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Abstract: Video super-resolution (VSR) aims at generating high-resolution (HR) video frames with
plausible and temporally consistent details using their low-resolution (LR) counterparts, and neigh-
boring frames. The key challenge for VSR lies in the effective exploitation of intra-frame spatial
relation and temporal dependency between consecutive frames. Many existing techniques utilize
spatial and temporal information separately and compensate motion via alignment. These methods
cannot fully exploit the spatio-temporal information that significantly affects the quality of resultant
HR videos. In this work, a novel deformable spatio-temporal convolutional residual network (DST-
net) is proposed to overcome the issues of separate motion estimation and compensation methods
for VSR. The proposed framework consists of 3D convolutional residual blocks decomposed into
spatial and temporal (2+1) D streams. This decomposition can simultaneously utilize input video’s
spatial and temporal features without a separate motion estimation and compensation module. Fur-
thermore, the deformable convolution layers have been used in the proposed model that enhances
its motion-awareness capability. Our contribution is twofold; firstly, the proposed approach can
overcome the challenges in modeling complex motions by efficiently using spatio-temporal infor-
mation. Secondly, the proposed model has fewer parameters to learn than state-of-the-art methods,
making it a computationally lean and efficient framework for VSR. Experiments are conducted on a
benchmark Vid4 dataset to evaluate the efficacy of the proposed approach. The results demonstrate
that the proposed approach achieves superior quantitative and qualitative performance compared to
the state-of-the-art methods.

Keywords: video super-resolution; deformable convolution; 3D convolution; spatio-temporal;
residual neural network; deep learning

1. Introduction

In recent years, image and video super-resolution have attracted a lot of attention
due to their wide range of applications, including, but not limited to, medical image
reconstruction, remote sensing, panorama video super-resolution, UAV surveillance, and
high-definition television (HDTV) [1–3]. Because video is one of the most often used forms
of multimedia in our everyday lives, super-resolution of low-resolution videos has become
critical. In general, image super-resolution (ISR) algorithms process a single image at a time.
In contrast, video super-resolution algorithms handle many successive video frames at a
time to reconstruct the target HR frame using the relationship between the frames. Video
super-resolution (VSR) may be considered a subset of image super-resolution since it can
be processed frame by frame by image super-resolution methods. However, performance
is not always satisfactory due to the artefacts and jams that may be introduced, resulting in
unreliable temporal coherence across frames [4].

Earlier VSR methods estimated motion through separate multiple optical flow
algorithms [5] and enabled an end-to-end trainable process for VSR. However, it made
VSR methods highly dependent upon externally estimated optical flow between frames.
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In addition to this, standard optical flow calculated by these algorithms is not an optimal
motion representation for video restoration tasks, including VSR [6]. To address this issue,
several methods proposed the use of local spatio-temporal information between frames
to capture optical flow for motion estimation [7,8]. These methods employed spatial and
temporal information separately to extract the feature from frames and estimate movement
during the motion compensation step. However, these methods lacked in utilizing the
discriminating spatio-temporal information of input LR frames efficiently, resulting in
reduced coherence between reconstructed HR videos [9].

With the remarkable success of deep learning in various fields, super-resolution
techniques based on deep learning have been explored intensively. Many video super-
resolution approaches based on deep neural networks, such as convolutional neural net-
work (CNN), generative adversarial network (GAN), and recurrent neural network (RNN),
have been developed. A large number of low-resolution video sequences are fed into
the neural network for feature extraction, inter-frame alignment, and feature fusion to
produce high-resolution videos. The pipeline of these methods consists of three major com-
ponents, frame alignment, features-fusion of aligned frames, and the reconstruction of HR
frames [7,10]. The success of these methods depends on the inter-frame motion estimation
and compensation methods. These methods usually use spatial and temporal information
separately for feature extraction and motion estimation to effectively align the video frames.
Hence, are unable to utilize the discriminative spatio-temporal information of input LR
frames fully and efficiently [10]. In this regard, the use of 3D convolution (Conv3D) is one
of the most straightforward ways for the simultaneous handling of spatial and temporal
information. However, additional parameters introduced by the temporal dimension of
Conv3D add computation complexities to the overall process and limit the depth of CNN
models for VSR. Consequently, this restricts the capabilities of the CNN-based VSR method
to learning and modeling the complex functions effectively. To handle this problem, a
lightweight variant of Conv3D [11] was introduced but due to the fixed receptive fields of
convolution kernels, this method was also not effective for modeling the complex motion
and geometric transformation. Therefore, just increasing the depth of neural networks is
neither an optimal nor an effective choice for developing an efficient model for VSR [12].

This paper proposes an end-to-end deformable spatio-temporal convolutional residual
network (DSTnet) for VSR by adopting the ResNet as the underlying architecture. Unlike
simple convolution kernels, deformable convolution (Dconv) kernel size and positions are
also learnable, making it suitable for estimation and compensation of inter-frame motion.
The proposed model consists of multiple novel spatio-temporal convolutional residual
blocks (resST) where each resST consists of spatial and temporal convolutional blocks
(2+1) D instead of plain 3D convolution layers. This decomposes each 3D filter into a 2D
filter for learning spatial features and a 1D filter for learning temporal features. Unlike
previous methods, a deformable convolution is introduced in a special module towards
the end of the network for handling complex geometric transformations with reduced
computational complexity. Thus, the proposed model simultaneously utilizes spatial and
temporal information, effectively, handles inter-frame complex motion, and produces
visually appealing results. The rest of the paper is organized as follows. Section 2 presents
the related work. Section 3 elaborates the proposed methodology. Section 4 discusses the
experimental setup and results, and, finally, the paper is concluded in Section 5.

2. Related Work

During the last few years, several methods have been proposed for image and video
super-resolution. These methods can be categorized into model-based and learning-based
methods. Model-based methods usually try to model internal similarities of images using
machine-learning techniques. In this regard, Freedman et al. [13] used the self-example
approach to generate LR exemplar patches from the input image using a variant of the
nearest neighbor search algorithm and attempt to generate HR patches using LR patches of
similar pattern. Yang et al. [14] proposed the alternative to the nearest neighbor strategy
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based on the regression method that further improved the LR and HR patches mapping
and accuracy. However, all these methods required extensive pre and post-processing
to reconstruct the HR image. On other hand, learning-based methods used low and
high-resolution exemplar pairs to learn the mapping function. The sparse-coding-based
method [15] is an example of the learning-based methods. Earlier learning-based SR
methods extracted patches from input LR images to learn representation and reconstruct
LR images in the same fashion. Hence, in all aforementioned methods patches were the
focus of optimization. Different techniques were used to extract LR patches before the
main SR process and aggregation of HR output, which lead to considerable computational
overhead. With the introduction of deep learning, features can be learned directly from
the raw data. Which eliminates the need for any hard-coded pre- or post-processing of
input data. These deep representation-based approaches are generally called end-to-end
learning-based methods. In the subsequent sections, state-of-the-art deep learning-based
methods for image and video SR are discussed.

2.1. Single Image Super-Resolution (SSIR)

The single image super-resolution (SSIR) takes a single LR image as input to recon-
struct the HR image. In this direction, Dong et al. proposed SRCNN [16], a CNN-based
architecture to learn the non-linear mapping between LR and HR images for image super-
resolution, and reported superior results. Then, Kim et al. [17] proposed a CNN-based
architecture with increased network depth and residual learning as an extension to SRCNN.
Later, Tai et al. [18] came up with a CNN-based network with residual connection and
reported better efficiency. The major limitation of these methods was using a pre-processing
step for up-scaling the LR images to the desired output size before training the model,
which caused increased computational complexity and alteration in details of input LR
frames.Shi et al. [19] avoid this problem by using an efficient sub-pixel CNN layer instead
of a deconvolution layer to upscale the LR feature map to HR at the end of the network and
achieved better results than the previous method for the SR. In the NTIRE 2017 challenge,
Timofte et al. [20] provided a huge dataset of diverse 2K resolution images (DIV2K). This
dataset enabled the researcher to develop deeper and more effective models for SR, such as
EDSR [21], RCAN [22], and RDN [23].

2.2. Video Super-Resolution (VSR)

VSR methods generally divide the video super-resolution task into three steps; feature
extraction and motion compensation, feature fusion, and SR reconstruction. In this direc-
tion, Kappeler et al. [24] extended SRCNN [16] for VSR and used multiple consecutive
frames as input to predict HR frames. Later, Wang et al. [25] used optical flow information
for inter-frame motion compensation and temporal alignment and reported a better tempo-
ral alignment method. Liao et al. [5] used two different classical optical flow algorithms for
motion compensation and then used a CNN-based model to reconstruct SR video frames.
Later, Liu et al. [26] proposed an improved optical-flow alignment method that generated
HR frames in temporal scales by a temporal adaptive method. Caballero et al. [27] pro-
posed an end-to-end efficient sub-pixel convolution neural network for video (VESPCN),
comprised of three modules: a spatial-transformer for motion compensation and feature
extraction, feature fusion, and HR reconstruction. Tao et al. [28] emphasized the impor-
tance of accurate inter-frame alignment and motion compensation for VSR. They used a
sub-pixel motion compensation (SPMC) layer in their method to simultaneously achieve
motion compensation and super-resolution. All these methods revealed that precise optical
flow prediction is crucial for VSR, errors in the optical flow computation or the image-level
wrapping operation can introduce artefacts in the resultant VSR.

Alternative techniques were proposed for VSR to capture temporal-relation without
explicit motion compensation. For example, Huang et al. [29] proposed bidirectional
recurrent convolution networks capture long-term spatio-temporal relations between
frames for VSR. Another method, frame recurrent video super-resolution (FRVSR) [30]
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recurrently used two deep CNN models by taking previously estimated HR feature value as
input and reconstructed subsequent HR frames. Some other deep learning-based methods,
such as feed-forward networks [31], generative adversarial networks (GANs) [32] were
also proposed. Although these methods improved visual quality, these methods are slower
than many CNN-based VSR methods. To overcome this issue, Zhang et al. [33] used pixel
correlations extracted by compression algorithms to exploit dense representation of the
network; by transferring the SR result between adjacent frames, they accelerated the VSR
process by almost 15 times with little performance loss. Another method proposed by
Xue et al. [6] was a turning point for the optical flow-based method for VSR. It concluded
that traditional optical flow is not an ideal motion representation for video restoration
tasks, including VSR. To circumvent the problem, Jo et al. [34] proposed an implicit
motion compensation model that generated dynamic up-sampling filters using each pixel’s
local spatio-temporal neighborhood and HR residual image. Tain et al. [8] proposed a
temporally deformable alignment network (TDAN) to avoid explicit motion compensation
problems using a one-stage temporal alignment process at the feature level. This method
used features from both the reference frame and neighboring frames using deformable
convolution, and then applied these learned kernels to perform the frame alignment.
More recently, Bao et al. [35] proposed an end-to-end trainable motion estimation and
compensation network, by combining both kernel-based and flow-based methods for
frame interpolation. They designed a unique adaptive warping layer that integrates both
estimated optical flow and interpolation kernels to synthesize target HR frame pixels and
achieved encouraging results for video enhancement tasks including VSR.

2.3. Deformable Convolution-Based Methods

Dia et al. [36] proposed the deformable convolution (Dconv) that enhanced the capa-
bility of traditional CNN-based methods to learn geometric transformation. Deformable
convolution appends learned offset to the sampling grid of regular convolution kernel,
which enables it to learn information away from its local neighborhood. Deformable
convolutions are widely used in high-level computer vision tasks, such as action recog-
nition, semantic video segmentation [37]. For example, Zhang et al. [38] proposed a
deep deformable 3D convolutional neural network for task of gesture recognition, that
not only achieved excellent accuracy but also met the demand of real-time processing.
However, Tain et al. [8] was the first method to introduce a deformable convolution-based
method for VSR and successfully achieved the frame alignment without explicitly com-
puting optical flow. They reported superior results as compared to state-of-the-art VSR
methods. Wang et al. [7] also used an enhanced deformable convolution network for video
restoration tasks, including VSR. Their proposed architecture consists of two modules: (1) a
pyramid and cascading alignment based on TDAN [8] (2) a temporal and spatial attention-
based fusion model. Furthermore, the deformable convolution layers are proposed to
integrate with the convolutional LSTM [39], and recurrent convolutional network [40] that
enhanced the performance of VSR methods. Recently, Lpeztapia et al. [41] proposed gated
recurrent neural networks for VSR that incorporate some of the key components of a gated
recurrent unit and deformable convolution.

2.4. 3D Convolution-Based Methods

The most straightforward way to learn spatio-temporal information from the input
video sequence is to employ 3D convolution (Conv3D). Furthermore, there are considerable
similarities between LR and desired HR videos, so the residual connection is widely used
in VSR methods. Li et al. [11] used residual connections and proposed a model termed as
fast spatio-temporal residual network (FSTRN) for VSR by utilizing factorized Conv3D
for learning spatio-temporal features. This method used spatial and temporal kernels in
different layers and effectively reduced computational complexity at training time. Other
methods, such as [11,42], used C3D [12] as their backbone architecture. Similarly, some
other methods, such as [21,43], gained much success in image SR tasks by efficiently
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using the ResNet [44] as a backbone architecture. However, these techniques are not fully
explored and utilized for VSR [11].

3. Methodology

In this section, the detail of the proposed architecture is presented. As shown in
Figure 1, the proposed architecture consists of four modules: (1) spatio-temporal convo-
lutional residual blocks (resST), (2) deformable spatio-temporal convolutional residual
blocks (Deformable resST), (3) features fusion, and (4) SR reconstruction.

Figure 1. Proposed DSTnet architecture, the structure of a residual blocks is shown on left, and
temporal fusion and reconstruction module shown on the right side of the figure.

Let us denote the input and output of the proposed DSTnet method F(DSTnet) by XLR
and YHR. First, N number of LR frames XLR are fed to a spatio-temporal convolutional
block (2+1) D with convolution kernel of size 3 × 3 × 3 to extract features, which can be
expressed as:

PL
0 = F((2+1)D)(XLR), (1)

where F((2+1)D) represents (2+1) D convolution function to obtain initial feature map PL
0 .

That later used as input for spatio-temporal convolutional (2+1) D residual (resST) blocks,
to learn in-depth spatio-temporal features. Assume K number of resST blocks are used,
the first residual block uses PL

0 as input. The next resST block further learns features using
the previous residual block’s output and so forth; more details about the resST blocks are
presented in Section 3.1 The output of the Kth resST block PL

K can then be obtained by:

PL
K = F(resST,K)(F(resST,K−1)(F(resST,K−2)(. . . (F(resST,1)(PL

0 ) . . . ))), (2)
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where F(resST,K) denotes the operation of resST blocks. PL
K is further used as input for

the special deformable spatio-temporal convolutional residual blocks. These blocks are
designed to enhance the proposed network’s ability to learn the complex motion. In this
module each 2D spatial convolution layers in resST blocks are replaced with the deformable
convolution layers [38]. More details will be presented in Section 3.2. Assume D such
residual block has been used in model the output of Dth block can be denoted by PL

D. To
combine estimated PL

D across time-space, the temporal fusion module is used, detail of
the module is presented in Section 3.3. The term that expresses this fused deep feature
map is PL

F in Figure 1, which is further used as input for the SR reconstruction module.
The output SR feature map can be denoted by PL

SR. Finally, the output of the network is
composed of SR mapping from LR space termed as PL

SR from SR reconstruction module
and mapping of reference LR frame in HR space the obtained PH

SR. The estimated HR
frame YHR is obtained by performing concatenation of PL

SR and PH
SR using a global residual

connection. The overall output of DSTnet is as following,

YHR = FDSTnet(XLR)
= PL

SR + PH
SR,

(3)

where FDSTnet represents the overall operations performed by the proposed DSTnet to
reconstruct the HR video frames YHR.

3.1. Spatio-Temporal Convolutional Residual Blocks

Residual blocks have gained much success in computer vision tasks by ensuring
excellent performance [43,45]. Lim et al. [21] proposed the modified residual blocks for SR
by removing the batch-normalization layer from residual blocks, as shown in Figure 2b.
To apply residual neural networks in videos, generally, 2D convolutions are replaced
with 3D convolutions to utilize spatial and temporal relations between frames. However,
Li et al. [11] proposed to decompose 3D convolution into 2D convolution followed by a 1D
convolution for the VSR task, as shown in Figure 2a. This section presents details about the
proposed spatio-temporal convolutional residual block (resST), shown in Figure 2c.

Figure 2. Comparison of (a) FSTRN [11] 3D residual block, (b) EDSR [21] 2D residual block, and
(c) the proposed spatio-temporal convolutional residual block.

In the proposed residual block, each N number of 3D convolution filters with dimen-
sion t × s × s are replaced by (2+1) D convolutional block consists of N number of spatial
convolution filter of dimension 1 × s × s. Followed by M temporal filters of dimension
1 × 1 × t where M determines the subspace dimensionality between both filters. The value
of M is calculated in a way similar to [46]. This ensures that (2+1)D block learnable param-
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eters are not more than that required for a 3D convolution kernel. The proposed residual
module consists of two (2+1)D convolutional blocks with ReLU as the activation function.
Additionally, the same-padding strategy is adopted in every spatio-temporal convolutional
block to avoid dimensionality reduction. The use of (2+1) D convolutional blocks has two
major advantages over 3D convolution. First, it can better model more complex functions
due to additional non-linearity between 2D and 1D convolution in each layer. Second, it
provides better optimization with superior performance at training and test time without
additional computation.

3.2. Deformable Spatio-Temporal Convolutional Residual Block

Dai et al. [36] proposed a deformable convolution (Dconv) that achieved much success
in the field of computer vision. Let us consider a simple convolution operation Y with
stride = 1 summarized as follows:

Y(P0) =
K

∑
K=1

wk · X(P0 + Pk), (4)

where P0 represents a location in the output feature and Pk represents the convolution-
sampling grid. As depicted in the equation above, convolution is a weighted summation
of sampled input features using a convolution kernel for a fixed location P0. In contrast, a
deformable convolution kernel can augment the sampling grid by learning an additional
offset Pk for each sampling location. Thus, it can enlarge the spatial receptive field. De-
formable convolution shows superiority in many high-level computer vision tasks. Inspired
by its success, it was recently used for temporal frame alignment in the state-of-the-art VSR
method [8].

The proposed variant of 3D convolution can learn and model spatio-temporal rela-
tions simultaneously. However, convolutional neural networks (CNN) have an inherited
limitation in learning complex geometric transformation and motion. To overcome this
issue, in this work deformable convolution is used that enhances the model’s capabil-
ity to estimate and compensate complex motion between input LR frames. Although,
in the proposed network, deformable convolution can easily be integrated within every
spatio-temporal convolutional block of each resST block. However, it is evident from
the literature that deformable convolution requires high-level semantic information to
perform best [38]. Integrating it in every layer, especially using it in the starting layers
of the network would only bring extra computational complexity, in the form of learned
offset for each deformable convolution. Hence, to make model architecture robust and the
training process optimized, deformable convolution layers are proposed to use only in the
high-level layer of the network (i.e., towards the end of the network).

3.3. Temporal Fusion

The main objective of this module is to temporally combine spatial and temporal
features of the output learned features map of the residual blocks. In the proposed feature
fusion module a 2D convolution layer is used as a bottleneck layer to fused residual
block’s output feature maps temporally. The obtained HR features maps are passed to 2D
convolution residual blocks to further fine-tune the fused features.

3.4. SR Reconstruction

The SR reconstruction module is used to obtain the estimated super-resolved video in
HR space after efficiently extracting deep features in LR space. In this module, sub-pixel
convolution layer proposed by Shi et al. [19] is used for HR frame reconstruction. This
module consists of simple convolution layers followed by the rearrangement of the pixels
by using pixel-shuffle operation. This upscale the feature map to desired resolution using
values from all learned feature maps.
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4. Experimentation and Results
4.1. Dataset

Vimeo-90K [6], and Vid4 [47] are two benchmark datasets explicitly developed for
video super-resolution. The Vimeo-90K is comprised of 89,800 video clips. Each video clip
presents different contents, diverse scenes, and motions. These videos were extracted from
a popular video-sharing website, vimeo.com. Although Vid4 is comprised of four video
sequences: city, calendar, foliage, and walk. Each video sequence has a different motion
sequence and is recorded to varying resolutions under different circumstances.

The Vimeo-90k dataset is comparatively more challenging due to diverse camera and
object motion recorded for high-quality videos in different circumstances. In this research
work, the Vimeo-90k dataset has been used to train the proposed model, and the Vid4
benchmark dataset is used to evaluate the performance of the proposed VSR method. This
strategy is in-line with state-of-the-art methods to ensure a fair comparison.

4.2. Experiment Details

The video super-resolution is a supervised learning task, aims to infer the degradation
function between input LR video and corresponding HR ground truth. Following other
VSR methods, we use MATLAB’s imresize function as a degradation method to generate
LR video frames using HR frames of both datasets. Hence, the final training dataset
has 89,900 pairs of HR frames and their corresponding LR frames for training. For the
evaluation of the proposed VSR method, the Vid4 dataset is used.

All experiments are conducted using Pytorch [48] with an NVIDIA 2080Ti GPU, with
a batch size of 32. During training Adam [49] is used as an optimization algorithm with
β1 = 0.9 and β2 = 0.999. The model initial learning rate was set to 1 × 104 and halved after
every 30 epochs. LReLU [50] is chosen activation function. Furthermore, motivated by
experimental results in some modules of DSTnet ReLU is selected as an activation function.
Mean square error (MSE) is the loss function used during the proposed network training.
A sequence of 7 frames is utilized as input to the proposed model. Following the previous
methods [26], Ref. [6] we consider only luminance (Y) channel in YCbCr color space of
input frames during training.

If not specified otherwise, each convolution layer has 64 filters, and kernel size is set
to 3 × 3 × 3. The proposed model consists of three spatio-temporal convolutional residual
blocks followed by five residual blocks with integrated deformable convolution. Further
detail of the proposed network’s modules, output shape of each module, and their order
in model architecture is given in Table 1. For quantitative comparison of the proposed
method with existing methods, both PSNR and SSIM [51] are used as evaluation metrics.

4.3. Results

The proposed method is compared with several single image super-resolution meth-
ods and VSR methods, including VESPCN [27], RCAN [22], VSRnet [24], SOF-VSR [25],
BRCN [29], DBPN [31], VSRResNet [32], TOFlow [6], and TDAN [8] on the benchmark
VSR Vid4 [47]. Quantitative results are shown in Tables 2 and 3, first and last two frames of
videos are not consider for evaluation following TDAN [8] for fair comparison. Addition-
ally, note that most of the aforementioned methods are trained on different datasets and,
the comparison is made on the results they all provide in their research work. However,
the same training as reported in TOFlow [6] and TDAN [8] is used in this work. The
proposed method achieved the highest Structural Similarities Index Measure (SSIM) value
on a benchmark dataset and reported comparative PSNR.
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Table 1. Detail of DSTnet architectures considered in experiments. Output shape dimension are
batch size, channel, height, and width. Layers details is formatted as: filter shape, number of filters.
The spatio-temporal convolutional blocks are shown in brackets, by the number of times these are
repeated in each resST blocks.

Module Output Shape Layer’s Detail

Feature Extraction 64, 7, 64, 112


1 × 3 × 3, 64

ReLu
3 × 1 × 1, M

× 1

resST blocks 64, 7, 64, 112




1 × 3 × 3, 64
ReLu

3 × 1 × 1, M

× 2

× 3

Deformable
resST blocks 64, 7, 64, 112


3 × 3 × 3, 54

LReLU
3 × 3 × 3, 64

× 5

Temporal Fusion 64, 64, 112

1 × 1, 64,
3 × 3, 64

LReLu
3 × 3, 64

× 6

SR Reconstruction 1, 256, 448


1 × 1, 64

PixelShu f f le
3 × 3, 64

× 1

Table 2. Comparison of PSNR (dB) with state-of-the-art methods on Vid4 dataset with scaling factor
of 4. The best methods results are shown in boldface.

Method Year City Walk Calendar Foliage Average

Proposed 2021 27.08 29.56 23.14 25.77 26.39
TDAN [8] 2020 26.99 29.50 22.98 25.51 26.24

TOFlow [6] 2019 26.78 29.05 22.47 25.27 25.89
VSRResNet [32] 2019 – – – – 25.51

SOF-VSR [25] 2018 – – – – 26.02
RCAN [22] 2018 26.06 28.64 22.33 24.77 25.45
DBPN [31] 2018 25.80 28.64 22.29 24.73 25.37

VESPCN [27] 2017 26.17 28.31 21.98 24.91 25.34
VSRnet [24] 2016 25.62 27.54 21.34 24.41 24.73
BRCN [29] 2015 – – – – 24.43

Qualitative results of all four videos of the Vid4 dataset are shown in Figures 3–6. It
can be observed that the proposed method can produce more visually appealing results,
with less blur and motion artefacts around objects. As shown in Figure 3, the name is more
visible in proposed method generated results. In Figure 4, the texture and building detail is
only reconstructed by the proposed model results. Similarly, in Figures 5 and 6, the texture
and scene details of the roof of the car and bags, respectively, are preserved by the proposed
methods while all other methods produced overly smoothed and distorted results.
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Table 3. Comparison of SSIM with state-of-the-art methods on Vid4 dataset with scaling factor of 4.
The best methods results are shown in boldface.

Method Year City Walk Calender Foliage Aaverage

Proposed 2021 0.779 0.899 0.769 0.733 0.795
TDAN [8] 2020 0.757 0.890 0.756 0.717 0.780

TOFlow [6] 2019 0.740 0.879 0.732 0.709 0.765
VSRResNet [32] 2019 – – – – 0.753

SOF-VSR [25] 2018 – – – – 0.771
RCAN [22] 2018 0.694 0.873 0.723 0.664 0.738
DBPN [31] 2018 0.682 0.872 0.715 0.661 0.732

VESPCN [27] 2017 0.696 0.861 0.691 0.673 0.730
VSRnet [24] 2016 0.654 0.844 0.644 0.645 0.697
BRCN [29] 2015 – – – – 0.633

Conclusively, the proposed approach outperforms the state-of-the-art VSR method
in terms of PSNR and SSIM on a benchmark dataset. The residual connection and spatio-
temporal convolutional blocks have played an important role in learning deep generalized
representations. DSTnet can also fully utilize and model spatio-temporal relation with
the ability to model complex motion, using the novel deformable convolution module
for super-resolution of video clips with dynamic scenes and motion. As illustrated in the
results, the proposed approach outperforms benchmark datasets in terms of structural
similarity (SSIM) and PSNR as compared to state-of-the-art approaches for VSR with
reduced parameters.

Figure 3. Qualitative comparison between VSR results obtained by (a) Bicubic, (b) VSRNET [24],
(c) SRCNN [16], (d) VESPCN [27], (e) Proposed and (f) Ground-Truth on “calendar” from Vid4 with
scaling factor of x4.



Mathematics 2021, 9, 2873 11 of 15

Figure 4. Qualitative comparison between VSR results obtained by (a) Bicubic, (b) VSRNET [24],
(c) SRCNN [16], (d) VESPCN [27], (e) Proposed and (f) Ground-Truth on “city” from Vid4 with
scaling factor of x4.

Figure 5. Qualitative comparison between VSR results obtained by (a) Bicubic, (b) VSRNET [24],
(c) SRCNN [16], (d) VESPCN [27], (e) Proposed and (f) Ground-Truth on “foliage” from Vid4 with
scaling factor of x4.
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Figure 6. Qualitative comparison between VSR results obtained by (a) Bicubic, (b) VSRNET [24],
(c) SRCNN [16], (d) VESPCN [27], (e) Proposed and (f) Ground-Truth on “walk” from Vid4 with
scaling factor of x4.

Furthermore, our model has 3.91 million learnable parameters, which influence the
model’s size. Table 4 shows the number of learnable parameters of several networks of
VSR. It can be observed from Table 4 statistics that the proposed model sizes is small in
comparison with the networks having leading VSR performance: ToFlow [6], RDN [23],
and RCAN [22] except from TDAN [8]. This demonstrates that the proposed method is
computationally efficient, due to the tiny model size. Even with such a lightweight model,
the proposed model is deep in comparison with other deep-learning-based models using
3D convolution for VSR. However, the proposed method still achieves encouraging VSR
performance and outperforms the state-of-the-art methods, as shown in Tables 2 and 3.

Table 4. Numbers of parameter in millions of different networks with leading VSR performance.

Methods RCAN [22] RDN [23] TOFlow [6] TDAN [8] Proposed

Parameters
(in millions) 15.50 M 22.30 M 6.20 M 1.97 M 3.91 M

5. Conclusions and Future Work

In this paper, a novel deformable spatio-temporal convolution residual network (DST-
net) is proposed for video super-resolution. This method consists of spatio-temporal (2+1)
D convolutional residual block with deformable convolution layers to simultaneously
utilize spatial and temporal information. Experiments confirm that DSTnet can effec-
tively capture and model complex motion between frames and outperform state-of-the-art
methods on the benchmark Vid4 dataset. The proposed method is evaluated using two
well known and widely used metrics for VSR methods, i.e., SSIM and PSNR. It achieves
SSIM of 0.795 and PSNR of 26.39 dB, which are higher than state-of-the-art VSR methods.
Moreover, the proposed method has fewer parameters to learn during training, making it
computationally lean and proving its fast learning ability. As a future research direction,
we would like to extend this method to handle various complex motions by improving the
feature-fusion module of this method.
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