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Department of Computer Science, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania;
mariana.dindelegan@ubbcluj.ro (M.-I.M.); zsuzsanna.onet@ubbcluj.ro (Z.-E.O.-M.)
* Correspondence: gabriela.czibula@ubbcluj.ro or gabis@cs.ubbcluj.ro; Tel.: +40-264-405327
† These authors contributed equally to this work.

Abstract: Understanding students’ learning processes and education-related phenomena by extract-
ing knowledge from educational data sets represents a continuous interest in the educational data
mining domain. Due to an accelerated expansion of online learning and digitalisation in education,
there is a growing interest in understanding the impact of online learning on the academic perfor-
mance of students. In this study, we comparatively investigate traditional and synchronous online
learning methods to assess students’ performance through the use of deep autoencoders. Experi-
ments performed on real data sets collected in both online and traditional learning environments
showed that autoencoders are able to detect hidden patterns in academic data sets unsupervised;
these patterns are valuable for the prediction of students’ performance. The obtained results em-
phasized that, for the considered case studies, traditional evaluations are a little more accurate than
online evaluations. Still, after applying a one-tailed paired Wilcoxon signed-rank test, no statistically
significant difference between the traditional and online evaluations was observed.

Keywords: unsupervised learning; autoencoders; t-SNE; educational data mining; students’ perfor-
mance analysis; online learning

1. Introduction

Within the educational data mining domain (EDM) [1], there is a continuous interest in
extracting knowledge from educational data sets. Academic institutions are interested in
improving their teaching methodologies, learning processes [2] and the academic perfor-
mance of their students and instructors [3]. Thus, uncovering meaningful patterns from
academic data sets using machine learning techniques, both supervised and unsupervised, may
help educational institutions to understand and improve their education-related processes.
One of the most important missions of EDM is to predict students’ learning outcomes.

We are witnessing the rapid evolution of online learning and digitalisation in education
due to various environmental factors. Pandemics, such as the COVID-19 pandemic, change
almost all human activities, including education. Education providers need to change their
traditional learning approach, with online learning being a solution to continue providing
education. The success of learning in online settings depends on the quality of teaching
and the motivation of students. However, the quality of teaching does not guarantee
the students’ motivation or vice versa, because the latter depends on other factors, both
intrinsic and extrinsic [4]. Within this framework, when both teaching and evaluation are
moved online, there is concern regarding how to analyse the students’ learning process
and improve their learning results. Tsipianitis et al. [5] describe two categories of online
learning: synchronous and asynchronous. The synchronous online learning setting requires
simultaneous participation of instructors and learners, while asynchronous learning does
not take place in real time [5].
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Most of the existing work in the EDM literature related to students’ performance
analysis was connected to predictive modelling. Classical machine learning models, such
as decision trees, neural networks, support vector machines, random forests (RFs) [6], and
relational association rules [7,8] have been applied. Recently, deep learning methods have
been applied for students’ performance prediction (SPP). Tsiakmaki et al. [9] pointed out
the efficiency of transfer learning methods in the EDM domain and investigated whether
using student data from a course for training a deep learning model would lead to a
model which is applicable for other related courses. Unsupervised learning (UL)-based
descriptive models have also been applied in EDM for analysing the academic performance
of students. Partitional and hierarchical agglomerative clustering methods [10], expectation
maximization (EM) and particle swarm optimization-based clustering [11] have been
applied to discover student profiles and patterns connected to their academic performance.
Variational autoencoders (VAEs) were used by Klingler et al. [12] for learning efficient
feature embeddings that were useful for increasing the performance of standard machine
learning-based classifiers by up to 28%.

Regarding the supervised learning techniques used in EDM for students’ performance
prediction, we remarked that logistic regression, naive Bayes and decision trees gave good
results in SPP (the area under the ROC curve (AUC) more than 0.8) [13]. We also noted
that linear discriminant analysis (LDA) and autoencoders (AEs) provided classification
accuracies more than 0.75 [14]). Concerning the use of unsupervised learning methods
in the EDM literature, we remarked that SOMs are good tools for visualising clusters of
students determined based on various student characteristics. Unlike existing related work,
our work focuses on the clustering provided by AEs and t-SNE models.

The performance of students in both online and traditional environments has been
of great interest in various studies in educational data mining [15]. E-learning activities
have been analysed using unsupervised learning methods with the goal of identifying
clusters of students who have similar learning behaviours [16,17], while recent papers have
investigated how online classes impact the performance and satisfaction of students during
the COVID-19 pandemic [18,19].

We conduct, in this paper, a study on applying unsupervised learning techniques
to comparatively analyse the academic performance of students in traditional and syn-
chronous online learning environments. Unsupervised learning techniques are addressed
in our study due to their usefulness for mining patterns from unlabeled data. The main
goal of our study is to analyse if the patterns learned from students’ performance data
sets in traditional learning environments are preserved in the case of synchronous online
learning as well.

In the machine learning literature, AEs are used as neural network-based architectures
aimed at learning how to approximate the identity function by learning to reconstruct
the input. AEs were applied in numerous data analysis and mining applications for
learning meaningful features from data [20], analysing images [21], speech processing [22],
uncovering patterns and structural relationships between proteins [23], analysing protein
functional dynamics [24] or text summarization [25].

The main contributions of the paper are as follows. Firstly, the ability of AEs to
uncover hidden patterns in data will be further investigated with the aim of analysing if the
students’ learning patterns are preserved in both traditional and online learning. We expect
that AEs are able to uncover the underlying structure of student performance-related data
and find a separation, even if not a perfect one, between students that belong to different
performance classes. Experiments are performed on real case studies and data sets collected
from Babeş-Bolyai University in traditional and synchronous online learning environments.
To support the interpretation of the learning patterns provided by AEs, a 3D t-distributed
stochastic neighbor embedding (t-SNE) [26] analysis is then conducted. Afterwards, for a more
suitable evaluation of the results and for strengthening the unsupervised learning-based
analysis, linear discriminant analysis (LDA) is applied as a supervised classification algorithm
for estimating the students’ performance classes. Our second purpose is to empirically
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assess, on the considered case studies, the influence and impact of online learning upon the
academic performance of students when compared to a traditional learning environment.
To the best of our knowledge, there is no study in the educational data mining literature
using AEs with the goal of comparing traditional and synchronous learning.

To summarize, the following research questions are targeted in our contribution.

RQ1To what extent are AEs, through their latent representation, able to uncover, in an
unsupervised fashion, students’ learning patterns in academic data sets that are
relevant for predicting their academic performance?

RQ2Are the results of the unsupervised learning-based analysis correlated with the per-
formance of a supervised classification model trained for predicting the students’
performance?

RQ3To what extent are the students’ learning patterns on the considered case studies
preserved in virtual environments when compared to traditional learning?

Since the encoder part of an AE may be useful for compressing the input data and
reducing its dimensionality, the latent (encoded) representation learned by an AE will
be used for answering the previous RQs and expressing relevant patterns in students’
performance data.

The rest of the paper is organized as follows. Section 2 reviews existing approaches
from the EDM literature related to student performance analysis and prediction in both
traditional and online learning environments. The methodology applied for conducting
our unsupervised learning-based investigation on students’ academic performance in
traditional and synchronous online learning environments is introduced in Section 3.
Section 4 presents the experimental results, while Section 5 discusses the relevance of the
unsupervised learning-based analysis. The conclusions of the paper and several directions
to further extend it are summarized in Section 6.

2. Related Work

In the early 2000s, the development of technology had increased the amount of online
courses for students, so numerous studies appeared in the EDM field regarding student
performance analysis in online learning environments.

In 2004, McDonald et al. [15] compared the results of students in traditional versus
online courses in a computer science department, specifically within a Database Systems
discipline, utilizing data collected over two years, starting from 2001. There were 134 ob-
servations in traditional versus 63 observations in online courses. The authors used two
statistical methods on the grades obtained by students on the final course to establish the
difference between traditional and online teaching for students. The first method was
the t-test, which was used to compare the means, and the second method consisted of
regression analysis, which was used to linearly model the input data and observe which are
the most important variables for the model. The conclusion of the paper was that students
in traditional learning are more successful than those online. One of the reasons was the
incipient phase of online learning compared to the traditional’s centuries of experience.

In 2007, Durfee et al. [27] used factor analysis and self-organizing maps (SOMs) to
inspect the correlation between student characteristics and their openness for computer-
based learning. Lee [28] pre-processed his data with SOMs; then, principal component
analysis (PCA) and k-means clustering were applied for measuring the stage of students’
knowledge in online learning.

In the next decade, Tamhane et al. [13] developed predictive models using logistic
regression, naive Bayes and decision trees in order to identify 8th grade students at risk of
failure and to predict the students’ success or failure in standardised tests. The best results
overall were given by logistic regression. Aguiar et al. [29] used logistic regression in their
study, but they considered random forest models the most accurate for identifying failure
risk for students graduating high school. These studies refer only to traditional learning.

Regarding online learning, the literature abounds in studies related to clustering
algorithms applied on massive online open courses (MOOC) data. Kizilcec et al. [30], Khalil
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and Ebner [31] focused on detecting some patterns in the behavior of students enrolled
in MOOCs using clustering analysis. Ezen-Can et al. [32] used a k-methods clustering
algorithm, and Rodrigues et al. [33] applied hierarchical and k-means algorithms to analyse
the discussion forums in the MOOCs. Bara et al. [16] and Youngjin Lee [17] analysed
students’ behavior in online learning using SOMs on data obtained from MOOC log files.
Students’ learning behaviors and their relation with their academic performance has been
investigated by Bara et al. [16]. Youngjin Lee [17] observed that hierarchical clustering
algorithms, together with SOMs, lead to good results in identifying clusters of students with
similarities in solving problems. In 2017, Bosch [34] studied the affect detection of students
with unsupervised deep autoencoders, which were applied to students’ interaction-log
data. In 2020, Du et al. [35] analysed the early prediction of at-risk students using data
from more than 600 online courses of a K-12 virtual school. Their analysis was based on
latent variational autoencoder (LVAE) with a deep neural network (DNN), and they used
2D t-SNE visualization.

In 2020, Li et al. [36] proposed sequential prediction based on deep networks (SPDN)
in students’ performance prediction. This instrument was used to model students’ be-
havioral sequences online by utilizing multi-source fusion convolutional neural network
(CNN) techniques and to incorporate static information based on bidirectional long short-
term memory networks (LSTMs). The proposed model outperformed the baseline and
demonstrated a significant improvement in early warning. Additionally, it revealed the
greater impact of Internet access patterns on students’ performance than the online learning
activities. Poudyal et al. [14] investigated the level of standard data mining techniques to
discriminate between student attention patterns in lectures where computers were used.
For feature extraction, they applied Haar wavelets, principal component analysis (PCA),
and linear discriminant analysis (LDA). They obtained high accuracy values by using these
algorithms followed by classification algorithms.

The pandemic of COVID-19 brought changes in the educational system, because many
courses have switched to an online format. The concern related to the influence of this
problem is explicable. Recently, Gopal et al. [18] studied the performance and satisfaction
of 544 students from Indian universities in online courses during the pandemic through
a satisfaction questionnaire. The authors concluded that the instructor’s quality is the
most important factor that affects a student’s satisfaction during online classes. Hermiza
Mardesci [37] ran a study on 16 students from an Indonesian university and concluded that
online learning has a negative influence on students’ motivation for learning. The impact
of the adoption of an online system by the educational system in the world has been
analysed by Patra and Sahu [38]. The study is optimistic, because the authors observed
the following benefits after the imposition of online learning: interaction, convenience,
enhanced learning, economy, innovations in teaching, etc. Shivangi Dhawan [39] showed
the growth of EdTech start-ups in difficult times for humanity and made a SWOC (strengths,
weaknesses, opportunities, & challenges) analysis of online learning. Coman et al. [40] ran
a study on 762 students from Romanian universities, and the conclusion was that the higher
education system from Romania is not ready for purely online learning. The approach was
based on a questionnaire applied to students; IBM SPSS Statistics was used to analyse the
data. The questionnaire contained items related to technical issues online, the usage of the
educational platform, the schedule and tasks.

In the studies discussed above, we notice that great importance was given to the
students’ activities on the learning platforms, especially in MOOCs. Because switch-
ing to an online format happened very suddenly, the course that will be discussed in
Section 3.2.1 provides more synchronous learning than asynchronous, and this aspect is
different from the literature, which presents courses written especially for MOOCs and
asynchronous learning.

Another tool that has been given importance so far is the questionnaire, but it has a
subjective dimension. In our study we aim to be more objective, so we will consider the
scores obtained by the students during the semester activities to verify their impact in SPP.
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We aim to continue and enrich the presented work by studying SPP at the current
moment. The switch to online courses which occurred in 2020 has drawn our attention
to the difficulties of students who have had to adapt to a different learning style and
participate only online in academic activities. At the same time, there is a need to consider
traditional education, as it has been the basis for student training until 2020, so we can
continue McDonald’s study [15] for nowadays. Compared to the existing approaches, our
proposal provides a comparative analysis between traditional and online synchronous
learning, starting from objective features (scores obtained by students during the semester)
and using different instruments for SPP.

3. Methodology

This section introduces the methodology applied for conducting our unsupervised
learning-based analysis on students’ academic performance in both online and traditional
learning environments. Section 3.1 formalizes the student classification problem and
describes the two classification tasks we further use in our study. Section 3.2 presents an
overview of our approach and details its main stages.

3.1. Problem Formalisation

Let us consider the following formalization of the students’ performance classification
problem we are focusing on. Let us denote by S tud = {st1, st2, . . . , stn} a data set consisting
of n instances, an instance sti characterizing a student’s performance in a certain academic
discipline (course)D during an academic semester. Each of these instances is composed of a
list of features F = { f1, f2, . . . , fk} representing the grades received by the students during
the semester evaluations of the given course. Accordingly, each student sti is represented
as a k-dimensional vector sti = (sti1, sti2, . . . , stik), where stij represents the value of feature
f j for the student sti.

Given a set of classes C = {Cl1, Cl2, . . . , Clm} expressing categories of students’ perfor-
mance, the classification problem can be formalized as learning to approximate a function
f : S tud→ C, such that for each instance st ∈ S tud, its performance category ( f (st) ∈ C)
will be predicted.

We assume that the final grade received by a student in the course D is computed by
considering his/her semester grades, as well as the grade received on the exam in the
examination session. We endeavor to predict the final performance of students based only
on their results obtained during semester evaluations without knowing their final exam
grade. This task is complex and difficult, due to unpredictabilities in both the students’
learning and instructors’ evaluation processes. Moreover, estimating the exact final grade
for a student is more difficult than predicting broader categories of grades. Therefore, we
decided to investigate two classification schemes, as follows: (1) Grade-based performance.
In this classification scheme, seven classes are considered (i.e., m = 7), corresponding to the
classes of grades: 10, 9, 8, 7, 6, 5 and ≤4 (the “fail” class); (2) Category-based performance.
In this classification scheme, m = 4 since we are considering only four classes (categories
of grades) corresponding to the following categories of grades: Excellent (E)–this class
includes students with grades of 10 and 9; Good (G)–this class includes students with
grades of 8 and 7; Satisfactory (S)–this class includes the students with grades of 6 and 5;
and Fail (F)–this is the “fail” class, which includes students with grades of 4 and below
4. The second classification scheme, (the category-based one), is certainly easier, from a
machine learning perspective, than the grade-based classification.

3.2. Our Approach

As stated in Section 1, the main objective of our study is to analyze and compare,
using unsupervised learning, the students’ learning patterns in traditional and synchronous
online environments. AEs will be used for discovering relevant patterns in students’
academic data sets collected from both traditional and online learning settings with the
aim of comparing how the type of learning methods (i.e., traditional and online) impact the
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students’ learning patterns. Our approach consists of three stages: data collection, building
the AE model and results evaluation. These stages will be further detailed.

3.2.1. Data Collection

For the analysis presented in this paper, we have used real data sets, gathered from
an undergraduate course, “Logic and functional programming”, held for second year
students of the Faculty of Mathematics and Computer Science, Babeş-Bolyai University,
in the autumn semester. This course is compulsory for the Computer Science students,
but is also optional for students in Mathematics.

The “Logic and functional programming” (LFP) course aims at introducing the declar-
ative programming paradigm, specifically the logic and functional paradigms. The declara-
tive programming paradigm is strongly connected with mathematical and logical mod-
elling. Within the logic programming paradigm, the Prolog language is introduced, while
Common Lisp is used for illustrating the functional programming paradigm. The programs
written in declarative programming languages are generated from mathematical principles
and thus, from a programming perspective, the design, implementation, abstraction and
reasoning become more and more formal activities. We decided to use the LFP course in
our study in order to empirically test to what extent the declarative programming learning
skills that are based on mathematical principles are influenced by the student’s learning
environment (traditional learning vs. synchronous online learning, in our case).

We will consider data for two academic years: the 2019–2020 academic year, when all
teaching and evaluation activities were performed face-to-face, and the 2020–2021 academic
year, when all activities were moved online. We mention that the course we are focusing
on was designed for traditional learning, but was adapted in 2020–2021 to synchronous
online learning because of the pandemic. Since this course is taught both in English and
Romanian, with the exact same content, organization, and evaluation, we will consider
data for both languages.

For the 2019–2020 academic year, k = 10 since there are 10 features in the data sets
for both languages. The first seven of them ( f1, . . . , f7) are grades obtained by students for
homework assignments prepared at home and presented during the laboratory classes.
The next two features are grades received by students for two practical exams. These exams
were held during the laboratories, when students had to solve, without using any help,
a problem similar to their homework assignments. Since the first nine features are all grades,
their values are between 0 and 10 (if a student did not turn in a lab assignment or did not
participate at the practical exam, the corresponding grade was 0). The tenth feature is the
number of seminar activity points. The goal of the seminar was to practice the theoretical
concepts presented at the lectures by discussing and solving together problems similar to
the students’ homework assignments. During the seminar, students could volunteer to
solve a problem in front of their colleagues at the blackboard, under the supervision of
the teacher, for which they received an activity point. During a seminar, a student could
receive only one activity point, and since the considered course has 7 seminars, this feature
has a value between 0 and 7.

Table 1 contains a description of the features for the 2019–2020 academic year.
At the end of the semester, students had a written exam, but this grade is not part of

the data set, since we only consider as features the grades received during the semester.
This written exam grade was worth 60% of the final grade, while each of the practical
exams, the average lab grade and a seminar grade (computed based on the number of
seminar activity points) was worth 10% of the final grade.
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Table 1. Feature descriptions for the 2019–2020 academic year.

# Feature Type Feature Description Range of Values

1 Grade for the 1st laboratory assignment:
“Recursive programming in C++”

2 Grade for the 2nd laboratory assignment:
“Lists in Prolog”

3 Grade for the 3rd laboratory assignment:
“Processing of heterogeneous lists in Prolog”

4 Laboratory Grade for the 4th laboratory assignment: 0–10
assignments “Backtracking in Prolog”

5 Grade for the 5th laboratory assignment:
“Recursive programming in Lisp (1)”

6 Grade for the 6th laboratory assignment:
“Recursive programming in Lisp (2)”

7 Grade for the 7th laboratory assignment:
“Using MAP functions in Lisp”

8 Practical Grade for the practical exam in Prolog 0–10

9 exams Grade for the practical test in Lisp

10 Seminar activity Number of seminar points 0–7

For the 2020–2021 academic year, there are only 8 features (for both languages),
so k = 8, because practical exams were not organized in the online setting. Therefore,
the grades received for the homework assignments represent the first seven features (as
described in Table 1), while the 8th feature is, instead of the number of seminar activities,
a bonus score computed based on the seminar activities. Seminar activity points were given
to students in the same conditions as in the previous year, but they were not part of the
final grade, which was computed from the written exam at the end of the semester (60%)
and the average lab grades (40%). In this way, students who were too shy to solve problems
in front of others were not disadvantaged, as they could still have the maximum grade of
10 at the end of the semester. However, in order to reward students who volunteered and
solved problems, the activity points were transformed into a bonus score, between 0 and
0.5 points, which was added directly to the final grade, so the maximum possible grade
was 10.5. The bonus score was computed by multiplying the number of seminar activities
by 0.125 and limiting the result to, at most, 0.5. In this way, students with at least 4 activity
points received the maximum bonus value. Table 2 contains a description of the features
for the 2020–2021 academic year.

Table 2. Feature descriptions for the 2020-2021 academic year.

# Feature Type Feature Description Range of Values

1–7 Laboratory assignments The same description as in Table 1 0–10

8 Seminar activity Seminar bonus 0–0.5

Besides the features previously described, all data sets contain the final grade received
by the student for this course (after the retake session). This final grade is considered to be
the class label, which was not taken into consideration when training the unsupervised
learning model; however, it was used to visualize the results. As presented above, the final
grade was computed as the weighted average of the grades received during the semester
(the ones considered as features in the data sets) and the grade received for a final written
exam which is not part of the data set at all. Therefore, while the final grade depends on
the values of the features, it is not determined by them: a student having the maximum
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value for all features can still have a final grade between 4 and 10, depending on the grade
received for the written exam, while a student with a value of 0 for all features can still
have a final grade of 6. Students that were absent from the final exam were removed from
the data sets.

Two case studies will be further used in our experiments:

1. First case study. The first case study represents the data sets for the Romanian
language. The data set for the 2019–2020 academic year, denoted by Dt, contains the
grades for 183 students, while the one for the 2020–2021 academic year, denoted by
Do, contains the grades for 209 students.

2. Second case study. The second case study represents the data sets for the English
language. The data set for the 2019–2020 academic year, denoted by D′t, contains the
grades for 169 students, while the one for the 2020–2021 academic year, denoted by
D′o, contains the grades for 204 students.

The data sets are publicly available at [41] , and in Section 4.1, their detailed analysis
is presented.

3.2.2. Building the AE Model

Autoencoders (AE) represent a type of artificial neural network trained in a self-
supervised manner [42]. The network is made of two parts, an encoder and a decoder.
The main goal of the encoder part is to take an input and map it into a so-called latent
code, while the decoder part takes this latent code and rebuilds the original input from
it. During the training, the goal is to learn the weights for both the encoder and decoder
so that the difference between the original input and the reconstructed one is as small as
possible. Once an autoencoder is trained, the latent code of the input data can be considered
a low-dimensional representation of the data since it contains all information needed for
the decoder to rebuild the original input from it. In this manner, autoencoders can be used
for dimensionality reduction and data visualization.

AEs are used in our study to encode the input space Rk (i.e., the set of k-dimensional
vectors, as shown in Section 3.1) into the 2D space. Thus, the encoder models a function
f : Rk → R2, while the decoder models the function g : R2 → Rk such that g( f (x)) ≈ x for
each input instance x.

AEs are used for supporting the hypothesis that the latent representation will encode
features relevant for distinguishing between students’ performances. For the AE, we have
used an undercomplete autoencoder architecture [42] implemented using Keras [43]. The AE
architecture used for the data sets from the 2019–2020 academic year is presented in Table 3,
while the architecture of the autoencoder used for the 2020–2021 data sets is presented
in Table 4. Since the data sets for the 2019–2020 academic year contain 10 features, while
the data sets for 2020–2021 contain only 8, the only difference in the architectures is the
presence of two extra layers (the first and the last) with 10 nodes for the autoencoder from
Table 3. The architectures presented in Tables 3 and 4 include the structure of both the
encoder and the decoder.
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Table 3. Architecture of the AE used for the data sets from the 2019–2020 academic year.

Layer (Type) Output Shape Param # Activation

dense_1 (Dense) (None; 10) 110 ReLU

dense_2 (Dense) (None; 8) 88 ReLU

dense_3 (Dense) (None; 6) 54 ReLU

dense_4 (Dense) (None; 4) 28 ReLU

encoding (Dense) (None; 2) 10 linear

dense_5 (Dense) (None; 4) 12 ReLU

dense_6 (Dense) (None; 6) 30 ReLU

dense_7 (Dense) (None; 8) 56 ReLU

dense_8 (Dense) (None; 10) 90 linear

Table 4. Architecture of the AE used for the data sets from the 2020–2021 academic year.

Layer (Type) Output Shape Param # Activation

dense_1 (Dense) (None; 8) 88 ReLU

dense_2 (Dense) (None; 6) 54 ReLU

dense_3 (Dense) (None; 4) 28 ReLU

encoding (Dense) (None; 2) 10 linear

dense_4 (Dense) (None; 4) 12 ReLU

dense_5 (Dense) (None; 6) 30 ReLU

dense_6 (Dense) (None; 8) 56 linear

Regarding the hyperparameters used for training the AEs as well as their architecture,
multiple experiments (using a grid search strategy) were performed using various com-
binations of hyperparameter values (optimizer, train batch size, number of epochs, loss
function). The variation of the loss function was monitored during the AE training, and the
best combination of values was preserved. The final values for the hyperparameters, used
for training both autoencoders (Tables 3 and 4), are presented in Table 5. For training the
AEs, we have used the data sets without any preprocessing. AEs were used for reducing
the dimensionality of the input data sets by using a dimensionality of 2 for the latent
(hidden) space. We have chosen the size 2 for the latent space in order to be able to visually
represent the instances. After training the autoencoders, we used only the encoder part to
provide a 2-dimensional representation for every instance, which was visualized in the 2D
space for revealing the underlying structure of the input data.

Table 5. Hyperparameters used for the AE.

Hyperparameter Value

optimizer adam

train batch size 16

number of epochs 5000

loss mean squared error

3.2.3. Results Evaluation

The evaluation of the results will be made in two steps. We will start with an inter-
pretation of the results provided by the AE model. Experiments are directed on both case
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studies presented in Section 3.2.1. For both case studies, the grade-based and category-based
classification schemes (described in Section 3.1) are considered.

As the second step, with the intention of sustaining the interpretation and analysis
of the results obtained through unsupervised learning from the first step, a performance
evaluation is conducted by applying linear discriminant analysis (LDA) [44] as a supervised
classification algorithm that is trained (on the data sets described in Section 3.2.1) to
predict the final grade received by a student, considering his/her semester grades as input.
For measuring the performance of the supervised classification task, several evaluation
measures from the supervised learning literature are used. Since we have a multi-class
classification problem, we chose the following evaluation measures suitable for this task:
accuracy, precision, recall and F-measure [45].

For specific test data (set of students) and for each of the m classes to be predicted (see
Section 3.1), their precision, recall and F1 are computed.

The precision Pi of a class i (∀1 ≤ i ≤ m) is computed as the percentage of students
from the test data correctly assigned to class Cli from all students that are predicted as
belonging to Cli. The recall Ri of the class i is computed as the proportion of students
correctly assigned to Cli from all students that should belong to Cli. The harmonic mean
between Pi and Ri represents the F1 score for the i-th class, denoted by Fi.

From the Pi, Ri, F1i values, the overall precision (Prec), recall (Recall) and F-measure (F1)
are then computed as the weighted average of Pi, Ri and F1i values, respectively. Due to
the fact that classes are imbalanced, the weight for a class i is computed as the proportion
of students from the test data whose label is class Ci. The overall accuracy (Acc) is the ratio
of the number of correctly classified students to the total number of students from the
test data.

The values of all performance measures (Prec, Recall, F1, Acc) belong to [0, 1], with
larger values corresponding to better classifiers.

4. Experimental Results

The experimental results obtained by applying the methodology introduced in Section 3.2
are further presented. An analysis of the data sets used is first provided in Section 4.1; then,
Section 4.2 presents the results of the unsupervised learning-based analysis.

4.1. Data Analysis

Table 6 presents the distribution of the grades for each data set used in our experiments,
while a histogram of the grades for each case study is presented on Figure 1. For measuring
the imbalancement (i.e., impurity degree) of each data set, we computed its entropy [46]:
lower entropy values indicate a higher degree of imbalancement. The third column from
Table 6 depicts the entropy of the data set, while the fourth column gives the “difficulty” of
the data set. The “difficulty” [47] was introduced in the literature as an estimate of how
difficult it is to classify the instances from a data set. It is computed as the number of
instances whose closest neighbour (considering the Euclidean distance computed for the
features without the class label) has a different label. The larger the number of instances
with a label not matching the label of the nearest neighbour is, the higher the value of the
difficulty measure will be and, consequently, the more difficult the classification task is.

The highest and the lowest values for both the entropy and the difficulty are high-
lighted in the table. We note that all data sets have about the same degree of impurity. D′t
and D′o are slightly more impure than the data sets Dt and Do. The difficulty of the data
sets shows that more than 60% of the instances have a nearest neighbour with a different
class label, indicating that finding a good separation between the classes is not trivial at all.
While all difficulties seem to be close to each other, Do seems to be the most difficult data
set, and Dt is the least difficult, but the difference between them is less than 0.06.
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Table 6. Description of the data sets.

Case Study Data Set Entropy Difficulty # of Features # of Instances
# of Instances with Grade

≤4 5 6 7 8 9 10

Dt 0.81 0.628 10 183 15 10 26 29 38 34 31
First Do 0.79 0.684 8 209 11 9 24 43 46 36 40

D′t 0.78 0.657 10 169 8 11 44 36 32 23 15
Second D′o 0.78 0.632 8 204 7 9 33 50 46 28 31

Figure 2 illustrates the Pearson correlation coefficients [48] between the features and
the final grade for each case study and each data set. We mention that for online learning
(the 2020–2021 academic year), the two features representing the practical exams ( f8 and
f9) are missing. One observes that for the first case study, the common features (1–7 and
10) have similar correlations with the final grade in both academic years. The situation
is not the same for the second case study, where there is a certain imbalance between the
correlations, denoting the impact of the online learning environment. We can also see that
there is a good enough correlation between the practical exams (the green coloured bars
corresponding to features 7 and 8)—about 0.6 for the first case study and 0.5 for the second.
These may suggest that the lack of practical evaluations in the online learning environment
may have an influence on the students’ performance.

(a) (b)

Figure 1. Histogram of grades for the first case study (a) and second case study (b).

(a) (b)

Figure 2. Correlations between the features and the final grade for the first case study (a) and second case study (b).

4.2. Analysis of the Results Obtained Using AEs

Figures 3 and 4 represent the visualizations of the two-dimensional encodings learnt
during the unsupervised training of the autoencoder model presented in Section 3.2.2 for
the two case studies. In each figure, images (a) and (b) represent the 2019–2020 academic
year, and images (c) and (d) represent the 2020–2021 academic year. For both academic
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years, images (a) and (c) represent the category-based classification, while (b) and (d)
represent grade-based classification. In order to facilitate the interpretation of the results,
we have colored the instances according to their grade/category, but information about
category or grade was not used during the training process, only for the visualization.
As mentioned in Section 3.2.2, the autoencoders were trained for 5000 epochs, and for all
data sets, by the end of the training, the loss on the training data was between 1.1 and 2.17.

(a) (b)

(c) (d)

Figure 3. AE visualizations for the first case study: data set Dt and the category (a) and grade-based classifications (b); data
set Do and the category (c) and grade-based classifications (d).
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(a) (b)

(c) (d)

Figure 4. AE visualizations for the second case study: data set D′t and the category (a) and grade-based classifications (b);
data set D′o and the category (c) and grade-based classifications (d).

In all images, we can see a very dense region where many instances are grouped,
and the other instances are scattered around in the rest of the plot. The dense regions in
general contain the instances with a better academic performance (E and G in the case
of categories, respectively 7, 8, 9, 10 in the case of grades), while the instances scattered
around are mainly those with a poorer academic performance (categories S, F and grades 4,
5, 6).

Analysing the plots based on the categories (images (a) and (c) from Figures 3 and 4),
we can see that instances from category E (marked with red circles on the scatter plots) are
very close to each other. This makes sense, since in order to have a high final grade, students
need to have high grades for their laboratory assignments and practical exams (if they
exist), so the feature vectors for these instances should be close to each other. Interestingly,
both in data set Dt and Do, there is an outlier, one red circle far away from the others,
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but which seems to have its own surrounding of yellow and green instances. Instances from
category G (marked with yellow squares) are more spread over the plots; many of them
are closely grouped with instances of category E, but we can find them close to instances
of S and F as well. This, again, makes sense, since you can have a good performance in
many different ways: maybe almost excellent performance during the semester, but poorer
performance for the final exam (these being the instances close to the red circles), or poor
performance during the semester, but a good performance for the final exam, or something
in between. Instances of category S (the green triangles) are mainly mixed with the yellow
and blue ones, further away from the red instances, although for every data set we have a
few green triangles close to red circles. In the case of data set D′t, however, there seem to be
quite a lot of instances of S close to those of E and G. Finally, instances of category F (the
blue diamonds) are almost always scattered around far away from instances with category
E, with very few exceptions.

If we analyse the plots based on the grades (images (b) and (d) from Figures 3 and 4),
we can see the same behaviour; instances with higher grades are grouped together, and
as the grade gets lower, the instances seem to be more dispersed throughout the plot.
Additionally, it can be seen that since there are more classes than in the case of category-
based visualization, the separation between the instances from different classes is not that
clear and instances belonging to different, but close, classes are mixed on the plots. We
note slightly better groupings for the first case study than for the second one, for both the
traditional and online setting.

Comparatively analysing the plots corresponding to traditional learning (2019–2020
academic year) and online learning (2020–2021 academic year), there are no significant
differences observed between the mappings. For both case studies, the same pattern is
noticeable: for the category-based classification, the instances are slightly better grouped
for the online learning-related data sets (image (c) vs. (a)), while for the grade-based
classification, the instances are slightly better grouped for the traditional learning-related
data sets (image (b) vs. (d)).

5. Discussion

For these data sets, AE models indicate a good distinction between students with
good results and those with poor results, but they are not able to separate them very clearly
internally. A potential reason is a relatively low quantity of features involved in the UL
process, i.e., the number of grades for the students’ activities over a semester. As suggested
in Section 4.2, exceptions were pointed out on the 2D visualisations offered by the AEs.
A way to reduce the number of outliers and obtain improved mappings could be increasing
the number of evaluations for students throughout the semester, e.g., to supervise students’
activity throughout lectures, not only their activity during the seminars or laboratories.

A possible explanation for the detected outliers is the inherent ambivalence of the ed-
ucational processes considering both the students’ learning and the instructors’ evaluation
processes. The analysis of the data sets exploited in our work uncovered students with a
noticeable discrepancy between the results obtained from evaluations during the semester
and the outcome (grade/category) at the final exam. These anomalies could result from
biased semester evaluations or from unexpected situations that may affect the students’
learning process.

It is worth mentioning that the unsupervised learning-based analysis previously
conducted is not specific to the case studies described in Section 3.2.1, but the interpretation
of the results is data-driven. Our study may be applied for student performance data sets
enriched with various student course features such as the students’ historical learning
performance, background information, course attendance, and students’ motivation. These
additional features might be more helpful for better understanding student learning and
will be further investigated.
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5.1. t-SNE Visualization of the Data Sets

To support the interpretation of the results obtained using AEs (Section 4.2) and to
provide insight about how the data is organized, a 3D t-SNE [26] is applied for reducing
the dimensionality of the high-dimensional instances from the data sets used in our case
studies. t-SNE is used in data mining as an exploratory data analysis tool for revealing
patterns in data useful for clustering. Student t-distribution [49] is used by the model to
better disperse the clusters.

For t-SNE visualizations, the implementation from scikit-learn [50] was employed,
with the following values for the hyper-parameters: 20 for perplexity, 3 for the learning rate
(for obtaining a superior learning curve) and 1000 iterations.

Figures 5 and 6 represent the 3D t-SNE visualizations for the two case studies. In each
figure, images (a) and (b) represent the 2019–2020 academic year and images (c) and
(d) represent the 2020–2021 academic year. For both academic years, images (a) and
(c) represent the category-based classification, while (b) and (d) represent grade-based
classification. In all figures, the instances are colored according to their grade/category,
without using category/grade for building the model, but only for the visualization.
Before applying the t-SNE algorithm, the data was normalized with the inverse hyperbolic
sine (asinh) for increasing sensitivity to outliers in data (e.g., values which are very small or
very large).

(a) (b)

(c) (d)

Figure 5. 3D t-SNE visualizations for the first case study: data set Dt and the category (a) and grade-based classifications (b);
data set Do and the category (c) and grade-based classifications (d).
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(a) (b)

(c) (d)

Figure 6. 3D t-SNE visualizations for the second case study: data set D′t and the category (a) and grade-based classifications
(b); data set D′o and the category (c) and grade-based classifications (d).

The 3D t-SNE visualizations depicted in Figures 5 and 6 reveal the same patterns as
those revealed by the AE visualizations presented in Section 4.2, confirming the conclusions
exposed previously. In summary, the learned patterns are:

• The plots for the grade-based classification (images (b) and (d) from the figures)
provide better groupings than the plots for the grade-based classification (images (a)
and (c));

• Students with poor academic performance (e.g., category F and grades 4, 5) are well
separated from the students with a good performance (e.g., category E and grades 9,
10 respectively). Inside these two larger classes (good vs poor performance) there is
no clear separation in subclasses. However, the subclasses observed inside these two
regions may express similar patterns for students with similar academic performance;

• Instances belonging to near classes of performance (e.g., categories F-S, G-E or grades
10-9, 8-7-6, 5-4) are neighbors on the t-SNE graph well;

• Students with higher grades/categories of grades are slightly better grouped for the
data sets corresponding to the traditional learning setting (Dt and D′t) than for the data
sets corresponding to the online setting (Do and D′o). Still, no significant differences
are noticed in the patterns learned in the traditional and online settings.
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To better quantify how well the students are separated in clusters after applying the 3D
t-SNE on each of the data set from our case studies, we introduce an evaluation measure Acc,
expressing the accuracy of the t-SNE mapping. The Acc value for a t-SNE graph is defined
as the percentage of data points belonging to the same class (i.e., colored the same) as their
nearest neighbor (closest point on the t-SNE chart). Denoting by X the set of 3D points

outputed by the t-SNE algorithm, the accuracy is defined as Acc =
∑

p∈X
ω(c(p), c(nn(p)))

|X | ,

where ω(p, q) =
{

1 i f p = q
0 otherwise

(nn(p) represents the nearest neighbor of p, and c(p)

represents the class corresponding to p). Acc takes values from 0 to 1 and expresses
how “close” the students are who belong to the same class (i.e., grade for the grade-based
classification and category for the category-based classification) on the 3D t-SNE space, as well
as how well the clusters are separated. Higher values for the accuracy measure highlight a
better clustering of the data points.

The accuracy (Acc) values computed for the t-SNE plots from Figures 5 and 6 are
depicted in Table 7. The best Acc values for each case study and classification scheme
are highlighted.

Table 7. Acc values computed for the t-SNE plots from Figures 5 and 6.

Classification First Case Study Second Case Study

Dt Do D′t D′oCategory 0.519 0.574 0.488 0.514

Grade 0.371 0.311 0.279 0.357

One observes that the results from Table 7 are consistent with the AE visualizations
from Figures 3 and 4.

1. For the category-based classification scheme (first row from Table 7) the accuracy of the t-
SNE mapping is slightly higher for the data sets collected in the online learning setting
(Do and D′o, respectively), for both case studies. Additionally, the t-SNE clustering for
the first case study (for both traditional and online learning) is slightly more accurate
than for the second case study;

2. For the grade-based classification scheme (second row from Table 7) the patterns are
slightly different than for the category-based classification. More specifically, the Acc
value for the first case study denotes slightly better partitioning for the data set
collected in the traditional setting (Do). For the second case study, the accuracy is
higher in the online learning setting, as for the category-based classification;

3. For both case studies and all data sets, more accurate t-SNE clustering is obtained for
the category-based classification scheme.

5.2. Supervised Learning-Based Analysis

With the aim of reinforcing the interpretation of the results presented in Section 4.2, a
supervised classification method was chosen and applied to the examined case studies and
data sets. We decided to select linear discriminant analysis (LDA) because it is a popular and
powerful linear classification algorithm which tries to maximize the separation between
classes. Additionally, it has been previously applied in the EDM literature for SPP. 80% of
the data was used for training; the remaining 20% was used for model testing. The data
split was repeated 10 times, and the values for the performance measures were averaged
over 10 runs of the algorithm. Table 8 presents the values for the accuracy (A), precision (P),
recall (R) and F-measure (F1) computed as described in Section 3.2.3 for all data sets and
both category and grade-based classification schemes. The results are averaged over 10 runs
of the algorithm.
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Table 8. Results obtained using the LDA classifier.

Classification
First Case Study Second Case Study

Dt Do D′
t D′

o

A P R F1 A P R F1 A P R F1 A P R F1

Category 0.635 0.648 0.635 0.633 0.638 0.699 0.638 0.648 0.638 0.642 0.638 0.640 0.668 0.693 0.668 0.672

Grade 0.368 0.422 0.368 0.500 0.383 0.502 0.383 0.426 0.377 0.435 0.377 0.392 0.366 0.413 0.366 0.375

The results from Table 8 reveal that the unsupervised learning analysis (AE, t-SNE
visualizations and results from Table 7) are well correlated with the results of the supervised
classification. The performance of the LDA classifier highlights the same patterns that
were observed after the analysis of the mappings provided by the AEs (Section 4): (1) the
category-based prediction is easier than the grade-based prediction, as higher values for the
performance measures were obtained by LDA; (2) the category-based classification provided
slightly better F1 values (with about 1.5% for the first case study and 3% for the second)
for the online learning-related data sets compared to the traditional learning-related data
sets; (3) the grade-based classification provided better F1 values (with about 7% for the first
case study and 2% for the second case study) for the traditional learning-related data sets
compared to the online learning-related data sets.

A reason why category-based prediction was easier in online than in traditional
learning could be that students orient their learning for a range of grades. In online settings,
they might have noticed some patterns in the evaluation of assignments, which they applied
during the examination for the range they were interested in. In traditional learning, grade-
based prediction is easier because face-to-face evaluation is more transparent than online
evaluation; therefore, the grades from examination are more correlated with the grades
from the activity during the semester.

Considering the results of the grade-based classification, one may conclude that the
semester evaluations in the traditional learning setting were slightly better correlated with
the final performance of students than those in the online learning environment. This
difference may be due to the practical exams that were not organized in the online setting.
Another possible reason is that in the case of traditional learning, after receiving the results
of the final exam, students had the possibility to meet and discuss with the teacher their
paper, and grades might have been adjusted to better fit the students’ performance. In the
case of online learning, students had the chance to request the re-correction of their written
exam, but the dialogue between the teacher and student was not possible, so the final
grades might not have been so well adjusted to the actual knowledge level. However,
a considerable discrepancy between the global performance in the traditional and online
setting is not noticeable. For verifying this hypothesis from a statistical viewpoint, a one
tailed paired Wilcoxon signed-rank test [51,52] was applied. The sample of values (accuracy,
precision, recall, F1) for the category and grade-based classifications for both case studies
in the traditional learning setting was tested against the sample of values obtained for the
online learning setting (the performances were described in Table 8). A p-value of 0.06681
was obtained, showing that there is no notable difference between the results from online
and traditional learning at a significance level of alpha = 0.05.

Certainly, there are some natural variations in the students’ skills or interests for
learning, because the discussed experiments used data from different sets of students
attending in two different academic years. The discrepancy between these generations of
students can be seen in their competencies and performances, but it does not influence
the presented study. The goal of this paper was to inspect, through unsupervised and
supervised learning methods, whether there are specific patterns in the students’ learning
process, regardless of their skills for study. We aimed to make an empirical evaluation as
to what degree patterns (which were extracted from our case studies) are maintained in
traditional and online learning.
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5.3. Comparison to Related Work

An evaluation of the published approaches for students performance analysis in online
learning settings [16–18] revealed that, despite some similarities, the aim and perspective
of our study stand apart from the related work.

The approaches presented in [16,17] are based only on online learning, while our
research studies and likens traditional and online learning. The course considered in our
study was sketched for traditional learning but, due to the pandemic, had to be promptly
adjusted to synchronous online learning, so the attending students were surprised by
online courses, being registered in traditional learning when they enrolled at our university.
The courses described in [16,17] were built for online learning, with specific instruments
and resources ([17] designed for asynchronous learning. There is not information in this
sense for [16]), so the enrolled students knew from the beginning that they would study
online. Thus, this study is compatible with the work presented in [18], since both of them
describe similar contexts of switching learning to an online environment because of the
pandemic. Unlike this study, Gopal et al. have another goal and data set [18]: they use the
answers received from students in a questionnaire (a rather subjective tool) to evaluate
their satisfaction. Our data sets consist of grades earned by students from evaluations
over a semester (which is more objective than a questionnaire) with the aim of analysing
students’ performance.

6. Conclusions and Future Work

A study on using autoencoders as an unsupervised learning model for students’ perfor-
mance analysis was introduced in this paper. The AE model was introduced for encoding,
through the latent representation, relevant features from the input data. Real academic
data sets collected from Babeş-Bolyai University on two academic years in both traditional
(2019–2020) and online (2020–2021) learning settings were used in the experiments.

The research questions on which our study relied on have been answered. The ex-
periments empirically supported the hypothesis that AEs are able, in an unsupervised
manner, to uncover learning patterns in student performance data that would be important
to forecast the performance of students. Moreover, we highlighted that the results of the
unsupervised learning-based analysis are highly correlated with the performance of a su-
pervised classifier trained for predicting the students’ performance. As an important target
of our paper, we aimed to inspect the way that online learning influenced the academic
performance of students when compared to learning in traditional academic environments.
The experiments also emphasized that there were no substantial discrepancies between
the students’ learning patterns in the traditional and synchronous online learning contexts,
even if we noticed that the semester evaluations in the traditional setting seemed to be a
little more correlated with the students’ final performance.

Future work will be oriented to extend our study by including other student course
features like the students’ history learning performance, background information, course
attendance, and students’ motivation. In addition, we aim to investigate if extending the
feature set with grades received by students at other courses preceding the analysed course
in the curricula would help increase the accuracy of the students’ performance analysis.
We further intend to use data collected from gymnasium and high schools, as well as to
use other types of AEs and to include other unsupervised learning models in our analysis,
such as gradual relational association rule mining [53].
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40. Coman, C.; Ţîru, L.G.; Meseşan-Schmitz, L.; Stanciu, C.; Bularca, M.C. Online Teaching and Learning in Higher Education during

the Coronavirus Pandemic: Students’ Perspective. Sustainability 2020, 12, 10367. doi:10.3390/su122410367. [CrossRef]
41. Czibula, G.; Maier, M.; Onet-Marian, Z. Students Performance Prediction Data Sets-Traditional vs. Online learning. 2021.

https://figshare.com/articles/dataset/Educational_data_mining_-_traditional_vs_online_learning/14330447/5 (accessed on 15
February 2021).

42. Lopez Pinaya, W.H.; Vieira, S.; Garcia-Dias, R.; Mechelli, A. Chapter 11—Autoencoders. In Machine Learning; Mechelli, A., Vieira,
S., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 193–208.

43. Chollet, F.; Haifeng, J.; Kento, N.; Eder, S.; Qianli, S.Z.; Oleg, S.; Taehoon, L.; Matt, W.; Kian, M.A.; Kashif, R.; et al. Keras. 2015.
Available online: https://github.com/fchollet/keras (accessed on 15 February 2021).

44. Tharwat, A.; Gaber, T.; Ibrahim, A.; Hassanien, A.E. Linear discriminant analysis: A detailed tutorial. AI Commun. 2017,
30, 169–190. [CrossRef]

45. Picca, D.; Curdy, B.; Bavaud, F. Non-linear correspondence analysis in text retrieval: A kernel view. In Proceedings of the JADT
2006: 8es Journees internationales d’Analyse statistique des Donnees Textuelles, Besançon, France, 19–21 April 2006; pp. 741–747.

http://dx.doi.org/10.1016/j.eswa.2020.114070
doi: 10.1016/j.eswa.2019.04.014
http://dx.doi.org/10.1016/j.eswa.2019.04.014
http://dx.doi.org/10.1016/j.compedu.2005.10.010
http://doi.acm.org/10.1145/2460296.2460330
http://dx.doi.org/10.1007/s12528-016-9126-9
http://doi.acm.org/10.1145/2723576.2723589
http://dx.doi.org/10.1145/2723576.2723589
http://dx.doi.org/10.1109/ICALT.2016.45
http://dx.doi.org/10.1109/ACCESS.2020.2964845
http://dx.doi.org/10.17977/um047v27i12020p042
http://dx.doi.org/10.37534/bp.jhssr.2020.v2.nS.id1066.p45
doi: 10.1177/0047239520934018|
doi: 10.1177/0047239520934018|
http://dx.doi.org/10.1177/0047239520934018
doi: 10.3390/su122410367
http://dx.doi.org/10.3390/su122410367
https://figshare.com/articles/dataset/Educational_data_mining_-_traditional_vs_online_learning/14330447/5
https://github.com/fchollet/keras
http://dx.doi.org/10.3233/AIC-170729


Mathematics 2021, 9, 2870 22 of 22

46. Sekerka, R.F. 15—Entropy and Information Theory. In Thermal Physics; Sekerka, R.F., Ed.; Elsevier: Amsterdam, The Netherlands,
2015; pp. 247–256.

47. Boetticher, G.D. Improving the Credibility of Machine Learner Models in Software Engineering. In Advances in Machine Learning
Applications in Software Engineering; IGI Global: Hershey, PA, USA, 2007.

48. Gijbels, I.; Hubert, M. 1.07—Robust and Nonparametric Statistical Methods. In Comprehensive Chemometrics; Brown, S.D., Tauler,
R., Walczak, B., Eds.; Elsevier: Oxford, UK, 2009; pp. 189–211.

49. Martin, B. Chapter 6—Sampling Distributions Associated with the Normal Distribution. In Statistics for Physical Science; Martin,
B., Ed.; Academic Press: Boston, MA, USA, 2012; pp. 105–122.

50. Scikit-learn. Machine learning in Python. 2021. Available online: http://scikit-learn.org/stable/ (accessed on 15 February 2021).
51. Siegel, S.; Castellan, N. Nonparametric Statistics for the Behavioral Sciences, 2nd ed.; McGraw–Hill, Inc.: New York, NY, 1988.
52. Social Science Statistics. Available online: http://www.socscistatistics.com/tests/ (accessed on 15 February 2021).
53. Miholca, D.L.; Czibula, G. DynGRAR: A dynamic approach to mining gradual relational association rules. Procedia Comput. Sci.

2019, 159, 10–19. [CrossRef]

http://scikit-learn.org/stable/
http://www.socscistatistics.com/tests/
http://dx.doi.org/10.1016/j.procs.2019.09.155

	Introduction
	Related Work
	Methodology
	Problem Formalisation
	Our Approach
	Data Collection
	Building the AE Model
	Results Evaluation


	Experimental Results
	Data Analysis
	Analysis of the Results Obtained Using AEs

	Discussion
	t-SNE Visualization of the Data Sets
	Supervised Learning-Based Analysis
	Comparison to Related Work

	Conclusions and Future Work
	References

