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Abstract: In manufacturing firms, there are many factors that can affect product completion time in
production lines. However, in a real production environment, such factors are uncertain and increase
the adverse effects on product completion time. This research focuses on the role of internal factors in
small- and medium-scale supply chains in developing countries, enhancing product completion time
during the manufacturing process in fuzzy conditions. In the first step of this research, a list of factors
was found clustered into six main groups: technology, human resources, machinery, material, facility
design, and social factors. In the next step, fuzzy weights of each group factor were determined by a
fuzzy inference system to reflect the uncertainty of the factors in utilizing product completion time.
Then, a hybrid fuzzy–TOPSIS-based heuristic is proposed to generate and select the best production
alternative. The outcomes showed that the proposed method could generate and select the alternative
with a 10.13% lower product completion time. The findings also indicated that using the proposed
fuzzy method will cause less minimum variance compared to the crisp mode.

Keywords: supply chain management; uncertainty; hybrid fuzzy–TOPSIS heuristic; product comple-
tion time

1. Introduction

The manufacturing sector plays a crucial role in utilizing the economy of a country.
According to the statistics that are reported by the “Statista” website, more than 37.4% of
the gross domestic product (GDP) of Malaysia belongs to industries (Figure 1).

1.1. A Common Major Shortcoming in Many Manufacturing Firms

Many industries do not pay enough attention to the factors that can enhance (or
decline) productivity. Such ignorance yields many problems, for example sometimes
failing to manufacture enough products to fulfill the market demand. Such problems often
can be found in small- and medium-scale companies in developing countries. Figure 2
represents the number of bankrupted companies in Malaysia in 2019.

Such phenomena can lead to bankruptcy or at least slow the growth of a company.
Successful firms, by contrast, have handy strategies to improve and develop their busi-
nesses. Besides, failing to pay enough attention to success factors in production can cause
immediate bankruptcy for many young businesses. Figure 3 indicates the number of
registered companies in Malaysia from 2008 to 2018.
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Although this number shows the total number of companies in all sectors (includ-
ing manufacturing and services), at the same time, even if 50% of this value belongs to
manufacturing industries, it is still significant.

• Uncertain conditions that surround the manufacturing firms

One important thing that must be considered about manufacturing firms is that the
factors that can influence the production rate of manufacturing companies may be different
from one company to another due to their surrounding environment.

Therefore, this research tries to find the significant factors in minimizing the processing
time of manufacturing firms in Malaysia and, then, propose a new method to choose the
best manufacturing strategy, according to the actual production environment of a company.

• Can uncertainty increase the risk of bankruptcy in manufacturing companies, and
how can it be prevented by using the fuzzy method?

Some preconceptions show positive correlations between increasing uncertainty and
the chance of bankruptcy in a manufacturing firm. However, this idea will be explored in
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Section 2. Uncertainty can increase entropy in manufacturing companies. This research
aims to find which uncertainty factors will play critical roles in a completion time of a
product (as the primary goal of this research) in a company and, then, how to prevent such
uncertainty in manufacturing companies using the fuzzy method.
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Figure 3. Number of the registered new companies in Malaysia from 2008 to 2018.

1.2. Managerial Implications of the Research

In today’s world, the fundamental or essential part of the developing countries’
economy mainly relies on their industries. The more advanced industries mean more
products in terms of quantity and quality, resulting in less importing and more exporting
of goods. Therefore, it is crucial to propose methods to skyrocket the production factors
such as time. During the last half-century, many research studies have been carried out to
utilize production line performance.

The outcomes of this research provide a framework that will help managers in various
industry sectors to conduct an accurate study in their production lines, identify the status
of effective factors in increasing (or decreasing) product completion time, and select a better
production strategy for manufacturing more products with higher quality.

The rest of the paper includes a detailed literature review to find the critical factors.
Then, a fuzzy inference system will be proposed to determine the fuzzy weights of the
group factors. Afterward, a fuzzy–TOPSIS heuristic will be proposed to generate different
alternatives and, then, select the best one in terms of the total product completion time. To
evaluate the performance of the proposed method, using DOE, several experiments will
be designed. Then, the outputs will be examined by using indicators. The results of the
proposed method will be compared to the crisp mode to show the effect of uncertainty on
product completion time.

2. Decision-Making Methods in Minimizing Product Completion Time

Various decision-making methods have been widely used for various problems in
industries. Decision-making methods are those methods used to select one (or more
parallel) feasible solutions among thousands, millions, or even billions of possible solutions.
Choosing the appropriate decision-making method can help to make a correct decision
in a reasonable time. Each paper is cited in the appropriate content and sub-content
where relevant. This section will explain several important decision-making methods for
minimizing the production and cycle time in manufacturing systems.
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2.1. Technology

Perhaps using appropriate technology can be considered the most influential reason
for determining product completion time. Using old technologies is time consuming and
can waste many energies.

In modern technologies, automation facilitates the production cycle by replacing many
hand jobs with robots. Moreover, using modern technologies eases the tasks and increases
production speed. In this section, some research studies that focused on minimizing
completion time will be reviewed.

Xu et al. compared two types of ACO (job sequence and batch sequence) for min-
imizing the total completion time in a single batch processing machine [1]. Irdem et al.
mentioned that the mean cycle time increases nonlinearly with resource utilization [2].
They proposed a computational case study to evaluate the convergence behavior between
linear programming (LP) methods and simulations as two commonly used methods for
scheduling the manufacturing systems.

Ramezanian et al. proposed a GA and Tabu search (TS) for solving a MILP aggregate
production planning (APP) model to determine the production amount, inventory level,
and the required workers [3]. Shah and Ierapetritou discussed that by increasing the
number of production sites in supply chains, the tractability of the whole system becomes
more challenging in a supply chain network. Therefore, they proposed an integrated
planning and scheduling problem for the multi-site/multi-product batch plants. They
considered the augmented Lagrangian decomposition method to solve their model [4].
Ning et al. tried to maximize the belief degree of obtaining the profit compared to the
forecasted profit. For this purpose, they developed a multi-product aggregate production-
planning model under uncertain conditions where market demand, production cost, and
subcontracting cost are stochastic [5].

S.-C. Wang and Yeh used an IP programming method for formulating the APP model.
As a practical test, they used data from a gardening equipment manufacturer, solving their
model using particle swarm method (PSO), and compared their result with GA [6]. Díaz-
Madroñero et al. provided an invaluable review of the literature on tactical production
planning. Their findings showed that modeling approaches such as LP, IP, and MILP
were the most frequently used in tactical production planning methods. One shortcoming
they mentioned is that most of the research studies contained numerical experiments with
randomly created instances [7]. In contrast, less validated their methods/approaches by
applying them in practice. Gansterer et al. tried to find the worthy settings for lead time,
safety stock, and lot size in production planning by developing a framework for hierarchical
production planning in a make-to-order environment. As a part of the framework, they
developed a mathematical model and used variable neighborhood search to find the best
result [8]. Kodialam et al. proposed a new method for minimizing the completion time by
considering a lower bound for each task [9]. Rossi et al. proposed a hybrid MRP procedure
and an LP method to overcome lead times. Their outcomes indicated that regardless of
requiring lead times, the new method could provide feasible plans of orders [10]. L. Yang
et al. addressed a supervised fuzzy inference system for minimizing job completion time
estimation, which worked based on estimating the completion times for different tasks
under different conditions [11]. Żywicki et al. mentioned that in some cases, different
delivery times that customers request could cause barriers for manufacturing systems, as
it can influence their scheduling process. Therefore, they proposed software to provide
a portfolio of highly individualized product times by anticipating standard times for
them [12].

J. Wang et al. focused on cycle time forecasting (CTF) in semiconductor wafer fab-
rication systems [13]. For this purpose, they addressed a supervised parallel computing
method for data-intensive cycle time prediction for large datasets. They showed that the
proposed method could compute faster and outperform the other CTF methods in terms of
mean absolute and standard deviation (Std. Deviation). Rauch et al. illustrated that it is
difficult to synchronize between fabrication and on-site installation [14]. Therefore, they
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proposed an axiomatic design-based method for real-time-capable production planning
and control to minimize time dependency in the value chain. Rubaiee and Yildirim pro-
posed a new multi-objective method for scheduling manufacturing systems to minimize
the total completion time and energy cost [15]. Under time-of-use electricity tariffs, which
is a mixed-integer mathematical programming model, they, then, used hybrid holistic ant
colony optimization algorithms (ACO) for solving their problem. Huang et al. developed
a mathematical model to simulate real-time dynamics of the system in a multi-product
serial production line [16]. Then, they addressed a hybrid machine learning techniques and
analytical system model to predicting product completion time, which worked based on
considering the lower bound of product completion time that represented the least possible
product completion time when assuming no random downtime in the system. Then, they
applied a deep-learning model to forecast the variance among the lower bound and actual
product completion time. de Curs et al. addressed an extended fuzzy-AHP (EF-AHP) for
the risk assessment process for supply chains. They showed that the proposed EF-AHP
could provide better results than fuzzy-AHP in terms of obtained priority weights against
the normalized scores of criticality [17].

Fischer et al. argued that anticipating completion time in manufacturing systems
must combine actual completion times and self-adjusting prediction completion times [18].
Choy et al. argued that emerging job tardiness in the production schedule would dramat-
ically influence the harmony of different jobs on the shops in a manufacturing system.
Therefore, they developed a hybrid scheduling decision support model, where the aim was
minimizing job tardiness. They solved the model with GA. Kopanos et al. focused on the
packing stage in a dairy production firm. They stated timing and capacity constraints as the
essential factors in generating feasible production plans. To overcome such shortcomings,
they proposed a MILP programming model, where quantitative and qualitative objectives
have been considered. Erol et al. presented a new multi-agent-based real-time scheduling
method for automated guided vehicles (AGVs) in dynamic conditions when planning oper-
ations dynamically [19]. Multi-agent-based systems, a newly maturing area of distributed
artificial intelligence, provide effective mechanisms for managing such dynamic operations
in manufacturing environments. Later, Gen and Lin proposed a multi-objective evolu-
tionary algorithm to solve job shop scheduling problems, AGV in flexible manufacturing
systems, and integrated process planning and scheduling [20].

Kapanoglu et al. proposed a pattern-based GA for scheduling intelligent manufac-
turing systems. Their research aimed to find the optimum sequence of the disks for each
robot, where the objective was reducing the coverage completion time [21]. K. Li et al.
addressed a supervised method for minimizing total completion time in uniform machine
scheduling problems, where the agent “technology” is introduced to realize the role of the
automation process in scheduling using the intelligence of the machines [22]. Angius et al.
proposed a method to analyze the cumulated output and the lot completion time moments
in unreliable manufacturing systems characterized by general Markovian structures. Their
outcomes showed that the proposed method could help analyze the dependency of the
output variability and the service level of a system [23]. Mokhtari and Salmasnia addressed
a neighborhood search algorithm for reducing the processing time of a multiple-machine
manufacturing system. Then, they used an evolutionary clustering search, where iterative
clustering is applied to identify the subspace [24].

Z. Li et al. focused on the energy consumption and cycle time in two-sided assembly
lines. For this purpose, they developed a new mixed-integer programming (MIP) model,
where a robotics-based assembly line is taken into consideration [25]. To solve their
model, they used simulated annealing (SA). Costa et al. used the MIP model for a parallel
scheduling machine with periodic tool changes to minimize total completion time. Then,
a hybrid genetic algorithm (GA) was developed, and the outcomes were compared with
three alternative methods arising from the literature [26]. Smutnicki focused on a cyclic
production system, where a fixed mixture of various goods is produced in a short series. In
order to solve their model, a method is proposed to find the minimal cycle time for a fixed-
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job processing order [27]. X.-J. Chen et al. investigated the problem of supporting structure
in layer-based additive manufacturing (AM). They argued that it could cause increasing
fabrication time, while decreasing surface quality. To overcome such shortcomings, they
proposed an optimizer that could reduce supporting structures by identifying the prime
printing direction [28]. The reviewed research studies in this section showed that various
decision-making methods have been used successfully to minimize the completion time.

2.2. Human Resources

One crucial factor that can influence product completion time is human resources.
In this section, research studies related to the role of human resources in manufacturing
systems will be divided into three main categories: human resources scheduling, lack of
sufficient human resources, and human resources skills.

A Delgoshaei and A Ali reviewed different human resources scheduling methods in
cellular manufacturing systems (CMS) [29]. Aryanezhad et al. developed a multi-period
scheduling model for worker assignment [30]. Süer et al. dealt with minimizing job
tardiness in CMS by human resources scheduling and cell loading. For this purpose, they
used mathematical models. They reported that total tardiness is reduced in their models,
while the crew size increases [31]. Delgoshaei and Ali proposed a hybrid ant colony
optimization (ACO) and Tabu search (TA) to scheduling temporary and skilled workers in
dynamic CMS, where promoting workers using training was taken into account [32].

Human resources skills can be considered a critical factor in increasing the speed of per-
forming tasks in manufacturing systems. Therefore, many research studies focused on the
role of promoting human resources in minimizing manufacturing cycle time. Aryanezhad
et al. developed a multi-period scheduling model for worker assignment, where three
levels for worker skills were considered [30]. Satoglu and Suresh focused on cross-training
during workers’ assignments [33]. Delgoshaei et al. proposed a new method for schedul-
ing temporary and fixed workers in a manufacturing company, which helps to improve
the production cycle time. Their model considered different workers’ skill levels and
assigned tasks to them, according to their skill level [34]. Therefore, human resources can
be considered an important factor that can influence product completion time.

2.3. Social Atmosphere in Manufacturing Systems

Providing a friendly production environment supported by solid teamwork relations
can increase the performance of a manufacturing process. Workers in a calm and friendly
environment seem more active than in a place with much stress and tension. Ounnar and
Pujo mentioned that for a company to be safe in competition, it is vital to look for new
methods for controlling their workshop [35].

To continue, some critical research studies in HR scope with the impact of production
environment on product completion time will be investigated.

Generating high-performance teamwork can be considered an essential factor in
manufacturing engineering to boost system performance. Fitzpatrick and Askin focused
on the correlations between humans and technology to create good effective teamwork
forming. In their research, they tried to enhance the HR performance by generating teams in
manufacturing cells. Cesaní and Steudel tried to assign workers jobs, where work sharing
and balancing were considered [36]. Ounnar and Pujo proposed a new approach for
controlling the workshop using the Holonic paradigm in a decision-making multi-criteria
analysis [35].

Decisions that are taken by top management can skyrocket or drop production speed.
An appropriate decision in the correct time and place will boost production speed drasti-
cally. For example, hiring new workers, promoting current workers, buying a new machine,
and purchasing raw materials with better quality are among the top management decisions
that can increase system performance. Q. Li et al. proposed a multi-objective method for
minimizing average salary and maximizing average satisfaction simultaneously. Their
model aims to figure out the best worker assigning the cross-trained laborers [37]. Liu et al.
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focused on the scheduling cloud manufacturing system, where multiple users are allowed
to request various services from management simultaneously. They proposed a cloud
manufacturing multi-task scheduling model, which integrated task workload modeling
with several other essential ingredients regarding services and could help investigate the
effects of different workload-based task scheduling methods on total completion time and
service utilization [38]. As a conclusion, teamwork is considered among the important
factors that was investigated in utilizing the manufacturing system’s performance.

2.4. Composition of Material

The role of raw material composition in the production process is undeniable. In the
literature review, many studies investigated the effects of raw material on producing a
particular product. Due to the enormous number of industries, it is impossible to inves-
tigate raw materials’ role in all different industries. Therefore, in this section, some case
studies will be presented. For example, Castellano et al. showed the role of raw materi-
als composition on the quality of pellets obtained from different woody and nonwoody
biomasses [39]. Afolabi et al. focused on the role of raw materials in the glass-making
industry’s productivity [40]. Z. Chen et al. investigated the effects of raw materials on
the silicon furnace process [41]. However, one question to be answered in this research
is whether choosing different raw materials can influence product completion time? An-
swering the above question can light up the importance of material in minimizing product
completion time in manufacturing systems.

2.5. Broken Machinery and Maintenance

One primary reason for increasing processing time is emergency machine failure
during production time that can waste much time. Therefore, during the last three decades,
several invaluable research studies have been carried out to minimize machines’ downtime.
Singh et al. proposed a method for ranking the barriers in performing effective mainte-
nance strategies in manufacturing systems [42]. According to their findings, lack of top
management support, an effective measuring indicator such as overall equipment effec-
tiveness (OEE), and lack of strategic planning and implementation are the most important
reasons for an ineffective maintenance process in manufacturing systems. Delgoshaei and
Naserbakht proposed a new method for minimizing plane downtime in airport mainte-
nance shops using a metaheuristic method [43]. Seiti and Hafezalkotob illustrated the
role of maintenance in enhancing the performance of a manufacturing system in terms
of availability, product quality, and low costs [44]. They argued that insufficient informa-
tion about equipment failure likelihood causes quantitative models not to be effective in
manufacturing environments. They proposed a fuzzy model, where a fuzzy set expresses
the reliability of an equipment. Then, using the outcomes of the method, a risk-based
TOPSIS was developed to schedule preventive maintenance. The aforementioned results
show that an appropriate maintenance plan can affect product completion time positively.
Hence, maintenance can also be considered an effective factor in minimizing product
completion time.

2.6. Facility Layout

The way that machines are located in different stations of a company directly impacts
production cycle time. Aidin Delgoshaei and A. Ali reviewed different types of grouping
machines in manufacturing shops using clustering techniques [45].

Material transferring between different machines inside a company can take time.
In manufacturing studies, two types of primary material transferring can be recognized:
internal material transferring and outer material transferring. While external material
transferring refers to delivering raw material to the company or transporting final product
to retailers or customers, internal material transferring refers to transporting in-process
material between machines and between shops. Although delays in external transporting
such as delays in receiving raw material or delivering the final product can be considered a
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delay and cause customer dissatisfaction, they cannot cause increases in product manufac-
turing cycle time. Thus, internal transferring between machines and shops/cells will be a
reason for increasing product manufacturing cycle time. Delgoshaei and Gomes proposed
a supervised method for dispatching materials in process inside a manufacturing shop to
prevent delays in the processing tasks of machines [46].

Delgoshaei et al. explained all possible material transferring methods in CMS and
reviewed the literature on material transferring in manufacturing systems [47]. Haleh
et al. addressed a new method for minimizing in-shop material movements using a hybrid
revised TOPSIS and Memetic algorithm. Their method was also capable of minimizing the
cell load variation [48]. Reviewing the opted references in this section reveals that facility
layout should be considered an effective factor, while choosing the best alternative for
minimizing product completion time.

2.7. Uncertainty and Fuzzy Logic

In an actual manufacturing plant, various factors must be considered to make a
schedule. Graves dealt with the role of uncertainty in the production planning process.
They argued that current planning systems do not provide adequate decision support for
tactical decisions [49]. Zhong et al. argued that many components cause uncertainty and
complexity in the production environment [50].

Some factors include human resources, proceeding time of a task, setup time, loading
and unloading times, quality of materials, and worker’s speed. However, most such factors
are not fixed and can be different from time to time, according to different conditions
surrounding the manufacturing plants. In the past, most manufacturing systems’ research
studies considered fixed factors; however, during the last two decades, scientists became
aware of the importance of uncertainty and found that uncertain factors can reject or change
a possible solution.

Macal and North used agent-based simulation to study the individual behaviors in
healthcare supply chains and the stock market, where the aim was to predict the success of
marketing campaigns to outline the system’s future needs [51]. Albey et al. declared the
value of demand forecast information in production planning. In their research, forecast
evolution and inventory theory ideas were integrated to plan work releases into a produc-
tion facility, while product demands were not specific and differed from period to period.
The Martingale model of forecast evolution is used to model demand through the time
horizon [52]. Fuzzy methods are successfully used in metaheuristic algorithms to consider
the uncertainty. A fuzzy-genetic algorithm is proposed for a container dispatching cost
estimation model to overcome the container supplements problem [53]. A fuzzy-genetic
algorithm is developed in another industrial sector to address the customer attributes and
design parameters in an intelligent product design problem [54].

2.8. TOPSIS

TOPSIS is a decision-making method to select the best alternative among available
alternatives by considering different weights that have been widely used for managerial
and engineering problems. It is classified as a multi-attribute decision-making method
(MADMs).

Tyagi et al. developed a two-step approach, which worked based on analytic hierarchy
process (AHP) to select the best alternative and TOPSIS for order preference by similarity
to ideal solution in electronic supply chain management (e-SCM) [55]. They applied their
approach to an Indian automobile industry, where eight criteria and five alternatives were
considered. Nilsson et al. discussed that many existing multi-criteria decision analysis
methods (MCDA) used in forest management planning could compare and evaluate a
short number of management plans. Such phenomena increase the risk in the decision
process. Therefore, they proposed a hybrid AHP and TOPSIS to improve the performance
of evaluating many strategic forest management plans [56]. Felfel et al. developed a multi-
product transportation scheduling method for the SCM problem, where the aims were



Mathematics 2021, 9, 2919 9 of 39

maximizing the profit and product quality level simultaneously. Their solving method
consisted of three steps using the epsilon-constraint method to generate Pareto optimal
solutions, ranking the alternatives with TOPSIS and, then, using VIKOR to evaluate the
outcomes of the TOPSIS [57].

Kaya and Kahraman focused on sustainability criteria (economic, social, and envi-
ronmental factors) in scheduling manufacturing systems. They argued that selecting an
effective energy technology requires keen eyes on conflicting quantitative and qualitative
evaluation criteria. For this purpose, a modified fuzzy–TOPSIS is used to select the best
energy technology alternative, where fuzzy pairwise comparison matrices determine the
weights of factors [58]. Bas proposed a hybrid SWOT–fuzzy–TOPSIS and AHP for an elec-
tricity supply chain, where a quantitative strengths, weaknesses, opportunities, and threats
(SWOT) framework was used to formulate a strategic plan based on the elements proposed
qualitative framework [59]. Sahu et al. developed a multiple-criterion appraisal index
supply chain for selecting suppliers among existing alternatives. For this purpose, they
proposed a new interval-valued fuzzy number set combined with the modified TOPSIS.
Their method used a fuzzy mathematical equation to compute first-level measures’ priority
weights and appropriateness ratings [60].

Kia et al. used fuzzy-based TOPSIS to rank various alternative productions in the
faucet industry under uncertain conditions, where five criteria of profitability, life cycle,
quality, social issues, and production capacity were taken into account [61]. Khemiri et al.
proposed a framework for integrating procurement/production (IPP) in a multi-product
SCM. They used a fuzzy–TOPSIS to rank the risk of suppliers. Then, they developed a
multi-objective stochastic MILP model, where the objectives were maximizing the overall
performance and minimizing the overall risk simultaneously. The developed method is,
then, solved by goal programming (GP) [62].

Recently, in a similar study, Solangi et al. addressed a new hybrid of AHP and
fuzzy–TOPSIS in evaluating and selecting the best energy strategy considering sustainable
factors. Their method consisted of two main steps: the threats, weaknesses, strengths, and
opportunities were identified and analyzed using SWOT. Then, using an AHP, the weights
of the sustainable factors were determined, and finally, fuzzy–TOPSIS was used to rank the
energy strategy alternatives [63].

Karasan et al. proposed a robust method consisting of integrated intuitionistic fuzzy
sets, AHP, and TOPSIS to select the best production strategy for a manufacturing firm [64].
Seyedmohammadi et al. applied Geographic Information System (GIS) and MCDA for
evaluating areas suitable for cultivation priority planning of maize, rape, and soybean
crops [65]. For this purpose, simple additive weighting and classic and fuzzy–TOPSIS
methods were used to prioritize maize, rape, and soybean crops in land units. Similar to
many other research studies, they used AHP and fuzzy-AHP to determine the weights of
the criteria. The outcomes indicated that the fuzzy–TOPSIS method provided better results
for cultivation priority planning of maize, rape, and soybean crops compared to the other
methods. Ezhilarasan and Vijayalakshmi presented a hybrid of TOPSIS and fuzzy sets to
rank the alternatives in uncertain conditions. Similar to many other research studies, they
have used AHP to set weights for the factors [66].

During the literature review, some gaps were found and can be used in future research
studies. A brief list of such gaps is presented as follows:

• The role of material composition on production cycle time has not been investigated
yet.

• Although some researchers investigated the role of internet technology (such as RFID)
in improving Industry 4.0, there is no evidence of using an online network system
to optimize the production cycle time using real-time machinery, human resources,
quality of raw material, and quality control results.

• A fuzzy–TOPSIS heuristic for generating and ranking the alternatives considering the
internal conditions of the manufacturing system (machinery, maintenance, human
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resources, material, and layout simultaneously), where the aim is minimizing product
cycle time, has not been developed yet.

• No method used supervised techniques for optimizing their MADM method (such as
AHP and TOPSIS) to provide better production cycle time.

• According to our findings, MADM methods such as AHP, TOPSIS, and mathematical
modeling (including LP, MLIP, and IP) have been used more frequently than other
methods, respectively.

Considering, the outcomes of the comprehensive research that has been carried out
in this section, the issue using a hybrid fuzzy–TOPSIS heuristic for minimizing product
completion time, where the internal factors are uncertain, has not been addressed before.

According to the literature review, it has been found that the idea of finding the
best production alternative that can result in minimum production time in manufacturing
lines in fuzzy circumstances has not been addressed yet. Therefore, in the first step of
this research, an effort will be made to identify the effective internal factors for reducing
product completion time. Then, a multi-criteria decision-making method will be proposed
to choose the best production alternative with minimum product completion time under
uncertain conditions.

3. A Hybrid Fuzzy–TOPSIS-Based Heuristic
3.1. Significant Factors in Minimizing the Machining Time in a Production Line

It is essential to clarify which factors can influence the machining time in the pro-
duction line at the first step. Such factors can be divided into two main clusters: internal
factors, where the source of the factor is inside the manufacturing system, and external
factors, where there is an external reason that existed out of the manufacturing systems.

As mentioned in Section 1, this research’s scope focuses on internal factors that can
influence the completion time of a project. The internal factors that are identified include
several interviews with the academic experts and managers of various industries and are
listed as below (Figure 4):
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3.2. Dependent and Independent Variables

Accordingly, the dependent and independent variables have been defined in Table 1.
Therefore, as mentioned in Section 1, the research is to find the role of technology, human re-
sources, machinery, material, system layout, and social environment factors on completion
time in manufacturing firms.

Table 1. Dependent and independent variables of the research.

NO. Type Cluster Variable

1 Dependent - Completion Time

2

In
de

pe
nd

en
t

Technology Technology in Use

3 Choosing Machines

4
Human Resources

Human Resources Overload

5 Human Resources Skill

6 Machinery Amortization

7
Material

Raw Material Quality

8 Material Composition

9 System layout Facility Layout

10 Existence of Bottlenecks

11
Social Environment

To Management Commitment

12 Teamwork

13 Loyalty

Reasons for choosing hybrid fuzzy logic and TOPSIS as the engine of the heuristic
method are:

(1) TOPSIS is a fast and reliable method that has been widely used in decision-making
methods.

(2) Hybrid fuzzy logic and TOPSIS can be effectively used to reflect the uncertainties in
industrial environments.

(3) This is the first time the hybrid fuzzy-based heuristic will simultaneously minimize
product completion time by considering machinery, maintenance, human resources,
material, and layout.

(4) Coding the method is more user friendly than mathematical modeling, especially
metaheuristic models such as genetic algorithms or other metaheuristics.

(5) The outcomes are more understandable for project managers in real industries.

3.3. Comparing the Classic TOPSIS with the Proposed Hybrid Fuzzy-Based Heuristic

Table 2 compares both methods in terms of some essential factors.

3.4. Flowchart of the Research Methodology

Figure 5 shows a flowchart of the research methodology in more detail.
According to the research flowchart, in the next section, the effective factors that

can influence product completion time in a manufacturing process will be identified by
quantitative research. Then, a fuzzy inference system will be used to consider the effects
of the uncertainty of factors. The fuzzy weights will be determined using the proposed
fuzzy inference system that can be used as the input data of the next section. Then, a
fuzzy–TOPSIS-based heuristic will be proposed to generate the production alternatives
and choose the best alternative using fuzzy–TOPSIS. The method will be designed so that
the factors with greater fuzzy weights will have a more significant role in selecting the
best alternative.
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Table 2. Comparing classic TOPSIS with the proposed hybrid fuzzy-based heuristic.

Criteria TOPSIS Hybrid FUZZY–TOPSIS
Heuristic

Uncertainty × X

Correctness Degree × X

Weight of Factors X X

Outcome Single Point A Domain

Speed of Solving Fast Moderate

Has it been used for generating and
ranking alternatives simultaneously? × ×

Has it been used for minimizing product
completion time by considering machinery,
maintenance, human resources, material,

and layout simultaneously?

× ×Mathematics 2021, 9, x FOR PEER REVIEW 13 of 40 
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3.5. Steps of the Achieving the Fuzzy Weights

In this section, the necessary steps for extracting data from statistical society and using
it in the proposed fuzzy–TOPSIS method are presented (Figure 6). This figure shows the
sequence of developing a fuzzy inference system and extracting the fuzzy weights by
conducting quantitative research from statistical society. The mentioned steps are, then,
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used in conducting the research methodology in Section 4, as described by the flow chart
in Section 3.4.
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3.6. Advantages and Novelties of Using the Proposed Hybrid Fuzzy–TOPSIS-Based Heuristic

The proposed hybrid fuzzy–TOPSIS-based heuristic is a promising method for finding
the alternatives that minimize product completion time in manufacturing firms, while the
uncertainty of the effective factors is taken into consideration. In addition, compared to
mathematical modeling, the outcomes of the proposed method are more understandable
for project managers in real industries.

Although some shreds of evidence showed that fuzzy–TOPSIS has been used before
for other problems, in this research, a new version of fuzzy–TOPSIS is proposed, which
could generate the alternatives automatically before entering them in the selecting process.
Considering the huge number of possible alternatives for the problem statement, such an
approach will be vital, as decision makers cannot manually generate and enter too many
alternatives into fuzzy–TOPSIS. To clarify the above sentences, while m factor is considered
and n states exist for each of them, the number of alternatives will be calculated using the
below formula:

P = n1.n2 . . . nm (1)

For instance, for a small-size case study with five factors, while 12 options are possible
for each factor, the number of alternatives will be 248,832 (125) that must be generated
before using fuzzy–TOPSIS. Therefore, generating such a massive amount of alternatives is
impossible and takes much time.

The proposed algorithm is designed in a way that it could track and compare the
processing time required for each of the fuzzy factors so the decision maker will be aware
of the content of each alternative. Such an approach will provide a base for a better
understanding of the existing alternatives (Section 4.4).

4. Discussion

This section is divided into four main sub-sections. In the first part, the crisp weights
of the internal factors will be determined. Then, using a fuzzy inference system, the fuzzy
weights will be calculated. To continue, a new hybrid fuzzy–TOPSIS heuristic will be
developed, which will be designed to minimize product completion time, according to the
recognized factors in the previous sections. Then, some case studies will be designed using
the orthogonal method (DOE) to solve the proposed method. The outcomes of this section
will, then, be evaluated by several indicators and also crisp heuristic TOPSIS.
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According to the findings from the literature review, the following factors must be
taken into account when selecting best alternative using the proposed fuzzy–TOPSIS
heuristic:

1. Machine processing time;
2. Maintenance program time;
3. Teamwork performance;
4. Material composition performance;
5. Material transferring time.

The vector for the mentioned factors will be defined as [−1 −1 +1 +1 −1]. This vector,
considered an input for the proposed algorithm, indicates whether maximizing a factor
is desired, or it should be minimized? For example, the value for the 1st factor (machine
processing time) is −1, meaning the lower value is desired.

4.1. Fuzzy Inference System

In this section, regression analysis is used to find the impact of each variable on the
dependent factor (product completion time). For this purpose, linear regression in SPSS
will be used.

The regression equation for each of the variables can be used to determine the weight
of each factor in the next section, where a decision-making method will be proposed
(Tables 3 and 4).

Table 3. Model summary for regression.

Model Summary b

Model R R Square Adjusted R Square Std. Error of the Estimate

1 0.860 a 0.739 0.556 10.96454
a Predictors: (Constant), Question14, Question4, Question11, Question6, Question10, Question5, Question7,
Question13, Question8, Question3, Question1, Question12, Question9, Question2; b Dependent Variable: Product
Completion Time.

Table 4. Regression table for the variables of the questionnaire.

Coefficients a

Model

Unstandardized
Coefficients

Standardized
Coefficients t Sig.

95% Confidence Interval
for B

B Std. Error Beta Lower Bound Upper Bound

1

(Constant) 10.422 20.494 0.509 0.617 −32.327 53.171
Question1 −3.025 6.057 −0.127 −0.499 0.623 −15.661 9.610
Question2 8.218 5.931 0.471 1.386 0.181 −4.153 20.589
Question3 −0.024 2.779 −0.002 −0.009 0.993 −5.821 5.772
Question4 −0.428 2.918 −0.028 −0.147 0.885 −6.514 5.659
Question5 −1.905 5.726 −0.100 −0.333 0.743 −13.848 10.038
Question6 4.244 3.654 0.269 1.161 0.259 −3.379 11.868
Question7 2.056 2.297 0.154 0.895 0.381 −2.736 6.847
Question8 −0.064 4.683 −0.004 −0.014 0.989 −9.833 9.706
Question9 −1.486 3.812 −0.094 −0.390 0.701 −9.437 6.465

Question10 2.209 2.757 0.174 0.801 0.432 −3.542 7.960
Question11 −2.622 3.075 −0.149 −0.853 0.404 −9.037 3.793
Question12 11.054 5.677 0.582 1.947 0.066 −0.789 22.897
Question13 −0.200 4.897 −0.010 −0.041 0.968 −10.416 10.016
Question14 1.032 3.333 0.059 0.310 0.760 −5.920 7.984

a Dependent Variable: Product Completion Time.
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Then, using the standardized coefficients, the overall regression equation for the
factors that can influence the project will be expressed as below:

Product Completion Time = −0.127Q1 + 0.471Q2 − 0.002Q3 − 0.028Q4 − 0.1Q5 +
0.269Q6 + 0.154Q7 − 0.004Q8−0.094Q9 + 0.174Q10 − 0.149Q11 + 0.582Q12 −

0.01Q13 + 0.059Q14
(2)

As shown by Equation (11), not all variables have the same impact on reducing prod-
uct completion time. For example, “improving the current technology” as question 1 can
significantly reduce product completion time. Most of the responders believed that due
to the wrong selection of machines in their company (Q2), the completion time increased
drastically. Statistical society believed that “human resources scheduling” (Q3) has less
impact on reducing the production time. At the same time, “overloaded workers” (Q4)
can reduce product completion time slightly. Lack of “skilled workers” (Q5) can increase
product completion time significantly. People believed that “appropriate maintenance
planning” (Q6) has an undoubtedly significant role in minimizing or maximizing product
completion time. Experts also believed that “old machinery” (Q7) is significantly respon-
sible for increasing product completion time. However, most responders thought the
“quality of raw materials” (Q8) in their company was good enough and would not reduce
product completion time.

Meanwhile, they believed that improving the “material composition” (Q9) could
significantly reduce their companies’ product completion time. They also believed that
“facility layout” (Q10) is responsible for decreasing product completion time strictly, and
the absence of “bottleneck machines” (Q11) can decrease product completion time with
the same intensity. As expected, experts believed that the most crucial factor in reducing
product completion time is “top management commitment” (Q12). However, “teamwork
relations” (Q14) cannot influence the dependent variable that much. However, “loyalty of
human resources” (Q14) is a must for minimizing product completion time.

Using the information above, the weights of the variable clusters (machinery, main-
tenance, human resources, material, teamwork, and layout) can be determined for the
method proposed in the next section.

The results of distributing the questionnaire to the 36 experts are gained. Cronbach’s
alphas for all questions are above 0.8. The descriptive analysis is, then, performed for the
questions. Using the Kolmogorov–Smirnov normal test (at 0.05), all variables are found
following the normal distribution function. Then, using the Pearson Test, it is found that
there are positive correlations available between variables. To continue, the regression
equation is calculated, which will be helpful to determine the weight of the factor’s cluster
in the next section. In the next section of Section 4, a new fuzzy–TOPSIS heuristic method
will be proposed to find the best alternative among the available alternatives to minimize
product completion time.

• Crisp weight of factors for the proposed hybrid TOPSIS-based heuristic

One crucial question is whether the investigated factors have the same impact on
the dependent variable (product completion time)? If not, which strategy reflects the
importance of factors, primarily, according to the reality of the manufacturing firms in
the studied society? To answer the above questions, it is evident that the factors do not
have the same value in minimizing product completion time. In Section 4.1, a regression
equation is developed, according to the data gathered from the society. The regression
equation can reflect the importance of each of the factors (Q(i)) on the dependent variable
(Y), since the weights in the TOPSIS should be expressed between 0 and 1.

Moreover, it should become smaller in weight. In the regression equation, the coeffi-
cients of the variables have different units, so they cannot be used in a weight vector in
TOPSIS. Therefore, the following calculations will be carried out to normalize the coeffi-
cients of the regression equation:
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1. Obtain regression equation:

Product Completion Time = −0.127Q1 + 0.471Q2 − 0.002Q3 − 0.028Q4 − 0.1Q5
+ 0.269Q6 + 0.154Q7 − 0.004Q8 − 0.094Q9 + 0.174Q10 − 0.149Q11 + 0.582Q12 −

0.01Q13 + 0.059Q14
(3)

Find the weight of factors using:

w f =
∑iε f ci

∑14
i=1|ci|

∀ i ∈ G f (4)

where i is the counter of questions (factors); f is counter for the factor groups (f = 5);
G f is the factor group (machine, maintenance, material, human resources, layout); wi is
the weight of the ith factor, ci is the coefficient of the ith variable in the regression, and
∑14

i=1|ci| is the sum of the coefficients of the variables in the regression equation. Note that
the absolute value of coefficients is considered to remove the effect of positive and negative
elements (Table 5).

Table 5. Coefficients of variables for weights.

Group Technology Human Resources Maintenance Material Layout

Variable Q1 Q2 Q3 Q4 Q5 Q12 Q13 Q14 Q6 Q7 Q8 Q9 Q10 Q11

Sum of
Coefficients 0.127 0.471 0.002 0.028 0.1 0.582 0.01 0.059 0.269 0.154 0.004 0.094 0.174 0.149

Group Summary 0.598 0.781 0.423 0.098 0.323

Group Weights 0.269 0.351 0.190 0.044 0.145

The weight of factors will be calculated as follows:
Technology (Machine) Group= [C1, C2] = [0.127, 0.471]
Human Resources (Worker, Teamwork) Group= [C3, C4, C5, C12, C13, C14] = [0.002,

0.028, 0.1, 0.582, 0.01, 0.059]
Maintenance Group= [C6, C7] = [0.269, 0.154]
Material Group= [C8, C9] = [0.004, 0.094]
Layout Group= [C1, C2] = [0.174, 0.149]
Therefore, the crisp weight of the group factors will be {0.269, 0.351, 0.190, 0.044, 0.145}.

• Fuzzy weight of factors for the proposed hybrid fuzzy–TOPSIS heuristic

The weight vector calculated in the previous section can be directly used in the
proposed TOPSIS-based heuristic. However, as stated in the next section, due to uncertainty
available for each factor, and subsequently to the group factors, an FIS will be applied
to minimize the adverse effects of uncertainty in the proposed method. Therefore, the
TOPSIS-based heuristic will be developed using FIS and utilized to the fuzzy–TOPSIS
heuristic.

• Fuzzy inference model

As mentioned in Section 1, uncertainty can influence the quality of solutions or even
change a solution. In order to minimize the uncertainty in the decision-making process, a
FIS system will be proposed.

The logic of the FIS system is to consider the response for each question along with
the confidence level for the response. For this purpose, after asking each question in the
questionnaire, the level of confidence about the response was also asked (Figure 7).
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• Dependent variable name: Q’1, Q’2, . . . , Q’14.
• Inputs: {Q1, Confidence Level; Q2, Confidence Level, ..., Q14, Confidence Level}.
• Linguistic variables:

Q(i) values: {Too Slow; Slow; Acceptable; Very Good; Excellent}
U(i): domain of values: {0% 25% 50% 75% 100%}.

• Fuzzy engine: Mamdani rule. Note that the reason for choosing Mamdani fuzzy
engine is that the fuzzy inference engine in MATLAB also uses Mamdani as the
default engine in MATLAB, and therefore, it could be trusted.

• Fuzzy rules: 25 rules for each input variable (i.e., {Q1, Confidence Level}) based on
Mamdani fuzzy rule (Figure 9)).
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• The logic of rules:

I f (FP is i) and
(

FP′ is j
)

then (FO is k) (5)

FP is a fuzzy input for variable 1; FP is a fuzzy input for variable 2, and FO is fuzzy
output. i, j, and k are input parameters (based on linguistic variables) for the variables.

• Membership function:

In this research, based on the domain of the linguistic variables, trapezoidal distribu-
tion functions will be used.

A trapezoidal variable has two lower boundaries, a and upper d, as distribution
parameters. Therefore, the basis of those real numbers will be in the closed distance a to
d. The trapezoidal distribution has two other parameters. These two parameters called
b and c represent the surfaces that indicate the beginning and end of the upper side of
the trapezoid:

a(a < d)–lowerbound
b(a ≤ b < c)–levelstart
c(b < c ≤ d)–levelend
d(c ≤ d)–upperbound

(6)

Accordingly, the trapezoidal distribution functions will be:

FTrapm((x < X)) =


(2/d + c− a− b).(x− a)/(b− a); f or a ≤ x < b

(2/d + c− a− b); f or b ≤ x < c
(2/d + c− a− b).(d− x)/(d− c); f or c ≤ x ≤ d

(7)

Figure 10 shows several trapezoidal graphs that are designed with different parame-
ters. A fuzzy membership function in FIS is similar to Figure 9.
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In the following, a sample for one of the variables used in FIS of the proposed TOPSIS-
based heuristic will be explained in detail.

Consider “current technology,” which is asked in question 1. This question is asked in
the questionnaire. The values for question is {Too Slow (0–25%); Slow (25–50%); Acceptable
(50–75%); Very Good (75–100%); Excellent (100%)}. This question is considered the 1st
input in the FIS.

Then, the responders ask another question: “To what extent are you sure about the
response to the above question?”

This question is also considered the 2nd input of the FIS.
The outcome will be a fuzzy value that considers the “current technology” and

“confidence level” (Figure 11).
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In the next step, the membership functions must be defined for the input and out-
puts. Figure 12 indicates the fuzzy membership function for the “current technology.” As
seen, using the linguistic parameters of question 1 in the questionnaire, five trapezoidal
graphs are drawn for this variable. The same approach will be used for the “confidence”
and “output.”
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Then, the rules of the FIS will be designed based on the conditions that exist in the
fuzzy system. Figure 13 shows the defined fuzzy rules for the FIS. It should be noted that
due to the number of categories of the responses (Likert scale), for each of the questions
(current technology and confidence), 25 (52) rules must be defined.
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The fuzzy engine will, then, find the best options for the technology rate (Output) as
the output of the FIS, according to the rules and fuzzy membership functions. This outcome
is helpful to determine (estimate) the best value for “technology rate” based on the “current
technology” and “confidence.” For example, Figure 14 indicates that the best option for the
technology rate is 65, while current technology is 50 and confidence is also 50.

However, the same FIS proposes 37.5 for technology rate, while current technology is
35 and confidence is 90 (Figure 15).

Such influences in the technology rate are a result of the uncertainty that was obtained
from the responders. Without using the fuzzy method, the impact of uncertainty cannot be
considered in the calculations.

One important thing to know is the correlations between two variables (current tech-
nology and confidence) and the output variable (technology rate). Figure 16 indicates the
correlations between current technology, confidence, and technology rate for the proposed
method. In this figure, the higher levels of current technology and confidence at the same
time will boost the technology rate.

Based on the FIS system, the crisp weights for the system are now modified and recalcu-
lated. First, a regression equation will be estimated for the confidence rates (Tables 6 and 7).
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Table 6. Summary of the variables for the regression equation for confidence rates.

Model Summary

Model R R Square Adjusted R Square Std. Error of the Estimate

1 0.961 a 0.924 0.870 5.92885
a Predictors: (Constant), Confidence14, Confidence5, Confidence2, Confidence11, Confidence1, Confidence6,
Confidence9, Confidence7, Confidence3, Confidence13, Confidence4, Confidence12, Confidence10, Confidence8.

Table 7. Regression equation table for the confidence equations.

Coefficients a

Model
Unstandardized Coefficients Standardized Coefficients

t Sig.
B Std. Error Beta

1

(Constant) 0.927 9.859 0.094 0.926
Confidence1 0.179 3.400 0.008 0.053 0.959
Confidence2 −5.022 2.148 −0.260 −2.338 0.030
Confidence3 −7.377 2.480 −0.403 −2.974 0.007
Confidence4 9.460 2.876 0.509 3.290 0.004
Confidence5 10.303 2.639 0.437 3.905 0.001
Confidence6 −4.101 2.859 −0.217 −1.434 0.167
Confidence7 1.536 2.935 0.078 0.523 0.606
Confidence8 −1.342 5.536 −0.075 −0.242 0.811
Confidence9 −3.676 2.334 −0.220 −1.575 0.131

Confidence10 7.719 3.794 0.498 2.035 0.055
Confidence11 4.427 1.933 0.364 2.290 0.033
Confidence12 −0.124 5.210 −0.007 −0.024 0.981
Confidence13 2.403 2.452 0.133 0.980 0.339
Confidence14 5.303 1.740 0.327 3.048 0.006

a Dependent Variable: Product Completion Time.

Then, the regression equation for the confidence questions will be as follows:

Product Completion Time= 0.008Con1−0.26Con2−0.403Con3 + 0.509Con4 +
0.437Con5−0.217Con6 + 0.078Con7−0.075Con8−0.22Con9 + 0.498Con10 +

0.364Con11−0.007Con12 + 0.133Con13 + 0.327Con14
(8)

Table 8 shows the crisp weights of the group factors and confidence, which will be
used as inputs for calculating the fuzzy weights.
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Table 8. Crisp weights of the group factors and confidence.

Group Technology Human Resources Maintenance Material Layout

Variable Q1 Q2 Q3 Q4 Q5 Q12 Q13 Q14 Q6 Q7 Q8 Q9 Q10 Q11

Sum of
Coefficients 0.127 0.471 0.002 0.028 0.1 0.582 0.01 0.059 0.269 0.154 0.004 0.094 0.174 0.149

Group
Summary 0.598 0.781 0.423 0.098 0.323

Group
Weights 0.269 0.351 0.190 0.044 0.145

Group Technology Human Resources Maintenance Material Layout

Variable Con1 Con2 Con3 Con4 Con5 Con12 Con13 Con14 Con6 Con7 Con8 Con9 Con10 Con11

Sum of
Coefficients 0.008 0.26 0.403 0.509 0.437 0.007 0.133 0.327 0.217 0.078 0.075 0.22 0.498 0.364

Group
Summary 0.268 1.816 0.295 0.295 0.862

Group
Weights 0.076 0.514 0.083 0.083 0.244

Using the coefficients of group factors and confidence as inputs of the proposed FIS,
the fuzzy values for the weights of the fuzzy–TOPSIS heuristic will be calculated.

For example, for the technology (machine), the group factor is 0.269, while the con-
fidence is 0.076. Using the FIS mechanism, the fuzzy weight for this factor will be 0.553
(Figure 17). As seen, uncertainty plays a crucial role in the weights of group factors in the
manufacturing environment.
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The rest of the fuzzy weights for the group factors are:

Fuzzy weights vector = {0.553, 0.56, 0.584, 0.602, 0.636} (9)

In the next section, the mechanism of the proposed fuzzy–TOPSIS heuristic will be
explained in detail.

4.2. A Fuzzy–TOPSIS Heuristic

In this section, a crisp TOPSIS-based heuristic will be proposed first. Then, to show
the role of uncertainty in the manufacturing environment, a fuzzy–TOPSIS heuristic will be
proposed. Both methods are designed to generate alternatives, according to the information
about machinery, required maintenance, material, workers, and shop size (layout). The
aim is to find the best alternative that minimizes product completion time.

The outcomes of the proposed fuzzy–TOPSIS heuristic (as the primary method of the
research) shall answer the following questions:

• How many products should be manufactured?
• Which type of materials should be used?
• Which machines should be assigned?
• What are the best locations for the machines?
• Which operators shall be used?
• What maintenance should be applied?

For this purpose, the following matrixes shall be defined as inputs of the proposed
heuristic:

• Product demand;
• Product–machine requirement;
• Machine capacity;
• Material–machine processing time;
• Technology material;
• HR availability;
• HR skill;
• HR cluster;
• Machine-maintenance type;
• Machine maintenance period;
• Machine maintenance time;
• Machine distance.

The following indices are defined to clarify the domain of variables, parameters,
and matrixes:

• i: type of product;
• j: type of material;
• k: type of machine;
• o: type of operator;
• s: operator skill level;
• t: time slot;
• m: maintenance type.

Accordingly, the input matrices that will be used in the proposed method will be
defined as follows:

(1) “Number_of_Factors” indicates the number of factors that must be considered in
a problem. According to the 1st part of Section 4, product completion time, main-
tenance time, operator processing time, material composition processing time, and
material transferring time are the factors to be considered in all examples.

(2) “Number_of_Alternatives” allows the decision maker to control the number of
alternatives generated by the proposed heuristic.
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(3) Vector_of_Factors: indicates that whether maximizing (+1) or minimizing (−1) of a
factor is desired.

(4) “Weight_of_Factors” indicates the importance of the factors. The value for this matrix
is taken from the questionnaire and can reflect the fundamental idea of experts in
this field.

(5) “Length_of_Shop” indicates the length of a shop.
(6) “Width_of_Shop” indicates the width of a shop.
(7) “Product_Demand” shows how many products must be manufactured through a

planning horizon.
(8) “Available_Time” shows the available time in a production horizon and can be con-

sidered a threshold value to accept or reject a generated alternative by the supervised
algorithm.

(9) “Number_of_Operations” shows the number of operation (machines) that is required
for producing a product.

(10) “Product_Machine_Sequence” shows the sequence of operations to be carried out,
respectively.

(11) “Machine_Type_Alternative” shows the available number of each machine type.
(12) “Machine_Processing_Time” indicates the processing time required for each machine

type to complete a service. The processing time for parallel machines (of an identical
type) could differ, according to their brand, age, and amortization.

(13) “Reliability_Percentage_of_Machines”: The reliability of a machine indicates the
possibility of working without failure. Therefore, the value 1-reliability will be added
to the machine processing time.

(14) “Machine_Sequence” indicates the ID for each machine and will be used in the
calculation process.

(15) “Machine_Maintenace_Frequency” represents the number of times that a machine
requires maintenance in a period.

(16) “Machine_Maintenace_Time” indicates the maintenance time for each machine,
according to its type and ID.

(17) “Human_Skill_Alternative” indicates the number of workers for a specific operation.
(18) “Human_Processing_Skill,” a value between 0 and 2 expresses the members of this

matrix. If a worker’s skill is 1, he/she can perform a task in a standard time. Similarly,
if a human worker’s skill is 0.98, he/she can perform a task 2% quicker than usual.

(19) “Number_of_Required_Material” indicates the type of raw materials that are re-
quired to complete a product.

(20) “Types_of_Material” shows the number of alternatives available for each material
type (for example, two different brands or different compositions for raw material).

(21) “Material_Processing_Time” is a matrix expressed by 0 and 2. If the element is
1, the material quality is standard and does not affect the processing time. How-
ever, if an element is more than 1 (for example, 1.05), it means that the raw ma-
terial needs 5% more time than the standard processing time expressed by the
Machine_Processing_Time matrix.

(22) “Number_of_Layouts_To_Be_Considered” allows the decision maker to choose how
many layouts should be generated by the algorithm. The higher number of layouts
increases the solving time.

(23) “Unit_Material_Transferring_cost” indicates the time of material transferring of
one unit of raw material and is expressed according to the linear distance between
machines in a layout.

• The mechanism of the proposed fuzzy–TOPSIS heuristic

The following flowchart indicates the mechanism of the proposed heuristic in detail
(Figure 18).
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4.3. Design of Experiments

In this section, several case studies that consider different conditions must be solved.
For this purpose, an orthogonal method will be used to design the case studies. Using
DOE is also helpful for evaluating whether the proposed method can solve all different
conditions successfully? On the other hand, DOE can also help to find which elements are
more critical. DOE has been widely applied in the research studies where a new method
was proposed. In this research, the same strategy that has been applied by Delgoshaei et al.
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for evaluating their proposed hybrid Tabu search and ant colony optimization method
for scheduling problems will be used. For this purpose, the orthogonal method will be
designed using SPSS. The aim is to design various problems that will be solved by the
proposed algorithm, where all possible conditions will be taken into account.

The proposed method has five main factors: machinery (and maintenance); worker;
material; number of layouts; number of alternatives.

The mentioned factors are defined in the SPSS orthogonal design first (Figure 19).
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Then, three levels will be considered for each factor, which is considered, according to
small-, medium-, and extensive-sized case studies (Figure 20).
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Then, SPSS will design an orthogonal case with the mentioned factors and levels
(Figure 21).
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Figure 21. Summary of the designed orthogonal method by SPSS.

In continuation, SPSS will design 16 plan cards for the mentioned DOE (Table 9). Each
of the experiments will be solved in the next section to see if the proposed method can
solve all the case studies in various conditions.

Table 9. Plan cards that are designed by orthogonal design using SPSS.

Card List

Card ID Machine Worker Material Layout Alternatives

1 1 10 10 3 50 1000
2 2 10 10 5 20 5000
3 3 2 10 5 20 2000
4 4 20 20 5 100 1000
5 5 2 5 2 20 1000
6 6 2 5 3 100 1000
7 7 20 20 3 20 5000
8 8 2 20 2 50 5000
9 9 2 20 3 20 2000

10 10 10 20 2 20 1000
11 11 20 20 2 50 2000
12 12 10 10 2 100 2000
13 13 2 5 5 50 1000
14 14 20 20 2 20 1000
15 15 10 10 5 20 1000
16 16 2 10 2 100 5000

4.4. Verifying the Proposed Algorithm (Solving Experiments Gathered from the Literature)

In this section, using the orthogonal design in the previous section, several case studies
will be solved to verify the proposed algorithm’s functionality in different conditions. The
case studies are designed in such a way that the various range of parameters is taken into
account. In this section, each of the case studies will be solved by the proposed algorithm
in MATLAB. The outcomes of the case studies are shown in Table 10. As seen in each case,
the best alternative that is observed is shown.

Moreover, the best machine selection, maintenance plan, workers, material composi-
tion, and layout will be shown. The performance of the proposed algorithm that indicates
the quality of the gained solutions is shown in Section 4.5. In the next section, and to give
detailed information on the method, case study number 3 in Table 10 will be explained.
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Table 10. Results of solving numerical experiments using the proposed hybrid fuzzy-TOPIS heuristic.
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1 10 10 3 50 1000 449 30,264 296 0.517 16.000 0.989 0.040 0.699
2 10 5 5 20 5000 2383 29,678 296 0.522 19.000 0.998 0.013 1.351
3 2 10 5 20 2000 1535 6600 63 0.931 1.000 0.993 0.008 0.285
4 20 20 5 100 1000 581 59,348 450 0.960 71.000 0.965 0.016 2.680
5 2 5 2 20 1000 490 6600 50 0.931 1.000 0.995 0.016 0.165
6 2 5 3 100 1000 669 6600 50 0.931 1.000 0.996 0.014 0.162
7 20 5 3 20 5000 2898 59,348 450 0.960 69.000 1.000 0.006 3.385
8 2 20 2 50 5000 4483 6600 50 0.884 1.000 1.000 0.000 0.795
9 2 20 3 20 2000 1556 6600 50 0.884 1.000 1.000 0.000 0.280

10 10 20 2 20 1000 723 29,674 225 1.744 29.000 0.986 0.007 0.183
11 20 5 2 50 2000 1348 59,352 450 0.960 70.000 1.000 0.006 2.863
12 10 5 2 100 2000 854 29,678 297 0.522 17.000 0.998 0.034 0.826
13 2 5 5 50 1000 468 6600 50 0.931 1.000 0.995 0.000 0.161
14 20 10 2 20 1000 925 59,348 450 0.960 82.000 1.000 0.022 2.710
15 2 5 2 20 1000 459 29,674 225 2.050 34.000 0.925 0.034 0.186
16 2 10 2 100 5000 4921 6600 63 0.931 1.000 1.000 0.009 0.782

After solving a case study, the outcomes will be presented in the following format:
Best scenario: machine/maintenance/teamwork/material/layout.
Each of the elements of the above structure will be represented as a matrix. To continue,

each of the matrices mentioned above will be explained.
Suppose in a manufacturing company, three operations must be done sequentially

to complete a product. Each row of the machine processing time shows the number of
available machines for each operation and the processing time for each operation.

Machine: the machine processing time matrix indicates the required time for process-
ing a task (or serving a service) using a specific machine type. For example:

Machine_Processing_Time = [10 0 0; 12 14 11; 13 12 0]

It shows that for performing service 1, there is only one machine available (as there
is only one element in the 1st row) that requires 10 s to complete one task. In contrast to
the 2nd operation, there are three machines available (suppose three welding machines),
where performing the 2nd operation with the 1st machine needs 12 s, the 2nd machine
needs 14 s, and the 3rd machine needs 11 s.

The set of selected machines and standard time (including the reliability) required to
complete a product will be represented in the method’s output. For instance:

Best_Proceesing_Time = 11.5000 11.9900 18.8500

The above matrix shows that the 1st machine type 1 is selected to perform the first
operation, requiring 11.5 s. The 3rd machine type 2 is selected for performing the 2nd
service, and the 1st machine type 3 is selected for operating the 3rd operation.

Maintenance program: maintenance matrix will show the time required for the main-
tenance services if a selected number of machines are used.
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As the method’s input, two matrices are defined, where the 1st matrix shows the
frequency of maintenance required for each machine in a manufacturing period, and the
2nd matrix shows the required time for performing a maintenance task for each machine.

Machine_Maintenace_Frequency = [1 0 0; 2 4 1; 3 1 0]

Machine_Maintenace_Time = [100 0 0; 120 140 110; 130 120 0]

The output of the method shows the total maintenance time that is required for each
machine type. For example:

Best_Maintenance_Time = 100 110 390

The above matrix shows 100 min required for machine type 1 (which provides the 1st
service), 110 min for performing maintenance activities for machine type 2, and 390 min
for performing maintenance for machine type 3.

Operator (teamwork): as the input of the method, the following matrices will
be entered:

The human skill alternative matrix indicates the number of skilled workers who can
work with a machine (perform a technical task). For example:

Human_Skill_Alternative = [2 3 3]

It shows that there are two operators available to assign for performing task 1, while
there are three workers for performing the 2nd task.

The human processing skill matrix indicates the spare time that will be added (or
reduced) to the standard processing time due to a lack (or addition) of skill. For example,
the 1st operator’s value is 1.01, which means that this operator is slightly slower than a
regular standard time for operating task 1, while the 2nd operator for performing task 2 is
a super-fast operator who can perform a task faster than usual (0.94).

Human_Processing_Skill = [1.01 0.99 0; 1.2 0.94 0.99; 1.1 1.12 1.09]

The output of the method will be shown as the following:

Best_Human_Skill_Time = 1.0100 0.9900 1.0900

The above matrix has two meanings. The first is which operator is selected for
performing a task. For example, the 1st and third operators type 1, 2, and 3 are selected for
tasks 1, 2, and 3, respectively. Moreover, this matrix shows the best team combination that
can perform the tasks with the highest performance.

Material: as an input, three matrices describe the materials used for completing
a product.

The amount of required materials shows the type of raw materials required to complete
a product (i.e., two types of raw materials).

The types of material show the number of alternatives that are available for each type
of material. For example, [2 3] shows that for the 1st material, there are two options (i.e.,
two brands), and for the 2nd material, there are three options available.

Material processing time indicates the extra time required to perform a service due to
the raw materials’ low (high) quality compared to the standard time.

Material Processing Time = [1.02 1.03 0; 1.02 1.01 0.98]
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For example, 1.0 shows that the 1st brand of material type 1 (1.02) has better quality
than the second brand (1.03). However, both materials need more time than normal time.
The output of the method would be:

Best_Material_Composition = 1.0200 0.9800

For the 1st type of raw materials, the 1st brand is more desired, and for the second,
the 3rd brand is more desired.

Layout: The proposed heuristic method is capable of obtaining the length and width of
a shop and finding the best location of the machines, according to the material transferring
cost (or time). For choosing the best location, the algorithm also considers the sequence of
the materials for producing a product. For example, the following example shows that the
shop has enough space to locate 12 (4 × 3) machines.

Length_of_Shop = 3
Width_of_Shop = 4
Another critical input that increases the decision-making process’s performance is the

number of layouts to be considered. This input allows the decision maker to increase or
decrease the number of alternatives. The idea behind this decision is that in most cases,
the number of possible alternatives for locating machines inside a small-scale shop is too
much, and therefore, the processing time could be influenced by the enormous number of
layouts, which is not necessary.

Therefore, we decided to let the decision maker choose the number of layouts to
be considered.

Number_of_Layouts_Tobeconsidered = 10

Finally, the last input is the material transferring penalty, which can be expressed as
time or cost. It depends on the type of material. For example, in the following matrix, the
material transferring cost for the 1st raw material is 10 RM, while the 2nd raw material is
20 RM.

Unit_Material_Transferring_cost = [10 20]

The outcome of the proposed method shows the best layout for locating a series
of machines, according to the material consequence and machines. For example, for
a case study, the following layout shows that the best layout is to locate the machines
consecutively as the OPC for producing the product (1 2 3), which shows that raw materials
visit machines 1, 2, and 3, respectively.

Best_Block_Position_in_Shop_Alternative = 1 2 3 0 0 0 0 0 0 0 0 0

4.5. Measuring the Performance of the Proposed Algorithm

In order to assess the performance of the proposed method, several indicators are
defined as shown below:

• Solving strength;
• Generating scenario capability;
• The ability to generate scenarios with the lowest uncertainty;
• Solving time
• Comparing the hybrid fuzzy–TOPSIS heuristic with crisp heuristic TOPSIS;
• The ability to solve all problem types.

The results of 16 experiments gained by solving the proposed hybrid fuzzy–TOPSIS
heuristic showed that the proposed method could solve all experiments (100%) and show
the best alternative with the lowest product completion time.

Validating·Index =
Number o f Solved Cases without error
Number o f Orthogonal Designed Cases

·100 =
16
16
×100 = 100% (10)
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Therefore, the results indicated that the proposed method could be safely used for the
various conditions in real industries.

• The ability to elect the alternative with the lowest product completion time

This research aims to design a method to choose the alternative with the lowest
product completion time. Therefore, it is essential to check whether the proposed hybrid
fuzzy–TOPSIS heuristic can choose the best alternative with the lowest product completion
time among the other alternatives. For this purpose, an indicator is developed to check
whether the proposed method could help elect the alternative with the lowest product
completion time.

Lowest Product Completion Time Indicator =[
∑ Case Studies with Lowest Product Completion Time

Number o f Studied Cases

]
·100= 100%

(11)

• The performance of the proposed method

One crucial question is to what percentage the proposed method can select the alterna-
tives with the lowest product completion time. In other words, PCTRI% shows how much
percentage using the proposed algorithm is helpful to select the alternative with the lowest
risk factor (Table 11).

PCTRI%∗ =
[

Alternative With Lowest PCT
Alternative With Highest PCT

]
·100 (12)

∗ PCTRI : Product Completion Time Reduced Index.

Table 11. The results of PCTRI% for studies solved by the proposed method.

Row Worst Processing
Time in Alternatives

Best Processing
Time in

Alternatives

PCT that Reported
by the Proposed

Method
PCTRI%

1 30,264 30,264 - 0.00
2 31,612 29,678 X 6.12
3 7344 6600 X 10.13
4 63,616 59,348 X 6.71
5 6952 6600 X 5.06
6 6952 6600 X 5.06
7 63,034 59,348 X 5.85
8 6952 6600 X 5.06
9 6952 6600 X 5.06
10 31,612 29,674 X 6.13
11 63,030 59,352 X 5.84
12 31,030 29,678 X 4.36
13 6952 6600 X 5.06
14 63,616 59,348 X 6.71
15 31,612 29,674 X 6.13
16 7344 6600 X 10.13

As seen in Figure 22, the algorithm can choose the alternative with the lowest product
completion time in all cases.
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Figure 22. The results of the PCTRI % index for the solved case studies.

• Solving Time

The solving time for the case studies is another critical factor that must be considered
to evaluate the proposed method’s performance. For this purpose, the solving time of the
studied cases is drawn and represented by Figure 23.
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As seen, the hybrid Fuzzy–TOPSIS heuristic algorithm can solve the orthogonal cases
in a range between 0.161 and 3.385 s, depending on the size of the cases. The solving time
for all case studies is reasonable.

• Comparing the functionality hybrid fuzzy–TOPSIS heuristic algorithm with crisp
heuristic TOPSIS

One crucial question to be answered is whether the crisp heuristic TOPSIS can report
the same results. In other words, can the uncertainty cause changes in the outcome of the
selecting process? To answer this question, the 10 experiments with different conditions
will be solved by both the proposed fuzzy–TOPSIS heuristic and crisp heuristic TOPSIS.
The aim is to compare the results and see what the difference between the gained results is.
The results of solving the new 10 case studies that are solved by crisp and fuzzy–TOPSIS
heuristic are represented by Table 12.
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Table 12. Result of comparing crisp TOPSIS heuristic with the fuzzy–TOPSIS heuristic method.

No. Number of
Alternatives

Crisp TOPSIS Heuristic Fuzzy–TOPSIS Heuristic

∆CL’i/∆CLi
Crisp

Solving
Time

Fuzzy
Solving

Time
Worst Fuzzy

CL
Best Crisp

CL
Worst Fuzzy

CL’
Best Fuzzy

CL’

1 100 0.086 0.952 0.054 0.966 1.054 0.015 0.015
2 500 0.000 0.947 0.000 0.953 1.006 0.047 0.046
3 1000 0.040 1.000 0.057 1.000 0.982 0.108 0.107
4 1000 0.009 0.994 0.006 0.992 1.001 0.101 0.098
5 1000 0.000 1.000 0.000 1.000 1.000 0.104 0.109
6 1000 0.015 1.000 0.035 1.000 0.980 0.101 0.104
7 1000 0.000 1.000 0.000 1.000 1.000 0.167 0.170
8 2000 0.000 1.000 0.000 1.000 1.000 0.218 0.214
9 2000 0.047 1.000 0.023 1.000 1.025 0.219 0.215
10 5000 0.026 1.000 0.015 1.000 1.011 0.630 0.645

It is found that that the outcomes of the proposed hybrid fuzzy–TOPSIS heuristic
are significantly different from the crisp heuristic TOPSIS, which means that uncertainty
can cause considerable differences in CL ranges (range of ranking alternatives from ideal
positive and negative solutions). Therefore, using the fuzzy–TOPSIS method is strongly
recommended for choosing production alternatives in a manufacturing environment.

• Minimum variation (MV)

In addition to the indicators mentioned above, an important indicator can measure
the proposed method’s performance. Laue et al. [67], in their research, used minimum
variation (MV) and total deviation (TD) as indicators that can evaluate the performance
of their method. In this research, the same concept is inspired but changed a little to fit
the methodology of this research. For this purpose, the pairwise comparison between the
results that are gained by solving crisp and fuzzy methods will be calculated, according to
the following formula:

ϕij =
∆CL′i
∆CLi

=
Best Fuzzy CL′ −Worst Fuzzy CL′

Best Crisp CL−Worst Fuzzy CL
; for i ∈ n (13)

where n indicates the number of experiments. Vij
u is the vector of the values that can be

gained by comparing the pairwise comparison between the crisp and fuzzy methods and
can be calculated according to the following formula:

Vi
u =


1 i f ϕij > 1
0.5 ϕij = 1
0 ϕij < 1

(14)

The minimum variation formula for this research can be calculated according to the
following formula:

MV =
n

∑
i

Vi
u

n− 1
(15)

The result of calculating the MV indicator for the values in Table 12 is 0.72. Considering
the aim of the proposed method, which is finding the best and worst alternatives in terms
of product completion time, the gained value (0.72) can be considered a significant value.

However, crisp TOPSIS heuristic is slightly faster in solving case studies (Figure 24).
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Figure 24. Comparing solving time of the crisp TOPSIS heuristic and fuzzy–TOPSIS heuristic.

After solving the case studies, the following results were gained (Table 13):

Table 13. Results of comparing the crisp heuristic TOPSIS with the proposed fuzzy–TOPSIS heuristic.

Row Crisp Heuristic TOPSIS The Proposed Hybrid Fuzzy–TOPSIS Heuristic

1 The crisp heuristic TOPSIS could
not consider uncertainty

The proposed method considered uncertainty in
its calculation

2 The crisp heuristic TOPSIS is
slightly faster The proposed method speed is moderate

3
The crisp heuristic TOPSIS could
not generate alternatives using
manufacturing systems input

The proposed fuzzy–TOPSIS heuristic could
generate alternatives using manufacturing

systems input

4 Weight of factors in the crisp
heuristic TOPSIS is crisp Weight of factors in the proposed method is fuzzy

5 The crisp heuristic TOPSIS can
only select the best alternative

The proposed method could report the best
machine selection, maintenance plan, worker

team, material composition, and facility layout

5. Conclusions

This research focused on internal factors in minimizing product completion time
in a manufacturing firm. The aim is to recognize the factors that can influence product
completion time. For this purpose, several factors are outlined from the literature review
as well as the Delphi method. For this purpose, 14 factors are identified and clustered
into five main groups: technology (machinery), maintenance, workers (skill, teamwork),
material, and layout.

Then, a questionnaire was designed to find the impact of the recognized factors on
product completion time (as the dependent variable of the research). The questionnaire
was, then, distributed to some experts, according to the central limit theorem.

Then, a series of statistical analyses have been done to figure out the correlations
between variables and their impact on the dependent variable. It is found that human
resources (0.351), technology (0.269), maintenance (0.19), layout (0.145), and material (0.044)
have the greatest role in minimizing (or maximizing) product completion time. It is also
argued that due to the uncertainty in the manufacturing environment, a fuzzy system
inference must be designed and applied to consider the uncertainty in determining the
correct weights for the regression equation. A Mamdani rule has been applied for the
proposed fuzzy inference system. It is found that uncertainty can significantly have an
impact on product completion time minimization. After applying the fuzzy inference,
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the modified fuzzy weights were found: 0.553, 0.56, 0.584, 0.602, and 0.636 for machinery,
human resources, maintenance, material, and layout.

In the second section of the research, a fuzzy–TOPSIS heuristic was proposed for
generating and finding the best alternative in a manufacturing system to minimize product
completion time. The proposed method is capable of generating several alternatives,
according to the inputs of the model.

Then, using SPSS, an orthogonal design is designed to generate some case studies
to be solved by the proposed fuzzy–TOPSIS heuristic. After solving the case studies, the
method’s performance was evaluated by four indicators: validating index, lowest product
completion time indicator, product completion time reduced index (PCTRI), and processing
time. Validating index: The proposed method could solve 100% of the orthogonal case
studies. Lowest product completion time indicator: The proposed method could find
the minimum product completion time for all the studied cases. Product completion
time reduced index (PCTRI): This presents outcomes of comparing the best and worst
alternatives for each case study; the proposed method could minimize product completion
time in the range 0% to 10.13%. Processing time: The results indicated that the proposed
method could solve all case studies in less than 6 s. However, the proposed fuzzy–TOPSIS
heuristic is significantly slower than classic TOPSIS. This low solving speed proposed in
the method could generate the alternatives before finding the best alternative. However,
the speed of the crisp and fuzzy heuristics are approximately the same.

Moreover, the performance of the proposed hybrid method is compared with the crisp
heuristic TOPSIS. It is found that, while crisp heuristic TOPSIS is relatively faster than the
proposed fuzzy–TOPSIS hyper, it cannot consider the uncertainty, and thus, its result is not
applicable for this research.

While conducting the research, many gaps are found that can be considered recom-
mendations for future research studies. It is recommended to conduct another study, where
external factors that can influence product completion time in manufacturing systems are
considered. It is suggested to develop software using the outcomes of this research, which
enables engineers in the accurate world to use the proposed method in this research. It
is suggested to use different MADAM methods such as VICOR and AHP and compare
the performance of the proposed method in this research with them. One can develop
a mathematical model using the regression equation used in this research and solve the
model using optimization, heuristic, or metaheuristic methods. One can develop a multi-
agent model to study the role of different agents in a manufacturing system (i.e., owners,
suppliers, top management, engineers, workers, and stockholders) in minimizing product
completion time. It is recommended to develop a dynamic model to investigate the impact
of selecting this research’s different alternatives (production strategies).
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