for any PM strategy l ∈ L, the mean value of regeneration period equals
E[Π(l)] = Ml + bl , and mean repair b0 and PM bl values, as well as reward c, repair c0,
and PM cl costs are supposed to be known to a DM, to solve the problem, it is enough to
calculate the mean times Ml of the set El destination. An algorithm for this is proposed in
the next section.

3.2. The General Procedure for Comparing the Quality of PM Strategies

To solve the stated problem, it is necessary to calculate the c.d.f.s (6) and (7) for
targeted sets El (l ∈ L) destination times. To do this, we propose using the ordered
statistics distributions. Thus, we need to, first, represent distributions of the time to the set
El destination in terms of ordered statistics distributions. Therefore, the following general
Algorithm 1 is proposed.
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Algorithm 1 The general algorithm for choosing the best strategy.

Beginning. Determine:
- Integers n, k, set of PM strategies L;
- Set of system states E;
- Subsets of states El (l = 1, L) for the PM beginnings or of the system failure for l = 0;
- Distribution A(t) of the system unit lifetime, which is defined in Section 2.1;
- Mean PM and system repair times bl (l ∈ L);
- Rewards c, cost of repair c0, cost of l-th PM cl ;
Calculate value c∗l according to (14).
Step 1. Describe the connection between subsets of the PM and repair beginning states and
ordered statistics.
Step 2. Represent the time Sl of the subsets El (l ∈ L) destinations in terms of the ordered
statistics

A(1), . . . , A(j), . . . , A(n) (19)

of the system units failure times (i.i.d r.v.) A1, . . . , Aj, . . . , An, which bring the system to
the subset El .
Step 3. Calculate distributions of the respective ordered statistics

A(j)(t) = P{A(j) ≤ t} = ∑
j≤i≤n

(
n
i

)
Ai(t)(1− A(t))n−i. (20)

Step 4. Calculate the distributions Fl(t) of the subsets El destination times and their
expectations, in terms of distributions of respective ordered statistics,

Ml = E[S(l)
1 ] =

∞∫
0

(1− Fl(t))dt. (21)

Step 5. Using Formulas (13) and (14) calculate m0, ml , m∗l .
Step 6. Compare the calculated values m∗l with the indicator c∗l , (l ∈ L) as advice to a DM
in order to choose the best strategy according to inequality (15).
Stop.

Remark 2. The algorithm can also be used to solve other problems, for example, to compare PM
strategies with each other, according to inequality (18), and also to analyze the sensitivity of the
decision making to the shape of the system unit lifetime distributions.

4. Numerical Experiments

This section presents the results of numerical experiments carried out in accordance
with Algorithm 1.

4.1. Preliminary: Description of the Example

To demonstrate the applicability of Algorithm 1 we propose two numerical examples.
They relate to the problem of PM organization for the unmanned underwater vehicle
(UUV), which was considered in [6], regarding the criterion of maximizing the availability
factor. The UUV (Figure 1) is the main part of an automated system for remote monitoring
of underwater sections of a gas pipeline.

The UUV carries out a set of measures to externally inspect the offshore section of the
gas pipeline, in order to determine its technical condition, to detect defects, and to provide
data for subsequent analysis of the causes of defects. The UUV can move using six motors
(1–6 in the Figure 1), and, depending on the type of installed engines, different situations
for system failure are possible:

• The system failure occurs when any four motors fail regardless of their location. This
situation is modeled as a 4-out-of-6: F-system and is presented in Section 4.2;
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• The system failure depends on the location of its failed units, and occurs when three
motors from one side and one motor from the other side fail (this situation will be
denoted as 3 + 1-out-of-6: F system), but the system does not fail when two motors
fail on one side, and two motors on the other. Any next unit failure leads to the system
failure (this situation will be denoted as a 5-out-of-6: F system).

Figure 1. The unmanned underwater vehicle.

Therefore, from the point of view of mathematical modeling, the last situation can
be considered as a combination of the above two special types of k-out-of-n : F systems,
where failure depends on the position of its failed components. For such kind of systems, a
special notation (3+ 1, 5)-out-of-6 : F system is proposed and it is considered in Section 4.4.
This model is the starting point of our numerical study. Since the initial information is very
limited, we focus on the analysis of the sensitivity of decision making to the shape of the
distribution of system unit lifetime.

To do this, we consider four types of popular distributions: (i) exponential, Exp(α);
(ii) Gamma distribution, Γ(Θ, k); (iii) Gnedenko–Weibull distribution, GW(λ, k); (iv) log-
normal distribution LN(µ, σ2). The parameters of all distributions in the experiments are
chosen so that their expectations remain constant and coincide for all of these different
distributions, being equal to 1, a = E[Ai] = 1. This means that we scaled the time with
respect to the mean unit lifetime a. At that, the second parameters are chosen so that the
coefficient of variation v = σ

a varies in the interval v ∈ [0.3, 5.0]. Analogously we choose
the pricing scale in such a way that the reward equals to one, i.e., c = 1.

Let us see how change of the parameters c0, cl affects the value c∗l . Due to represen-
tation of c∗l by (14), it is clear that in any case c∗l ≤ 1. Moreover, if c >> max{c0, cl}, then
c∗l ≈ 1. On the contrary, if c is negligible relative to the values c0 and cl , then c∗l ≈

cl
c0

. For
further numerical analysis, the parameter c∗3 is essential and it is shown in Figure 2 with
respect to the value c0 and the ratio c3

c0
.

Algorithm 1 was implemented as a MATLAB program code. The results of numerical
experiments are presented as graphs plotted by the developed program.
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Figure 2. The cost criterion c∗3 versus c0 and the ratio c3
c0

.

4.2. PM of a System, Whose Failure Does Not Depend on the Location of Its Failed Units

First, consider a 4-out-of-6 : F–system, where failure does not depend on the configu-
ration of its failed units. In this case, only four strategies of PM control are possible:

• 0-strategy is that the system operates up to its failure;
• l-strategy (l = 1, 2, 3) is to begin the PM when the system reaches the state l.

For our numerical experiment, we restrict ourselves to comparing the 0-strategy and
3-strategy. In this case, it is true that E3 = {3} and E0 = {4}. The analytical expressions
for the mean values Ml are not always accessible. However, their numerical calculation in
accordance, with Algorithm 1, is not too difficult and it is proposed below.

In this case, the general Algorithm 1 is essentially simplified, since the time to the
subset El destination coincides with respective ordered statistics A(l) of the times to the
system unit failures Ai : (i = 1, 6).

Therefore, Steps 1 and 3 of Algorithm 1 look like
Step 1. E3 = {3}, E0 = {4}
Step 3. F3(t) = A(3)(t), F0(t) = A(4)(t).
All other steps remain unchanged.

The results of the calculations performed in accordance to the above procedure are
presented in the following graphs. Figure 3 represents 3D graphs of surface m∗3 for two
values of b0 versus variation coefficient v and fraction b3

b0
jointly with their level curves for

different values of c∗3 .
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Figure 3. The surfaces m∗3 for b0 = 0.001 and b0 = 0.1 versus coefficient of variation v and fraction b3
b0

(upper graphs) and level curves of the surface m∗3 (lower graphs) for the 4-out-of-6 : F–system.

The upper graphs show the surfaces m∗3 for the Gamma distribution of the system
unit lifetime for the values b0 = 0.001 (left) and b0 = 0.1 (right) and their intersection
with the plane corresponding to the value of the indicator c∗3 = 0.7. The red line on the
surfaces corresponds to an exponential distribution, at which the surface turns into a curve.
Above the plane, the 3-strategy gains an advantage over the 0-strategy. Below the plane,
it is preferable to use the 0-strategy. As can be seen from the graphs, for the exponential
distribution of the system units lifetime, the 3-strategy will be preferable over 0-strategy,
regardless of the b3

b0
ratio. For the Gamma distribution, the decision on the choice of the PM

strategy depends on the value of the b3
b0

ratio and the coefficient of variation v.
The lower graphs show the level curves of the m∗3-surface for different values of c∗3 for

four types of distributions: Γ(Θ, k) (solid curves), GW(λ, k); (dashed curves), LN(µ, σ2)
(dotted curves), and Exp(α) (red circle), where the axis labels correspond to the upper
graph. Above the level curve, preference should be given to the 3-strategy, below—to the
0-strategy.

The red circle on the solid magneto color line corresponds to the exponential distribu-
tion of the system unit lifetime at the value of the cost criterion c∗3 = 0.9. In that case, for an
exponential distribution, the value of the b3

b0
ratio will influence the decision on choosing

the best strategy.
The results can be used as a DM adviser and demonstrate the possibility of studying

the sensitivity of the decision about PM to the type of distribution of the lifetime of the
system units.

4.3. Special Case: PM of a K-Out-Of-n: F–System, for Exponential Distributions of Unit Lifetimes

Under the assumption about exponential distributions of the lifetimes of the system
units Ai, A(t) = P{Ai ≤ x} = 1− e−αt,, the analytical calculation of the parameter m∗ is
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possible for any k and n. The distributions of ordered statistics can be calculated as sums of
the intervals Ti = A(i) − A(i−1) between them. Thus,

S(l) = T1 + · · ·+ Tl . (22)

Due to the independence of the residual lifetimes of all non-failed units on the failure
time of any of them, the intervals Ti are

Ti = min{A1, A2, . . . An−(i−1)}. (23)

Therefore, they are independent, exponentially distributed r.v.s with parameters
λi = (n− i + 1)α. Hence,

Fi(t) = P{Ti ≤ t} = 1− P{Ti > t} = 1− (1− A(x))n−i = 1− e(n−(i−1))αt. (24)

Thus, E[Ti] = [(n− (i− 1))α]−1 and, therefore, for the special case n = 6, k = 4, it holds

Ml = ESl = ET1 + · · ·+ Tl =
1

6α
+ · · ·+ 1

(6− (l − 1))α
. (25)

In particular, M3 = 37
60α , M0 = M4 = 57

60α . Taking into account this and the fact that
α = 1, we obtain an analytical expression for the red curves in the upper graphs in Figure 3
as a function of m∗3 versus b3

b0

m∗3 =
m3 + 1
m0 + 1

=
b0(M3 + b3)

b3(M0 + b0)
=

1
b3
b0

·
M3
b0

+ b3
b0

M0
b0

+ 1
. (26)

Therefore, according to the necessary and sufficient condition (15), the 3-strategy will
be preferable to the 0-strategy, if

• m∗3 =
37+0.06 b3

b0

57.06 b3
b0

> c∗3 , for b0 = 0.001,

• m∗3 =
37+6 b3

b0

63 b3
b0

> c∗3 , for b0 = 0.1.

Following the equation m∗3 = c∗3 = 0.9, one can calculate b3
b0
≈ 0.7213 for b0 = 0.001

and b3
b0
≈ 0.7298 for b0 = 0.1. These values coincide with the coordinates of the red circles

shown in Figure 3.

4.4. PM of a System, Whose Failure Depends on the Location of the Failed Units

If the system failure depends on the location of the failed units, the comparison of
strategies and the decisions about the choice of PM are system-specific and depend on the
exploitation conditions. In this case, we consider the model described in Section 4.1 and
presented in Figure 1, which is denoted as the (3 + 1, 5)-out-of-6 : F system.

Further, for convenience, a binary code is used to indicate system states, namely the
number of the state j = (j1, j2, . . . j6) is given in accordance to the formula

j = |j| = ∑
0≤i≤6

ji26−i. (27)

Then, the set of failure states E0 consists of a combination of states with four failures
and five failures.

By analogy with Section 4.2, we consider two strategies:

• 0-strategy: run up to the system failure. The subset of the states for the repair
beginning is E0;

• 3-strategy: start the PM after the failure of any three units. The subset of the states for
the PM beginning is E3.
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In this case the ordered statistics do not uniquely determine the time to the corre-
sponding subset of state E0 destination. Thus, to apply Algorithm 1, it is necessary to
specify some of its steps.
• Step 1. To form a set of repair start states, consider the set of states with four failed units,

E4 = {15, 23, 27, 29, 30,39, 43, 45, 46, 51, 53, 54,57, 58, 60}. (28)

In this set, the red states are associated with three failed units on one side and one
ion other side, denoted as (3 + 1), when the system failure occurs. The blue states are
associated with two units failed one one side and two on the other, denoted as (2 + 2),
which leads to the system failure after any next unit failure.
The three-strategy starts after the failure of any three units, the subset for it is E3.

• Step 2. Accordingly to step 1, the times S0 for the system failure coincide with ordered
statistics A(4) for red states of subset E4, and coincide with ordered statistics A(5) for
blue states of subset E4.

S0 =

{
A(4), if the system is in “red“ state E4,
A(5), if the system is in “blue“ state E4,

(29)

The time S3 to the set E3 destination coincide with the relevant ordered statistics
namely: S3 = A(3).

• Step 3. Does not change. The distributions A(j)(t) of the j-th ordered statistics are
calculated according to (20),

A(j)(x) = P{X(j) ≤ x} = ∑
j≤i≤n

(
n
i

)
Ai(x)(1− A(x))n−i. (30)

• Step 4. The distribution of the time S0 to the subset E0 destination according to its
determination by (29) equals to

F0(t) =
6

15
A(4)(t) +

9
15

A(5)(t) =
2
5

A(4)(t) +
3
5

A(5)(t).

The distribution of the subset of states E3 destination is F3(t) = A(3)(t). Appropriate
expectations of times to the subsets El for l = 0 and l = 3 destinations are

M0 =
2
5

E[A(4)] +
3
5

E[A(5)], M3 = E[A(3)].

• Step 5. Does not change: following to step 5 of the Algorithm 1, calculate m0, m3, m∗3 .
• Step 6. Compare the calculated values m∗3 with indicator c∗3 , according to the rule

given by (15) as advice to a DM in order to choose the best strategy.
• Stop.

The results of the numerical experiments are presented in Figure 4.

Figure 4. Level curves for m∗3 versus variation coefficient v and fraction b3
b0

for (3+ 1, 5)-out-of-6: F – system.
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The graphs show the level curves of the surface m∗3 for the values b0 = 0.001 (on
the left) and b0 = 0.1 (on the right). The color of curves corresponds to the values of
the cost criterion c∗3 : 0.6 (cyan), 0.7 (blue), 0.9(magneto). The graphs show the results
for four different distributions of system unit lifetimes: Γ(Θ, k) (solid curves), GW(λ, k)
(dashed curves), LN(µ, σ2) (dotted curves), and Exp(α), where the axis labels correspond
to Figure 3.

In contrast to the model, whose failure does not depend on position of its failed units,
the influence of the parameter b0 is much less (especially for a gamma distribution), in
comparison to the ratio b3

b0
. The shape of the lifetime distribution, as well as the coefficient

of variation v, have a particular influence on the choice of the preferred strategy. Compared
to the previous case, the area where the 0-strategy is preferable, has increased significantly.
Both considered cases show that, for making decisions on the choice of the best PM strategy,
it is not enough to take into account only the expectation of system unit lifetimes and the
costs of PM and repair.

4.5. Special Case: PM of a (3 + 1, 5)-Out-Of-6: F – System for Exponential Distribution of
Unit Lifetimes

In the special case of exponential distribution of system unit lifetimes, it is possible to
use the same approach as in Section 4.3 and the problem can be solved analytically.

In this case, as before, it holds M3 = 37
60α , M4 = 57

60α and therefore M5 = M4 +
1

2α = 87
60α .

From here, it follows

M0 =
2
5

E[A(4)] +
3
5

E[A(5)] =
2
5

M4 +
3
5

M5 =
375

300α
=

5
4α

. (31)

Substitution of the calculated M3 and M0 for the exponential distribution makes
it possible to obtain m∗3 as a function of b3

b0
and to formulate a necessary and sufficient

condition (15) for the 3-strategy preference over the 0-strategy for this system, in the case
b0 = 0.001, in the form

• m∗3 =
37+0.06 b3

b0

75.06 b3
b0

> c∗3 ,

and in the case b0 = 0.1 as

• m∗3 =
37+6 b3

b0

81 b3
b0

> c∗3 .

The coordinates of the red circles presented in Figure 4 for c∗3 = 0.9 can be calculated
analytically: b3

b0
≈ 0.5482 for b0 = 0.001 (Figure 4, graph on the left) and b3

b0
≈ 0.5531 for

b0 = 0.1 (Figure 4, graph on the right). These results are in complete agreement with the
numerical calculations.

5. Conclusions

The paper deals with the choice of a preferable PM strategy for the k-out-of-n system to
maximize the long run average system reward. The PM strategies are based on the system
state observations. Ordered statistics are used as indicators for PM and repair start times.

The general conditions for the comparison of any PM strategy were obtained and
an algorithm for their application was developed. The obtained theoretical results and
the algorithm allow investigating the sensitivity of the decision making in regard to the
shape of the system unit lifetime distributions. The algorithm was implemented for two
examples arising from some real word problems. For the special case of exponential
distribution of system unit lifetimes, explicit analytical results were obtained. The results of
numerical calculations coincide with those from the analytical study. A series of numerical
experiments shows the sensitivity of a PM strategy choice in regard to the shape of the
system unit lifetime distributions.

The novelty and features of this study are:
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• A method for PM investigations of k-out-of-n: F systems, whose failures depend on
the positions of failed units developed;

• A new approach based on ordered statistics if used to solve the problem;
• A cost-type criterion for PM strategies comparison is used;
• A study of the sensitivity of decision making to the shape of system unit lifetime

distributions is carried out.
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