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Abstract: Hydrogel has a complex network structure with inhomogeneous and random distribution
of polymer chains. Much effort has been paid to fully understand the relationship between meso-
scopic network structure and macroscopic mechanical properties of hydrogels. In this paper, we
develop a deep learning approach to predict the mechanical properties of hydrogels from polymer
network structures. First, network structural models of hydrogels are constructed from mesoscopic
scale using self-avoiding walk method. The constructed model is similar to the real hydrogel network.
Then, two deep learning models are proposed to capture the nonlinear mapping from mesoscopic
hydrogel network structural model to its macroscale mechanical property. A deep neural network
and a 3D convolutional neural network containing the physical information of the network structural
model are implemented to predict the nominal stress–stretch curves of hydrogels under uniaxial
tension. Our results show that the end-to-end deep learning framework can effectively predict the
nominal stress–stretch curves of hydrogel within a wide range of mesoscopic network structures,
which demonstrates that the deep learning models are able to capture the internal relationship
between complex network structures and mechanical properties. We hope this approach can provide
guidance to structural design and material property design of different soft materials.

Keywords: deep learning; hydrogel network; mechanical property; convolutional neural network;
self-avoiding walk

1. Introduction

With remarkable mechanical properties, hydrogels demonstrate high potential to
be one of the advanced smart materials in the future [1,2]. Various superior properties
of hydrogels have been discovered, such as high stretchability [3], biocompatibility [4],
self-healing [5], and toughness [6]. On the basis of these properties, hydrogels are expected
to pave the way for future applications such as drug delivery [7], flexible electronics [8,9],
tissue engineering [10–12], and optical components [13–15]. Because the effect of poly-
mer network structure on the mechanical properties of hydrogel is significant, a deeper
understanding of polymer network can help us to better utilize the existed material and
create new material. Therefore, it is imperative to investigate the relationship between the
network structures and mechanical properties of hydrogels.

The mechanical properties of hydrogels are studied from different scales, from micro-
scopic scale to continuum scale. The constitutive model constructed at the continuum scale
is widely used and practical [16], however, some of them are lack of physical meanings
and the parameters of the constitutive model are not universal to hydrogels with different
ingredients proportion. It is because that the continuum scale model cannot reflect the
real structure of hydrogel network. At the microscopic level, the mechanical properties
of hydrogels are usually studied using molecular dynamics methods. However, it is dif-
ficult to overcome the issues of small size and time-consuming natures of the molecular
dynamics simulations. The mesoscopic hydrogel model is expected to link the microscopic
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and the continuum scales and act as an important complement between them, providing
a new theoretical framework for hydrogel research. Recent research on hydrogels at the
mesoscopic scale is still in its infancy [17–21]. Obtaining valuable information from the
mesoscale model can help to better understand the relationship between network struc-
ture and mechanical property. Proper hydrogel network models are in urgent need to
essentially describe multiple mechanical behaviors of hydrogels. Therefore, we develop a
generating method of mesoscopic hydrogel network based on self-avoiding walk (SAW)
network model. There are several main advantages of mesoscopic hydrogel model, such as
discrete systems, the characterization of complexity and stochasticity, and the reflection of
mesoscopic structure of hydrogels. In fact, the complex physical relationship between the
hydrogel network structure and its corresponding properties is often difficult to accurately
express with current constitutive theories. In current studies on hydrogel mechanical
property, results of phenomenological theory are not accurate enough, and numerical sim-
ulations are often time-consuming. In order to rapidly describe the mechanical properties
of hydrogels, machine learning (ML) offers the benefit of extremely fast inference and
requires only a basic dataset to learn the relationship between hydrogel network structure
and mechanical properties.

With the development of ML, various ML algorithms have been widely applied to the
field of engineering. Traditional ML algorithms have been used for data-driven solutions
to mechanical problems [22–25]. There are also studies on the parameter determination
of hydrogel constitutive model [26] and self-assembly hydrogel design [27]. In addition
to using ML to establish implicit input-output relationships to solve regression problems,
recently there is a new paradigm of physical informed neural network [28] that extends the
learning capability of neural network (NN) to include physical equations and boundary
conditions. Deep learning (DL) is a class of ML algorithms that uses multiple layers to
progressively extract higher-level features from the raw input. DL has been successful in a
wide range of applications, such as semantic segmentation, image classification, and face
recognition [29–32]. The reason why DL significantly outperforms traditional ML is that
the models are no longer limited to the multilayer perceptron (MLP) architecture, and are
able to learn embedded and aggregated datasets. More specifically, DL methods provide
a more advanced framework in which explicit feature engineering is not required and
the trained model typically demonstrates higher generalization and robustness. Thereby,
DL shows great potential in solving cross-scale prediction problems of structure–property
relationship in the field of mechanics. Among the applications of DL algorithms in mechan-
ics, it is proved that convolutional neural networks (CNNs) are significantly superior in
damage identification and mechanical property prediction on composite materials [33–37].
In addition, Yang et al. [38] demonstrated how a deep residual network can be used to
deduce the dislocation characteristics of a sample using only its surface strain profiles at
small deformations for crystal plasticity prediction. Pandey and Pokharel [39] presented a
DL modeling method to predict spatially resolved 3D crystal orientation evolution of poly-
crystalline materials under uniaxial tensile loading. Herriott and Spear [40] investigated the
ability of deep learning models to predict microstructure-sensitive mechanical properties in
metal additive manufacturing and Choi et al. [41] used artificial intelligence-based methods
to investigate the fatigue life of the hyperelastic anisotropic elastomer W-CR material.

The advantages of CNNs for image-like data are mainly in the following aspects:
firstly, by employing the concepts of receptive fields in the convolutional layer, CNNs
could be a powerful tool for pattern recognition in computational mechanics and material
problems that are characterized by local structural interactions [42]. Secondly, CNNs are
able to effectively learn a certain representation of underlying symmetry and tend to be
invariant to general affine input transformations such as translations, rotations, and small
distortions [42]. These properties enable CNNs to characterize structures with heteroge-
neous and randomness, for instance, hydrogel network at the mesoscopic scale. Meanwhile,
mesoscopic scale modeling studies often yield a large amount of high-dimensional data
with corresponding physical information, which can be used to establish a modular and
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efficient mechanical modeling framework. However, there is still lack of using DL methods
to study the mechanical properties of soft materials.

In this paper, we utilize deep neural network (DNN) and 3D CNN to reveal the
implicit relationship between network structure and mechanical property of hydrogel, so
as to predict mechanical property from different network structures. First, we propose
a modeling method for single-network hydrogel network, that is, a self-avoiding walk
network model, which approximates the real polyacrylamide (PAAm) hydrogel structure
at a mesoscopic scale. Then, we develop a DNN based on MLP and a 3D CNN containing
the physical information of the network, and use them to predict the nominal stress–stretch
curves of hydrogels under uniaxial tension, because the stress–stretch relationship is one of
the most important mechanical description that can be used to derive typical properties,
such as modulus, toughness, and strength. Using a dataset of 2200 randomly generated
network structures of PAAm hydrogel and their corresponding stress–stretch curves, we
train and evaluate the performance of the two models. Based on the results of the error
analysis and the performance of the two models on the training data, we compare and
summarize their generalization capability.

The paper is organized as follows: in Section 2 we present the derivation of the
constitutive model for PAAm hydrogel, the modeling method of hydrogel networks,
and the basic knowledge of DNN and CNN algorithms. The modeling framework and
architecture of the two DL models we developed are detailed in Section 3. Analysis and
evaluation of the results for mechanical property prediction of hydrogel are demonstrated
in Section 4. Finally, concluding remarks are provided in Section 5.

2. Methodology
2.1. Derivation of the Constitutive Model of Hydrogel

For effectively using hydrogel in engineering applications, it is very imperative to
understand the mechanical properties of hydrogels. Although polymer physics and contin-
uum mechanics provide a way to study the mechanical properties of hydrogels, uniaxial
loading test is still a common method to test the mechanical property of hydrogel materials.
In order to accurately predict the nominal stress–stretch relationship of hydrogel using
DL method, a dataset of stress–stretch curves is needed for the model training. However,
obtaining stress–stretch curves from experiment tests requires a lot of labor work, especially
considering different polymer fractions of hydrogel. In this study, the relationship of stress
and stretch is derived from the constitutive model we have proposed, which is used as the
ground truth (prediction target) for DL model training.

In this study, to determine the relationship of stress and stretch whether from testing
or theoretical prediction, the deformation process of hydrogel is divided into two steps:
swelling process and loading process. During swelling process, because of the hydrophilia
of polymer chains, the dry polymer can imbibe a large quantity of solvent and swell into
hydrogel. The volume of hydrogel is the sum of absorbed solvent and dry polymer due to
the law of conservation of mass. The hydrogel is assumed to be traction-free and reaches
an equilibrium state at the end of the process, which represents the chemical potential is
the same throughout the whole hydrogel and the external solvent. In the loading process,
both ends of the dumbbell-shaped specimen are clamped. One end is held fixed on the
foundation of the tensile testing machine and the other end is stretched with the elongation
of the moveable clamp. The middle part of dumbbell-shaped specimen is under uniaxial
tension state since two directions that are perpendicular to the loading direction are traction-
free. At this state, hydrogel is no longer contacted with solvent and mechanical boundary
condition is applied.

To derive the stress–stretch relationship of hydrogel during uniaxial loading, we adopt
well-known free energy function due to Flory and Rehner [43,44]:

W =
1
2

NkT[FiKFiK − 3− 2 log(detF)]− kT
ν

[
νC log

(
1 +

1
νC

)
+

χ

1 + νC

]
(1)
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where W is the free energy pure reference volume, N is the number of polymeric chains
per reference volume, k is the Boltzmann constant, T is the absolute temperature, F is the
deformation gradient of the current state related to the dry state, C is the concentration of
solvent in the gel, ν is the volume per solvent molecule, and χ is a dimensionless parameter
measuring the enthalpy of mixing. The reference state is chosen as the dry state before the
polymer absorbs any solvent.

During the swelling process, all molecules in the gel are assumed to be incompressible.
Therefore, the volume of the gel is the sum of the volume of the dry network and the
volume of solvent:

1 + νC = det F (2)

Using Legendre transformation, the free energy density function W(F, C) can be
transformed into Ŵ = W(F, C)− µC, which is the function of chemical potential µ and
deformation gradient F. Considering the incompressible condition, the new free energy
density function can be written as:

Ŵ(F, µ) =
1
2

NkT[I − 3− 2 log J]− kT
ν

[
(J − 1) log

(
J

J − 1

)
+

χ

J

]
− µ

ν
(J − 1) (3)

where I = FiKFiK and J = detF.
Based on the assumption of two steps during the deformation process, the deformation

gradient tensor F can be decomposed as F = F0F
′
. F0 is the deformation gradient of the

free-swelling state related to the dry state. F
′

is the deformation gradient of the mechanical
loading state related to the free-swelling state. For a free-swelling process, when hydrogel
reaches the equilibrium, F0 = λ0I.

Since we prefer to use the free-swelling state as the reference state during mechanical
test, the free energy density function with free-swelling state as the reference state is
Ŵ ′
(

F
′
, µ
)
= λ−3

0 Ŵ(F, µ), which can be expanded as:

Ŵ ′
(

F
′
, µ
)
=

λ−3
0
2 NkT

(
λ2

0 I′ − 3− 2 log
(
λ3

0 J′
))

− kT
v

[(
J′ − λ−3

0

)
log J′

λ3
0 J′−1

+ χ

λ6
0 J′

]
− µ

v

(
J′ − λ−3

0

) (4)

where I′ = F′iKF′iK and J′ = detF′. Because the volume is incompressible during the
loading process, J′ equals to one and stretch λ0 is a constant. With free-swelling state as the
reference state, the free energy density function can be written as:

Ŵ ′
(

F
′
, µ
)
=

λ−1
0
2

NkTI′ + A (5)

where A is a constant given as:

A = −
λ−3

0
2

NkT
(

3 + 2 log
(

λ3
0

))
− kT

v

[(
1− λ−3

0

)
log

1
λ3

0 − 1
+

χ

λ6
0

]
− µ

v

(
1− λ−3

0

)
(6)

During loading process, considering the volume incompressibility condition, we
add a term p(1− detF′) to the free energy function Ŵ ′

(
F
′
, µ
)

, where p is a Lagrange
multiplier, which can be determined by boundary conditions. Then the nominal stress can
be calculated by:

s′ik =
∂
(

Ŵ ′
(

F
′
, µ
)
+ p

(
1− det

(
F
′
)))

∂F′ik
(7)

and we obtain the expression of nominal stress with free-swelling state as the reference state:

s′ik = λ−1
0 NkTF′ik − p

(
F′ik
)−T (8)
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For a uniaxial loading process, the deformation gradient tensor F
′

is:

F
′
=

 λs
1√
λs

1√
λs

 (9)

where λs is the stretch along the uniaxial direction. The nominal stress along with and
perpendicular to the uniaxial direction is s′1, s′2 and s′3, respectively. As the surface perpen-
dicular to the uniaxial direction is traction-free, therefore, the expressions of nominal stress
s′1, s′2 and s′3 are as follows

s′1 = λ−1
0 NkTλs − pλ

− 1
2

s (10)

s′2 = s′3 = λ−1
0 NkTλ−1

s − pλ
1
2
s = 0 (11)

The Lagrange multiplier is solved from Equation (11), and p = λ−1
0 NkTλ

− 3
2

s . The
nominal stress along with the uniaxial direction is derived as:

s′1 = λ−1
0 NkT

(
λs − λ−2

s

)
(12)

We define the volume fraction of the polymer in the hydrogel as φV , φV = 1
J = 1

λ3
0
.

Under uniaxial loading, the nominal stress with free-swelling state as reference state is
given as:

s′1 = φ
1
3
V NkT

(
λs − λ−2

s

)
(13)

After obtaining Equation (13), the nominal stress–stretch curves with different polymer
fractions could be calculated. This equation reveals the relationship between mechanical
response and material property of single-network hydrogel and can be used as the dataset
for DL-based model training.

2.2. Network Generation Model of Single-Network Hydrogel

At mesoscopic scale, the hydrogels can be abstracted as polymer chains comprised
by a large number of points and bond vectors [45,46]. Models at the mesoscopic scale can
help us extract the commonalities of polymer chains, and make the research focus on the
responses of structural changes of the chain and network, rather than the specific molecular
properties at the microscopic scale or the complex boundary problems at the continuum
scale. In order to describe the network configuration of single-network hydrogels at
a mesoscopic scale, we develop a mathematical model using SAW to characterize the
randomness, uniqueness, and heterogeneity of polymer chains. In addition, the model
potentially reproduces a configuration that is statistically similar to the true structure of
polymer chains.

The configuration of molecular chains of single-network hydrogels can be abstracted
as bond vectors connected end to end, which is geometrically similar to a walking trajectory
in space. Random walk (RW) is a mathematical model describing a random process in the
lattice space. RW describes a series of random steps starting from a point in a discrete lattice
space. An example of RW in two-dimensional space is shown in Figure 1a. Assuming
that the end of the chain is the ongoing random walk, then the next step is to choose from
up, down, left, and right directions (including the direction to the point of the previous
step). The probability of each direction is 1/4. After selecting the next direction, the chain
takes one step to the neighboring node, then randomly selects a direction again for the next
step, and so on. The RW model allows the walking trajectory to repeatedly visit the same
node. Besides, the SAW model is also a commonly used mathematical model to describe
the configuration of polymers. The SAW model is derived from the RW model. The main
difference between the two models is that the SAW model does not allow the walking
trajectory to visit the same point repeatedly. Because the SAW model does not allow to
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go back, each node has at most three alternative directions in two-dimensional space, as
shown in Figure 1b. If some of the three directions have been previously visited by this
chain or other chains in the same space, the SAW model will not select this direction at the
next step, as shown in Figure 1c.

Figure 1. Schematics of RW model and SAW model. (The red dot is the starting point, the black arrow represents the
walking path, and the blue arrow represents the optional direction for the next step.) (a) The RW model. There are four
optional directions at every moment. (b) The SAW model cannot go back. (c) The SAW model cannot select points that are
already occupied.

Figure 2 shows the SAW trajectory with different number of steps N. It can be seen
that with N increase, the configuration of the SAW trajectory is geometrically similar to the
configuration of the real polymer chain.

Figure 2. The SAW path generated by the computer program. As the number of steps N increases, the configuration of the
path is similar to the real polymer chain.

The SAW model is able to generate one long chain, but not multiple paths. In order to
generate a complex network model reflecting the configuration of the hydrogel network,
we propose a SAW-based network generation algorithm (NGA). Because polyacrylamide
(PAAm) hydrogel basically does not conduct viscoelasticity or damage accumulation effect
during the loading process, and it can be described as nearly elastic using hyperelastic
constitutive model to its mechanical properties, we take the PAAm hydrogel as an example.
The design ideas of the NGA are quite similar to the actual generation process of hydrogel
network. Figure 3 shows the design logic of the NGA. Take two-dimensional space as
an example, consider that each point in the discrete space can only be occupied by one
particle, that is, one from monomer particles (gray dots), crosslinker particles (red dots), or
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water molecules (void space). Before the NGA starts, it is necessary to set the space size w,
the number of monomer particles nmon and the number of crosslinker particles ncro, so that
the polymer volume fraction of the network can be determined as:

φV =
nmon + ncro

w3 ≈ nmon

w3 (14)

where considering nmon � ncro, Equation (14) gives the polymer volume fraction in the
NGA. While the NGA is running, a SAW starts to wander from the original point in the
space. Each step of the SAW represents a certain type of particle assembled into the chain
and becomes part of the chain. In each step of the SAW, the probability of what kind of
particles to be inserted depends on the number of remaining monomers and crosslinkers,
as shown in Figure 3a. Each particle that has not been inserted has the same probability
to be the next spatial point. Because one crosslinker of the PAAm hydrogels can link four
monomers, if the nineth position is connected to the crosslinker, the tenth position will be
branched out to form three new chain ends, as shown in Figure 3b. The SAW will continue
on the basis of these three new chains. There is only one SAW chain at the beginning, then
it will gradually bifurcate, and finally form a network structure, as shown in Figure 3c. In
this study, this network model is called SAW network model, which is able to characterize
the complex polymer network configuration of single-network hydrogels.

Figure 3. Schematics of SAW network generation model in 2D space. (a) The probability of what
kind of particles to be inserted depends on the number of remaining monomers and crosslinkers.
(b) Generation of new chain ends when inserting a crosslinker. (c) More chains walk in space to form
a network.

Since the space size w is limited, the SAW network generated by the NGA will
eventually reach the boundary of the space. Therefore, we adopt periodic boundary
conditions in this model. When the SAW touches the periodic boundary of the space, it
will stop right there and no longer connect to any other particles. Instead, the periodic
boundary condition makes it place a new chain starting point at the corresponding position
on the other side of the space (a symmetrical position) and the SAW continues. This process
is similar to a SAW path that goes out from one side of the space and enters from the other
side of the space at the same time.

The examples above in 2D space are to make the design logic of the NGA easy
to be understood. For the real configuration of hydrogel network, the NGA should be
implemented in 3D space. In 3D space, each spatial point has 26 neighbors (including
six surface neighbors, twelve side neighbors, and eight corner neighbors). Although the
distances from the 26 neighbors to the center point are not all equal, when the size of these
27 local points compares with the size of the entire model space, the distance difference
between neighbors is negligible.

In practical experiment, polymer mass fraction φm is used as usual to measure the
water content of hydrogels due to the ease of measuring the sample mass. For practical
application of the NGA, polymer mass fraction φm is adopted in the algorithm. The
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conversion relationship between polymer volume fraction φV and polymer mass fraction
φm is given by:

φm =
1(

φ−1
V − 1

)(
Mw

Mmon

)
+ 1

(15)

where Mw is the molar mass of water. Mmon is the molar mass of AAm monomers. They
are equal to Mw = 18 g/mol and Mmon = 71.08 g/mol, respectively.

For the complex network of PAAm hydrogel, the SAW network model generated by
the NGA in 3D space is shown in Figure 4. The different values of the model determined
by nmon, ncro and w result in different polymer mass fractions φm. In Figure 4, the blue
lines represent polymer chains, and the red dots represent crosslinkers. When φm is low,
the distribution of polymer chains in the space is sparse and inhomogeneous. This proves
the structural randomness, heterogeneity, and uniqueness of the polymer network of
PAAm hydrogel. With the increase of φm, the PAAm hydrogel network becomes gradually
dense and is closer to the homogeneous assumption in continuum mechanics. Thus, this
model has the potential in characterizing the mesoscopic configuration of single-network
hydrogels and provides a powerful tool for follow-up research.

Figure 4. Configurations of PAAm hydrogels generated by SAW network model.

2.3. Deep Learning Algorithms and Approaches

Machine learning systems can be classified according to the amount and type of
supervision they receive during training. There are four major categories: supervised,
unsupervised, semi-supervised, and reinforcement learning. In the case of supervised
learning, the input data set (containing samples and corresponding features) and labels
(the correct results) are both necessary for training. On the contrary, unsupervised learning,
as the name suggests, only provides unlabeled training data. For engineering problems,
most of the applied ML algorithms are supervised learning with the datasets collected from
experiments or simulations [47–49]. Artificial neural network (ANN) [50] is comprised
of multiple interconnected computational elements called neurons. In this study, the
algorithms we adopt belong to a subset of ANN. By adjusting parameters, for instance,
weights and biases in a NN architecture, the algorithms we used can predict the mechanical
property of hydrogel through an optimization of errors. Both the fully connected MLP
and CNN belong to the class of ANN, and they differ primarily in their architecture and
interconnectivity. This section gives a brief introduction to the main ML algorithms used in
this work.

2.3.1. Multilayer Perceptron

The MLP architecture, generally called feedforward NN, is one of the most popular
and widely used ML architectures that was proposed initially as a function approxima-
tor [51]. The aim of a MLP is to approximate a function f between input x and output ŷ

ŷ = f (x) (16)
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In order to approximate strongly non-linear functional relations, MLP adds an ad-
ditional level of hierarchy to linear learning algorithms involving features and learned
weights by combining activation functions:

aj = σ
(
zj
)
= σ

(
m

∑
i=1

wjixi + bj

)
(17)

where i denotes the ith neuron in the previous layer, and j the jth neuron in the current
layer. aj is the output value of the current neuron. σ(·) is the activation function that
usually takes a non-linear function. xi represents one feature input of x. wji and bj are
parameters updated during the training, named weight and bias, respectively. m is the
number of neurons in the previous layer. zj is the sum of the input values and the bias,
also the prediction of the linear learning model. This process is demonstrated in Figure 5,
which is the typical mathematical process of a single neuron. Furthermore, matrix form
can be written as:

aW,b(X) = σ(XW + b) (18)

where X represents the matrix of input features. It has one row per sample and one column
per feature. The weight matrix W contains all the connection weights, which has one row
per input neuron in the previous layer and one column per artificial neuron in the current
layer. b is the bias vector that has one bias term per artificial neuron. The weights of the
MLP are usually initialized stochastically, and then subsequently tuned during the training.
One way to train the MLP is to establish a linkage of its known input–output data and to
minimize its loss function from the output by appropriately changing the weights.

Figure 5. Process of a single neuron in MLP.

There are several alternatives to the activation functions. Frequently used activation
functions in regression tasks include the sigmoid function (Equation (19)) for the out-
puts required between the domain (0,1) and the rectified linear unit (ReLU) as shown in
Equation (20) for nonzero outputs. The two functions are illustrated in Figure 6.

sigmoid(z) =
1

1 + e−z (19)

ReLU(z) = max(0, z) (20)

It is the nonlinear transformation of the activation function that gives the MLP a strong
nonlinear fitting capability. It should be noted that a feedforward NN can approximate any
continuous functions with arbitrary complexity in the reach of arbitrary precision, using
only one hidden layer containing enough neurons [52]. MLP is served as the beginning of
research on more complex DL algorithms. Deep architecture has better learning capability
by stacking more layers to extend the depth of the NN.
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Figure 6. Plot illustrating the sigmoid and ReLU activation functions.

2.3.2. Convolutional Neural Network

Convolutional neural network is one of the most widely-used deep neural networks
that is inspired by the study of the brain’s visual cortex, and CNN is extremely successful
in the image recognition field. It has been extended to various applications of many other
disciplines including mechanics.

There are two main differences between a fully connected MLP and a CNN, i.e., the
input data structure and data transfer. Input data in a CNN is assumed to be an image
or can be physically interpreted as an image. The input image contains many pixels and
is a 2D data structure with length and width. Of course, the image can also be a 3D
structure with three dimensions of length, width, and thickness. The 3D CNN model
used in this study utilizes three3Dimensional data. Instead, in the case of the MLP, the
inputs to the neurons in the hidden layer are obtained by a standard matrix multiplication
XW of the weight W and the input X. Besides, in the case of the data transfer, MLP only
feedforwards the input data obeying Equation (18). However, for CNNs, the input data
will be transformed through a convolutional kernel (or called a filter) into a feature map
using a convolution operation. This process is symbolically written as X ∗W (∗ symbol
represents convolution operation).

A typical CNN architecture is mainly comprised of four building blocks, and they are
referred to as convolutional layers, pooling layers, fully connected layers, and activation
functions. Take a 2D input image as an example:

It can be seen from Figure 7 that different layers have their corresponding functions.
The convolutional layer is the core of a CNN model, each convolutional layer has one
or several convolutional kernels (or filters). The kernels extract the features of the input
image by scanning pixels (like a camera) in a small rectangle (called receptive field) using
convolution operations, and repeat until the entire image is scanned. The shift from one
receptive field to the next is called the stride. By default, stride equals one for convolutional
layers and two for pooling layers. Indeed, a convolutional layer can contain multiple
kernels (filters) and output one feature map per kernel. New feature maps (the number of
newly generated feature maps depends on the number of filters in the convolutional layer)
are generated with smaller height and width compared to the previous image. One pixel is
one neuron in each feature map, and all neurons in the same feature map share the same
parameters (the same weights and bias). In order to ensure each input image for a layer
have the same height and width as the previous layer, it is common to add zeros around
the inputs (zero padding), as shown in Figure 7a. Neurons in the first convolutional layer
are not connected to every single pixel but only to pixels in the corresponding receptive
fields. The role of the kernel allows features to be mapped through local interactions.
This architecture allows the network only to focus on small low-level features in the first
layer, then with more convolution layers repeating this feature extraction process, larger
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high-level features are assembled, and so on. That is why CNN is more effective than MLP
on the input–output relationship learning of structures depending on spatial locations.

Figure 7. Computation process of an example architecture of 2D CNN with 3 × 3 kernel (it should be noted that the process
of bias and activation functions is ignored here for simple illustration). (a) Convolutional operation of the input image. The
value in the receptive field is multiplied by the value of the corresponding center symmetric position in the kernel and then
obtain the summed value in the feature maps. (b) 2 × 2 max-pooling process. Each 2 × 2 block is replaced by the maximum
value in the receptive field. (c) Flatten last feature maps to one-dimension vector for learning.

After the pre-activated convolutional operation, results are offset by a bias (one bias
per convolutional layer). Then the feature maps are passed through nonlinear activa-
tion functions commonly referred to as ReLU. ReLU has been proven [52] to provide
high computational efficiency and often achieves sufficient accuracy and performance
in practice.

The max-pooling layer is usually implemented after one or multiple convolutional
layers, making a key role in reducing the number of parameters thus resulting in a faster
training process. Its goal is to subsample the input image for reducing the computational
load by reducing the number of parameters and preventing the risk of overfitting. On the
contrary to the convolution layer, a pooling neuron has no weights or bias, all it does is
aggregate the inputs using an aggregate method, such as max or mean. Figure 7b simply
shows how the max-pooling layer works. Subsequently, there is usually a fully connected
layer at the end, which is no different from a typical MLP architecture at most times.

CNNs explain the topological structure of the input data, that is, allow stacking neural
layers to extract high-level features. Actually, this hierarchical architecture is common
in real images, which is one of the structural reasons why CNNs work so well on image
recognition. Through the optimization process, the CNN model “learns” how the spatial
arrangement of specific features are related to the outputs. Once trained, the CNN model
can be used to make predictions with high computational efficiency. Compared with
general projects in the DL field, the requirement of the number of datasets and features
used in mechanical property prediction of hydrogels is much less. Therefore, the framework
of the DL-based models employed in this study could be adjusted easily, and the increasing
number of weights and biases has an acceptable impact on the computational cost. For this
reason, DNN and CNN are finally used in this study to predict the macroscopic mechanical
properties of hydrogel.

3. Deep Learning Modeling Framework for Single-Network Hydrogel

In this section, in order to explore the application potential of the SAW network model
and the performance of the 3D CNN model in predicting the mechanical properties of
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hydrogels with complex network structures, we firstly design two types of data structures
extracting structure–property linkages of hydrogels. Furthermore, we implement two deep
learning models that are used to make predictions. For both models, the data samples are
generated based on the SAW network model. The two datasets include training, validation,
and testing sets, which reflect the ground truth. In this study, it should be noted that
the labels are the nominal stress–stretch response of the single-network hydrogels under
uniaxial tension, as mentioned above.

3.1. Dataset Generation and Preprocessing

The two deep learning models we developed are the DNN model and the 3D CNN
model, respectively. It should be noted that the DNN in this study specifically refers to neural
networks made up of fully connected layers (as the same architecture as MLP), to distinguish
from CNN used in this study. For model comparison, we use theoretical resolution instead of
experimental results as labels. Therefore, the outputs of the two models are not affected by
experimental errors, which ensures the fair evaluations of the feasibility and performance of
the DL models. Because each input data usually needs to maintain the same dimension for the
DL models, the space size w is fixed at 33, and 2200 simulations are conducted using the SAW
network model by changing the preset numbers of monomers and crosslinkers. As a result,
the polymer mass fraction φm is distributed from 5% to 80%, and the corresponding water
content is from 95% to 20%. The number of samples and the space size have to be large enough
to reflect the randomness and heterogeneity of the SAW network with different polymer mass
fractions, but small enough to prevent excessive computational costs (considering that the
input data of the 3D CNN model is four-dimensional, the amount of data will grow rapidly
with the increase of the space size w).

In the terms of the DNN model, the input data set is two-dimensional with one row
per sample and one column per feature. We designed eight features in the DNN model to
capture key physical information of the network generated by SAW. They are referred to as
the number of chains, the number of monomers, the number of crosslinkers, the number of
water molecules, the standard deviation of the number of monomers per chain, the number
of isolated, branch, and network chains. As a result, the size of the input data of the DNN
is 2176 × 8. There is a principle of feature design for the traditional MLP architecture,
that is, each feature is possibly independent of other features, and potentially related to
the outputs. Therefore, this is why we choose the standard deviation of the number of
monomers per chain instead of the mean value (for the fifth feature), the latter can be
calculated from the number of monomers (the second feature) and chains (the first feature).
Similarly, the degree of cross-linking is also an important feature of the complex network
structure of hydrogels, which can be calculated from the total number of monomers (the
second feature) and the number of crosslinkers (the third feature). Therefore, they are
no longer independent features. On the other hand, the original sample size of the 3D
CNN model is 33 × 33 × 33. Through further transformation, the SAW network image is
represented as a data structure that can train the 3D CNN model, as shown in Figure 8.

Figure 8. Data representation for model training.
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In order to include the geometric and physical information of the SAW network model
in input data, we design three sublayers and combine them with the inputs by replacing
the color channels in the traditional CNN architecture. The 3D CNN model we developed
incorporates both the geometric and physical features of hydrogel networks for mechanical
property prediction. More specifically, the geometric features captured by the sublayers
are referred to as the types of molecules, the degree (the number of edges incident to the
vertex) of each molecule, and the angles of chain connections, as shown in Figure 9.

Figure 9. Schematics of slices plot illustration of three sublayers incorporating the geometric and
physical features. (a) Representation of the type of molecules. (b) The degree of each molecule, that
is, the number of connections per molecule. (c) The angle of chain connections.

As for the color channels of the input images in a typical CNN, they are generally
composed of one (grayscale image) or three (colorful image with red, green, and blue,
i.e., RGB) sublayers. However, the colors of input images in this study are only for
representation and explanation. They have no specific physical meaning. As for the
traditional CNN, the original values of a pixel range from 0 to 255, which would be
exceedingly large for a CNN-based model. Therefore, the RGB values are rescaled into the
range (0, 1) to speed up the convergence of a training process. This problem also occurs in
the dataset with sublayers used in this study, thus the datasets to be used are normalized
into the range of (0, 1) before training.

The proposed sublayers make full use of various data formats of SAW simulation
outputs. Compared with the DNN model, the local spatial information of SAW network
model is included in 3D CNN model. Two datasets are eventually constructed, one is
two-dimensional including 2176 samples and 8 features for the DNN model, the other
includes 2176 four-dimensional samples with a size of 33 × 33 × 33 × 3 including the three
feature channels. The corresponding nominal stress–stretch data are generated through
Equation (13). The general idea of sublayers design described here can be extended to any
other desired component to obtain effective mechanical properties.

3.2. Framework of Deep Learning Models

On the basic paradigm of DL algorithms presented in previous section, we propose
two architectures of the DL models, one is the DNN model based on MLP, the other is
the 3D CNN model. Figure 10 gives the schematic illustration for the DNN architecture
we have constructed. While Figure 11 provides a schematic of the 3D CNN architecture,
where inputs are 3D images and outputs are the stress–stretch relations of single-network
hydrogels under uniaxial tension.
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Figure 10. Architecture schematic of the DNN model.

Figure 11. Three-dimensional convolutional neural network architecture (for simpler schematics, one gray rectangular
represents one 3D input image). C is referred to as convolutional layer, P is max-pooling layer, and FMs denote the
feature maps.

The modeling starts from dividing both datasets into three parts, 70% for training,
10% for validation and 20% for testing. The hyperparameters used for the 3D CNN model
are shown in Figure 11 and Table 1. Both models output a subsample of the stress–stretch
curve, taking the stress values corresponding to 22 fixed stretching values. The dimensions
of the output data are both equal to 22. It should be noted that when the stretch is small, the
stretching points we selected are denser, and vice versa. Because on the one hand, nonlinear
effect is more obvious at small stretch, and on the other hand, the neo-Hookean-based
constitutive model has a larger error at large stretch.

Table 1. Hyperparameters values used in the proposed models.

Hyperparameters
Model

DNN 3D CNN

Number of epochs 315 30
Batch size 32 32

Learning rate 5.6 × 10−3 1 × 10−3

Optimizer SGD Nadam
Loss function MSE MSE

Trainable weights 1477 430,872,6
Activation functions ReLU ReLU
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The development of the two DL-based models is carried out on Python 3.8 and Keras
with the Tensorflow backend. The training of 3D CNN is first to determine the number of
convolutional, max-pooling, fully connected layers, and the hidden neurons in each layer
(see Figure 11). The prediction of mechanical property is a regression task, so mean square
error (MSE) is set as the loss function, which is referred as:

MSE =
1
m

m

∑
i=1

(ŷi − yi)
2 (21)

where m denotes the number of samples. ŷi and yi are predicted and actual value of
output, respectively. The optimizer of 3D CNN model takes ‘Nadam’ algorithm with a
0.001 learning rate. Following the input layer is a combination of the first convolution
layer and max-pooling layer. There are sixteen convolution filters with a size of five in the
first convolutional layer. Then two deeper convolutional with filters size of three and one
max-pooling layer are followed sequentially. Considering the output is always positive
(nominal stress), ReLU activation function is the best choice to reflect the nonlinear response
of uniaxial tension test of hydrogel. Subsequently, a fully connected layer leads to the
output of the network, which is the stress–stretch relationship. Once trained, the model is
able to predict the relationship with an obviously shorter time (within one second) when fed
by unseen input image. As for the DNN model, after a process of combining grid search [53]
and cross validation in the hyperparameters space, the preferred hyperparameters of the
model for mechanical property prediction problems are determined and detailed in Table 1.
The stochastic gradient descent method is taken as the optimizer of the DNN model with a
learning rate of 0.0056.

4. Results and Discussions
4.1. Analysis and Comparison of Model Performance

The configuration of the DNN model is determined using the grid search and cross
validation, and the details are not mentioned here for simplicity. The configuration is shown
in Figure 10 and the hyperparameters are listed in Table 1. It is worth mentioning that batch
normalization is a technique for training deep neural networks that standardizes the inputs
to a layer for each mini-batch [54]. Owning the effect of stabilizing the learning process
and significantly reducing the number of training epochs required, batch normalization
can normalize the prior inputs and ensure the gradients are more predictive, thus allow for
larger range of learning rates and faster convergence. Figure 12 depicts the convergence
history of training and testing set for each model. It can be seen from Figure 12a that
the MSE losses of training set and testing set converge rapidly within 160 epochs, then
maintain stable in the remaining epochs. One epoch can be explained as a batch of samples
that goes forward from the input layer at the beginning then feeds back from the output
layer to complete an iteration. When all training samples have completed one iteration, the
epoch ends. The 3D CNN model is trained using 30 epochs with batch-size of 32 as shown
in Figure 12b. The fluctuation of the loss may be caused by the following reasons. The first
reason is that the learning rate is unchangeable in this model during the training process,
whose value can be large enough to converge at the beginning, but too large to reach a
stable and local minimum. As a result, the loss fluctuates around the ‘valley’ of the loss
function. Secondly, there may be a reason that the loss function is exceedingly complex due
to the high dimension and large amount of input data, and the optimizer is hard to find a
good convergence point. The history of training accuracy is shown in Figure 13. Both the
models we developed reach an accuracy over 90%.
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Figure 12. History of loss values. (a) The DNN model with 315 epochs. (b) The 3D CNN model with
30 epochs (0 to 29).

Figure 13. History of accuracy values.

By comparing the two figures in Figure 13, it is found that the accuracy of the 3D CNN
model is more stable than the DNN model and is able to reach a higher value within fewer
epochs. Because the number of trainable weights in the 3D CNN model is much more than
the latter. The convolutional layers of our 3D CNN model focus on extracting the features
of each image, while the hierarchical architecture could efficiently capture the potential
feature maps relating to the outputs. Therefore, the 3D CNN model is able to reach a better
convergence point on a more complex loss function.

It is noted that we employ a dropout layer after each hidden layer in the fully con-
nected layer of the 3D CNN model. The effect of dropout on model’s performance is
actually negative as usual, because lots of specific data are directly dropped. However, it
can effectively reduce the possibility of model overfitting. By sacrificing some accuracy on
the training set to obtain better accuracy on the testing set, the model is able to conduct
better robustness and generalization on new data that was unseen before.

In order to quantitatively analyze the performance of the DNN and 3D CNN model,
mean square error (MSE) and mean square percentage error (MSPE) are computed. MSPE
for a selected set of data represents the percentage error between the predicted values and
the ground truth calculated from the constitutive model. The MSPE used in this study is
defined as:

MSPE =
1
m

m

∑
i=1

(
ŷi − yi

y

)2
× 100% (22)

where y denotes the average nominal stress of all the samples in the dataset. The MSE,
MSPE and prediction accuracy R2 of the two models we proposed are summarized in
Table 2. It can be seen that the MSPE values of both models are no more than 4% and
the R2 values reach highly over 91%, which confirms that the 3D CNN model has more
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potential for the structure–property linkage problem. Besides, with only 1600 training
samples, the proposed models can achieve quite gratifying performance. The 3D CNN
model shows a remarkable ability to extract structural features of the network. The 3D
CNN provides a direct and reliable method to identify the three-dimensional network
information of single-network hydrogels at the mesoscopic scale, and has the capability to
establish a highly accurate structure–property linkage. Our model can be used to predict
the mechanical property based on the basic material structure, which is a universal method
bridging the mesoscopic network to macroscopic mechanical properties.

Table 2. Evaluation indicators of the deep learning models.

Model

Values of Indicators

Training Set Testing Set

MSE MSPE R2 MSE MSPE R2

DNN 9.3 × 103 kPa 3.61% 92.87% 9.1 × 104 kPa 3.55% 91.00%
3D CNN 7.1 × 103 kPa 0.30% 99.23% 5.7 × 103 kPa 0.24% 99.65%

4.2. Evaluation of Model Generalization

Considering that the nominal stress–stretch curve is usually a comprehensive demon-
stration of mechanical properties, more specific descriptors such as modulus and strength
can be derived from the relationship. Therefore, we decide to evaluate the model based on
the mechanical response under uniaxial tension, and explore the potential of the proposed
model in the issue of predicting mechanical properties.

Our model architecture is inspired by the recent full convolutional architecture in
traditional computer vision applications. According to empirical observations, convolu-
tional architecture is an efficient and stable method because it is a local operation, allowing
itself to implicitly quantify and learn the local spatial effects of the mesoscopic network.
Obtaining the performance of the DL-based model on unseen data is essential to ensure
its compatibility of application. In order to test the generalization ability of the models,
we utilize the SAW network model to newly generate multiple network models, and
transform these new samples to input images for 3D CNN model according to the pro-
cess described previously. Then we pass them to the models we proposed to predict the
stress–stretch relationship.

To evaluate the generalization ability and robustness of the proposed DL-based mod-
eling framework, Figures 14 and 15 provide the comparisons between the predicted results
and the actual results, respectively. It can be seen that both the two models keep good con-
sistency. Despite the nonlinear behavior of the stress–stretch curve for hydrogel, they can
fit a favorable nonlinear trend. There are 22 principle stretch values we firstly determined,
and the predicted output could contain 22 corresponding nominal stress values. The model
can accurately capture the initial nonlinear growth of the nominal stress. In the case of the
DNN model, one can easily see that the predictions tend to be more accurate when the
water content is low, which indicates that the DNN model has a better performance on
the homogenous hydrogel network. With the increase of water content, the predictions
become unstable and begin to distort. In addition, the distortion happens only in the first
few data points. Because the weights of hidden layers more possibly tend to be close
to zeros when labels are close to zeros. The traditional DNN extracts the features of the
overall structure instead of the local structure, so its performance is not good enough in the
prediction of heterogeneous polymer network. In the case of the 3D CNN model, the fitting
accuracy of samples under different water content is significantly higher than that of DNN
model. It is indicated that the admirable learning ability ensures 3D CNN to learn complex
behavior patterns from the mesoscopic structure. It also has a high fidelity for sparsely
heterogeneous and random networks. The prediction results of the two models show that
the DL-based model can still accurately predict the mechanical property of the unseen
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samples of hydrogel network. The proposed modeling framework has good application
prospects for multi-scale modeling.

Figure 14. A randomly generated set of six SAW models and corresponding stress–stretch curves for the DNN model
prediction compared to the actual results. (The data points in the red circle represent prediction distortion).

Figure 15. A randomly generated set of six SAW models and corresponding stress–stretch curves for the 3D CNN model
prediction compared to the actual results.

To the best of our knowledge, this is the first time that a three-dimensional CNN is
implemented to establish structure–property linkage of a single-network hydrogel based
on the SAW model. Therefore, the proposed modeling framework in this study provides
important insight and guidance, and the proposed model can serve as a pre-trained model
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to accelerate extensive prediction of mechanical properties, especially for the 3D complex
structure. Besides, the DL-based modeling method described previously in this paper
expands data-driven strategy to the soft material design and research of material property.
It allows a more efficient determination of parameters in the mechanical model, such as
the constitutive models, under the lack of experimental data sets. In addition, the ideas
of sublayers design we present previously also guide how CNNs could be employed for
problems in mechanics and other engineering disciplines. More mechanical properties
(components of stiffness) in higher dimensions are required in the field of describing the
mechanical behavior of materials. Given the success of 3D CNN model in our current 3D
problem, it would be a promising strategy to identify various mechanical properties as
different channels in a CNN input sublayer.

5. Conclusions

In order to predict the mechanical property of hydrogel, this paper firstly introduces
the RW model, then develops a modeling method for the mesoscopic network of single-
network hydrogels based on the SAW model with PAAm hydrogel as an example. Secondly,
a DL-based modeling strategy is proposed on the basis of this approach. We developed two
deep learning models, a DNN and a 3D CNN, respectively, for the construction of structure–
property linkage of hydrogel. A grid search and cross validation of the hyperparameter
space of the neural network architecture was employed to find the desirable DNN model,
and eight features were designed to overall characterize the mesoscopic network model.
In the 3D CNN model, feature extraction of 3D structure was achieved by designing the
size of kernels and feature maps of the convolutional layers. It should be noted that we
redesigned the color channels of the input images of the 3D CNN model to incorporate the
physical and geometric information. The proposed 3D CNN model is able to learn input
images that contain sublayers of physical information. These two models can quantitatively
predict the relationship between mesoscopic network and the macroscopic mechanical
properties. We trained the models using stress–stretch curves generated based on hydrogel
theory and Neo-Hookean constitutive model, and then tested the generalization ability and
robustness on the testing set. For the new SAW network samples, both DNN and 3D CNN
models give accurate predictions, especially the 3D CNN shows a promising capability.

Furthermore, from the results of model evaluation, it can be found that the proposed
DNN model can provide a good prediction for lower water content hydrogel, but it shows
a large fluctuation error when water content is high, which indicates the weakness of the
DNN model for inhomogeneous and sparse network polymer. In contrast, the 3D CNN
performs more superior than the conventional DNN approach, which reflects the potential
of the model in 3D polymer structural analysis problems. The 3D CNN can capture
potential structural features of hydrogel, especially for multiscale material problems. The
proposed method can be easily extended to study similar problems, such as the structural
design and the material property design to improve the mechanical performance of different
soft materials.
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