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Abstract: Recently, unmanned aerial vehicles (UAVs) have been used in several applications of
environmental modeling and land use inventories. At the same time, the computer vision-based
remote sensing image classification models are needed to monitor the modifications over time such
as vegetation, inland water, bare soil or human infrastructure regardless of spectral, spatial, temporal,
and radiometric resolutions. In this aspect, this paper proposes an ensemble of DL-based multimodal
land cover classification (EDL-MMLCC) models using remote sensing images. The EDL-MMLCC
technique aims to classify remote sensing images into the different cloud, shades, and land cover
classes. Primarily, median filtering-based preprocessing and data augmentation techniques take
place. In addition, an ensemble of DL models, namely VGG-19, Capsule Network (CapsNet), and
MobileNet, is used for feature extraction. In addition, the training process of the DL models can
be enhanced by the use of hosted cuckoo optimization (HCO) algorithm. Finally, the salp swarm
algorithm (SSA) with regularized extreme learning machine (RELM) classifier is applied for land
cover classification. The design of the HCO algorithm for hyperparameter optimization and SSA
for parameter tuning of the RELM model helps to increase the classification outcome to a maximum
level considerably. The proposed EDL-MMLCC technique is tested using an Amazon dataset from
the Kaggle repository. The experimental results pointed out the promising performance of the
EDL-MMLCC technique over the recent state of art approaches.

Keywords: unmanned aerial vehicles; remote sensing; deep learning; parameter tuning; planetscope
imagery; ensemble model

1. Introduction

Unmanned aerial vehicle (UAV) networks connect the gap among spaceborne, air-
borne, and ground-based remote sensing data. Its characteristics of lightweight and low
price enable affordable observations with very high spatial and temporal resolutions. The
developments in remote sensing technology and the resultant considerable developments
in the temporal, spatial, and spectral resolutions of remotely sensed data, as well as the
remarkable improvements in information and communication technologies (ICT) based
on data transmission, storing, management, and integration capabilities, are drastically
changing the way they observed the Earth [1]. The most important application of remote
sensing data is to observe the Earth, and most main concern in Earth monitoring is ob-
serving the changes in land cover. Detrimental modifications in land-use and land-cover
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(LULC) are the primary contributor to dramatic climate changes, terrestrial biodiversity
losses, and harms to the ecosystem [2]. Observing the gradual changes in the land cover
assist in avoiding and predicting hazardous events and natural disasters. However, this
observation is labor-intensive and very expensive, and it can be highly constrained to
first-world countries. The accessibility of higher resolution remote sensing data on a con-
tinuous temporal basis could be much more efficient to automatically extract land covers
and on-Earth objects and monitor and map their modifications.

Recently, LULC classification with remote sensing imagery plays a significant part
in several applications such as biological resource (habitat quality, wetlands, and frag-
mentation), agricultural practice (nutrient management, cropping patterns, riparian zone
buffers, and conservation easements), land use planning (incentives, growth trends, policy
regulations, and suburban sprawl), and forest management (stand-quality, health, resource
inventory, harvesting, and reforestation) [3]. Land use refers to the purposes the land
services, and land cover refers to the surface covers on the ground, either bare, soil veg-
etation, water, urban infrastructure, etc.; it does not determine the use of land, and that
might be distinct for lands with the similar cover types [4]. LULC assessment is much
needed in planning, sustaining, and monitoring the use of natural resources. In fact, LULC
classification directly affects water, atmospheric, and soil erosion, when it is not directly
related to global environmental challenges [5]. To this end, the remote sensing imagery
and its processing have helped in delivering advanced and largescale data on surface
conditions. For years, techniques mainly based on pixel or object analysis have been used
for LULC classification. In fact, different from the pixel-based method that categorizes the
pixel based on their spectral data, the object-based algorithm encloses semantic data, not in
a single-pixel but a group of pixels with the same features, like shape, color, texture, and
brightness. Both spatial and spectral resolution is used in this latter case for segmenting
and later categorize image features into useful objects [6]. From the resultant segment, a
homogeneous image object is extracted according to the local contrast. This homogeneous
object is later categorized into conventional classification methods like fuzzy classification
logic, nearest neighbor, and knowledge-based methods.

Deep learning (DL) demonstrates very promising changes [7], object detection, LULC
classifications, and scene classifications. A multilayer artificial convolutional neural net-
work (CNN) allows automatic extraction of higher-level features from a labeled image.
Using convolution kernels at multilevel functioning on upper-level feature map, the higher
level feature is hierarchically extracted by the network. The backpropagation approach
assists CNN alter its network parameter manually. The higher generalization capability of
CNN outstands another machine learning model and make CNN the more mature and
extensively employed deep learning frameworks. CNN-based land cover classification
always follows a patch-based strategy [8]. The patch-based approach employs a moving
window with a fixed size on each pixel to generate overlapping patches [9]. Then patches
are fed into a CNN, which is composed of two functional parts. The first part of the CNN
consists of pooling and multiple stacked convolution layers that are employed for feature
extraction. The second part is usually implemented by a stack of fully connected layers
with the SoftMax layer at an end to generate a probability distribution over different classes.

This paper proposes an ensemble of DL-based multimodal land cover classification
(EDL-MMLCC) models using PlanetScope imagery. The EDL-MMLCC technique involves
median filtering-based preprocessing and data augmentation. Moreover, an ensemble of
feature extraction models using VGG-19, Capsule Network (CapsNet), and MobileNet is
carried out. These three DL models are chosen due to faster training speed, fewer training
samples per time, and higher accuracy. Furthermore, the hyperparameter optimizer using
hosted cuckoo optimization (HCO) algorithm is derived. Lastly, the salp swarm algorithm
(SSA) with regularized extreme learning machine (RELM) classifier is applied for land
cover classification. These models are trained using an Amazon dataset from the Kaggle
repository, and the results are investigated under several aspects.
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2. Existing Land Cover Classification Models

Pan et al. [10] proposed a CNN-based multispectral LiDAR land cover classification
architecture and analyzed its optimum parameter for improving classification performance.
Initially, this method pre-processes the multispectral three-dimensional LiDAR data to
two-dimensional images. Then, CNN models are created using seven basic functional
layers, and its hyperparameters are widely optimized and discussed. Kwan et al. [11]
explored the efficiency of two CNN-based DL models for land cover classification by
means of five bands (RGB + NIR + LiDAR) and four bands (RGB + NIR), whereas this
constrained amount of image bands is increased by the EMAP method. Zhang et al. [12]
proposed a state-of-the-art MLCG-OCNN algorithm. A feature fusing OCNN, include
the object contour preserving mask approach using the supplement of object deformation
coefficients, is presented for precise object discrimination by simultaneously learning
higher-level features from geometric characteristics, object-level contextual information,
and independent spectral patterns. Next, pixel-level contextual guidance is employed for
additionally improving the per-object classification result.

In Rajendran et al. [13], a hybrid feature optimization model and DL classifiers are
presented for improving the performances of LULC classification, helps to forecast wildlife
habitat, haphazard elements, deteriorating environment quality, and so on. LULC clas-
sifications are measured by Eurosat, Sat 4and Sat 6 datasets. Afterward, the election of
remote sensing image, normalization and histogram equalization method is employed for
improving the quality of an image. Next, a hybrid optimization is achieved through the
use of the LGBPHS model, the HOG and Haralick texture feature, for extracting features
from the elected image. Then, a human group-based PSO method is used for selecting an
optimum feature, that advantages are ease of implementation and fast convergence rate.
Afterward, electing an optimum feature value, LSTM networks are used for classifying the
LULC class.

Chatterjee et al. [14] proposed an unsupervised learning method for clustering hybrid
polarimetric SAR image and dual-polarized SAR image with the deep structure. They
employ the feature extraction layer of the VGG16 models using the BN model, i.e., trained
by smaller patches acquired in the hybrid polarimetric SAR image. It employs an Adam,
an adaptive learning rate optimization algorithm and entropy-based loss function, to train.
Generally, the patches are divided into three kinds: double bounce, surface, and volume
determined by the reference to the SAR scattering features. Moreover, they categorize
volume to agricultural crop fields and dense forest regions. In Mboga et al. [15], a fully
convolution method is explored by taking into account the two network frameworks
with district approaches of using contextual data: one employed atrous convolution layer
without down-sampling, where the next network contains down-sampling and learned
up-sampling convolution layer (U-NET). The network is trained for detecting three fun-
damental types: buildings, low vegetation class, higher vegetation, and a mixed class of
bare land.

Moon et al. [16] measured the precision of land cover classification through NN
methods with higher resolution KOMPSAT-3 satellite imagery. Afterward attaining satellite
imagery of coastal regions nearer Gyeongju City, training data have been generated. Also,
the land cover has been categorized into DNN, SVM, and ANN methods for the three
components of vegetation, land, and water. Later, the precision of classification results
was quantitatively measured by an error matrix: the results with DNN models exhibited
an accuracy of 92.0%. Aspri et al. [17] considered a new multimodal DNN that depends
on the CNN structure and examine many methods for optimizing its performances while
training is performed on Apache Spark Clusters. They estimate the performances of distinct
frameworks through the metrics of processing power and network traffic, consider the case
of land cover classification from remote sensing observation.
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3. The Proposed Model

In this study, a new EDL-MMLCC technique is derived for UAV networks using
PlanetScope imagery. The EDL-MMLCC technique involves data preprocessing, data
augmentation, ensemble DL based feature extraction, and SSA-RELM based classification.
The HCO and SSA algorithms are derived to tune the parameters of the DL and RELM
models respectively. Figure 1 depicts the overall process of EDL-MMLCC model. The
working of these modules is elaborated in the following sections.
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3.1. Data Preprocessing and Augmentation

At the initial stage, the data preprocessing take place to improve the quality of the
image using the median filtering (MF) technique. It is defined as a nonlinear signal
processing model that is based on the current statistics. The inaccurate digital images
can be modified by median values of neighborhoods which are named as masks. The
pixel is graded for gray level, and median scores of a group have been saved to replace
the incorrect values. The MF results are defined as g(x, y) = med{ f (x− i, y− j), i, j ∈W},
in which f (x, y), g(x, y) represents the actual as well as final images correspondingly, W
defines the 2D mask: with the size of n× n such that 3× 3, 5× 5, and so on. The mask
may be of any shape like a cross, linear, circular, square, etc. As MF is a nonlinear filter, the
numerical examination is highly difficult for images with arbitrary noise [18]. When the
image has been assigned to noise below standard distribution, zero mean, noise variances
of MF would be defined by,

σ2
med =

1

4n f 2(n)
≈

σ2
i

n + π
2 − 1

·π
2

(1)

where σ2
i defines the input noise power, n denotes the size of MF, f (n) means the perfor-

mance of noise intensity. Followed by, the noise variance of average filtering is denoted by

σ2
0 =

1
n

σ2
i (2)

The comparison of (1) and (2) defines that the MF functions are based on two objectives:
noise distribution and a mask’s size. The MF performs the noise elimination, which is
considerable when compared to average filtering. Hence, for impulse noise, and narrow
pulse is distant, and when the pulse width is lower when compared to n/2, the MF is
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highly efficient. The function of MF is to maximize while the MF method is integrated with
the average filtering model. Next, the data augmentation process is carried out in three
levels, namely flipping and rotation.

3.2. Ensemble of DL Based Feature Extraction

Three DL models are passed into the ensemble learning process during the feature
extraction process to generate the final output.

3.2.1. VGG19 Model

The VGGNet is a DNN with a multi-layered function. The VGGNet is dependent upon
the CNN technique and has been implemented on ImageNet datasets. The VGG-19 has
been helpful because of its simplicity, as 3× 3 convolution layers have been attached on the
top for increasing depth levels. During the training stage, convolution layers are utilized
for the feature extraction and max-pooling layers connected to few convolution layers for
reducing the feature dimensional. During the primary convolution layer, 64 kernels (3× 3
filter size) are executed to feature extraction in the input image. FC layers are utilized
for preparing the feature vectors. Figure 2 showcases the framework of VGG-19 model.
The developed feature vector is more exposed to PCA as well as SVD for dimensional
decrease and the feature selective of image data to optimum classifier outcomes. Reducing
the extremely dimensionality data utilizing PCA as well as SVD is an important task [19].
The PCA and SVD are further helpful it can be nearer and numerically further stable
than other decrease approaches. Eventually, during the testing stage, 10-fold CV has been
executed for classifying the DR images dependent upon the softmax activation approach.
The efficiency of the presented VGG-19 based model is related to other feature extraction
frameworks containing AlexNet as well as SIFT. The AlextNet has been a multi-layered
feature extraction framework utilized from CNN. The SIFT has been a standard feature
extraction approach established by Mansour for detecting the local feature of the input
images from the domain of computer vision.

3.2.2. MobileNet Model

The MobileNet depends on a streamlined structure that employs depthwise separable
convolution followed by pointwise convolutions for building a lightweight DNN model.
The SSD MobileNet V2 architecture was employed in this study. The single-shot detector
(SSD) model’s aim is to forecast bounding box location and classify this box in a single
network. The SSD uses a modified VGG-16architecture pre-trained on the ImageNet as its
backbone, with further convolution feature layers with progressively decreasing size. VGG-
16 is a generally employed base feature extractor with sixteen layers of weight. ImageNet
is a huge visual dataset for visual object detection software research. The MobileNetV2
uses only a single convolution network applied to each channel of the input image and
slides the weighted sum to the following pixel. It includes two novel features, including
short connections between bottlenecks and linear bottlenecks between layers, compared
with MobileNetV1 [20]. The MobileNetV2 has two types of block, one with a stride of two
for downsizing and the other residual block with a stride of one.

3.2.3. CapsNet Model

CapsNets refers to an entirely new kind of DL architecture that tries to conquer the
limitations and drawbacks of CNN models, like losing valuable information and lacking
the precise concept of an entity at the time of max pooling. A standard CapsNet (Figure 3)
is shallower, with three layers: DigitCaps, Convld, and PrimaryCaps layers. The capsule-
based demonstration of a collection of hidden neurons, where probability, as well as the
property of the hidden feature, can be captured. In this instance, CapsNet was strong to
affine conversion and less training data. Additionally, CapsNets have resulted in certain
breakthroughs associated with spatial hierarchies among features. A capsule represents a
set of neurons [21]. The activity of neurons surrounded in a dynamic capsule represents
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the distinct features of a certain entity. Since the length of output vectors represent the
possibility of existence, an output capsule is calculated by non-linear squashing functions:

vj =
‖sj‖2

ε + ‖sj‖2

sj

‖sj‖
, (3)

where as vj represents the vector output of capsule j and sj denotes the overall input. The
non-linear squashing function is an activation function for ensuring that the short vector
gets shrunk to nearly zero length and the longer vector gets shrunk to a certain length
regarding ε.

sj = ∑
i

cijWijui. (4)Mathematics 2021, 9, x FOR PEER REVIEW 6 of 18 
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The overall inputs to a capsule sj is attained by multiplying the output ui of a capsule
using a weight matrix Wij, that represents a weighted amount over each forecasted vector
from the capsule in the below layers. Now, cij represents a coupling coefficients, i.e., defined
as the iterative dynamic routing procedure:

cij =
exp

(
bij
)

∑k exp (bik)
, (5)

where as bij & bik represents the log prior likelihoods among 2 coupled capsules. The whole
length of output vectors represents the forecasted likelihood. An individual margin loss Lk
per capsule, k is expressed as follows

Lk = Tkmax (0, m+ − ‖vk‖)
2
+ λ(1− Tk) max (0, ‖vk‖ −m−)2, (6)

In which Tk = 1, m+ = 0.9, and m− = 0.1 denotes three free variables by default. λ
enable down weighting of loss and help to ensure latter convergences.

3.2.4. Ensemble Process

The ensemble process attempts to increase the performance of the DL model for
the classification of cloud, shade, and land cover kinds. An ensemble model is used
with 3 models (that is MobileNet, VGG-19, and CapsNet) where all models are trained
to implement multilabel predictions of class. Ridge regression with the weight penalty
hyper-parameter set is used to one to integrate the scores from the three frameworks to a
last binary prediction of all the labels. The score from all the models are integrated into
ensemble score by resolving the ridge regression problems:

min
ul∈R3

|Ẑlnl − yl |2 + |ul |2 l = 1, . . . , 12 (7)

Now Ẑl is the N with three matrices that have the probability through three frame-
works for a label l. Afterward resolving u∗l , the vector of regression weight, the ensemble
score for label l is represented as Ẑln∗l A predictive threshold is established by enhancing F2
of all the labels with an arbitrary optimization [22]. Particularly, they employed an iterative
method in which proposals for novel thresholds are made from a standard distribution
using standard deviation equivalent to σ0·10−αt and center on the present optimal thresh-
old. Proposals are accepted when they result in a high for each label F2. Now α represents
decay parameters (fixed to 0.001), t indicates the number of iterations and σ0 denotes the
initial standard deviation (fixed to 0.25). In this case, arbitrary optimization was highly
helpful when compared to a gradient descent technique because of the non-differentiability
of F2 as a function of the predictive threshold.

3.3. Hyperparameter Optimization Using HCO Algorithm

For optimally selecting the hypermeters of the DL models, the HCO algorithm is
applied to it, improving the overall classification performance. The original COA is a
well-known optimization method since it is a stronger one. It is stimulated by the behavior
of a bird known as a cuckoo. These birds have the capacity of laying their eggs in the
nest of another species of bird. While employing this method, certain limitations have
been determined, and it was enhanced for handling different challenges like system cost
and availability, energy dispatch, job shop, cluster computing, and controller parameters.
In this study, the COA is enhanced to solve the systems reliability optimization using
heterogeneous components. In addition, it is knowns as hosted cuckoo optimization
algorithm (HO-COA). The possible solution is produced as nests, and the egg is laid in the
nest of 3 distinct species. The model is discussed in the following.

Step 1. Parameter initialization includes the input of maximal cuckoos’ generation
Ngen also, the number of nests M to be deliberated in the habitat.
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Step 2. Produce the nest.
The nest is produced by:

Nest1(r, n) = (r1, r2, . . . , rm, n1, n2, . . . , nm)
Nest2(r, n) = (r1, r2, . . . , rm, n1, n2, . . . , nm)

...
NestM(r, n) = (r1, r2, . . . , rm, n1, n2, . . . , nm)

(8)

where as Nest(n, r) denotes a group of possible solutions.
Step 3. The constraint is managed by the subsequent penalty functions

R̃s(r, n) = Rs(r, n) + ϕ1·Max {0, g1(r, n)−V}+ ϕ2·Max {0, g2(r, n)− C}+ ϕ3·Max {0, g3(r, n)−W} (9)

Step 4. The egg of the cuckoos is laid based on the original COA:

ELR = α× Number o f current cuckoo′s eggs
Total number o f eggs

× (Vhi −Vlow) (10)

where as ELR denotes the laying radius, α indicates an integer number, Vhi and Vlow
signifies the upper and lower bound of the parameters, correspondingly [23].

Step 5. The cuckoos’ egg is hosted through three distinct hosts and has distinct
likelihood. Thus, in the current study, the cuckoo’s egg has three distinct likelihoods to
effectively become mature, represented σ1, σ2 & σ3 [0%, 100%], named quality of the host.
This value is arbitrarily made at every generation and is an integer. Hence, the nest is
divided into three sets: M1, M2 & M3, whereas this value is arbitrary. The quality of host is
attributed by: 

M1 nests with σ1, where M1 ∈ {M}
M2 nests with σ2, where M2 ∈ {M−M1}
M3 nests with σ3, where M3 ∈ {M−M2 −M1}

(11)

Step 6. The optimal generation of cuckoos travel to another optimal solution habitat
would be presented in the upcoming generation to improve the solution search.

Step 7. Continue Steps 2 to 6 till the numbers of generations
(

Ngen
)

is attained.

3.4. Data Classification Using SSA-RELM Technique

The extracted feature vectors are provided as input to the RELM model to accomplish
the classification process. The SLFN models, like BP learning method, extensively employ
ML methods for the study in different areas. This method reduces the cost function to
retain the precision within a suitable range by searching the certain input weight and
hidden layer bias that increases computation cost. ELM is an efficient solution for SLFN.
The SLFN with L hidden nodes and an activation function g(x) is given below

YL(x) =
L

∑
i=1

βihi(x) = h(x)βi, (12)

where as β = [β1, . . . , β2]
T denotes an output weight matrix among the output and hidden

nodes. hi(x) represent the hidden node output. Different from SVM and other BP based
approaches, the parameter of the hidden layers like the input weight wi and hidden layer
bias bi do not have to be tuned and could be randomly generated beforehand the trained
samples are attained. To provided N training samples

{(
xj, tj

)}N
j=1, ELM resolve the

learning problems by minimalizing the error among tj & Yj:

‖H
(
w1, . . . , wÑ , b1, . . . , bÑ

)
β̂− T‖ = min

β
‖Hβ̂− T‖ (13)
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In which

H
(
w1, . . . , wÑ , b1, . . . , bÑ

)
=

 g(w1·x1 + b1) · · · g(wL·x1 + bL)
... · · ·

...
g(w1·xN + b1) · · · g(wL·xN + bL)

,β =

 βT
1
...

βT
L

, T =

 tT
1
...

tT
L

. (14)

Now, H is named the hidden layer output matrix. The output weight β could be
evaluated by

β = H+T, (15)

where as H+ denotes the Moore Penrose generalized inverse of matrix H with the advan-
tages of speed [24]. In order to increase the precision, ELM is integrated into the sparse
demonstration. This hybrid method performs classification in two basic stages. Initially, the
ELM network is trained by the convention-trained method. But, in the testing phase, the
reliability-based classifier is employed. In a reliability-based classifier, the ELM classifiers
are applied when the test data is correctly classified; otherwise, sparse demonstration-based
classifications are employed. In addition, a normalization term is included for improv-
ing generalization performances and create the solution more robust. Lastly, the output
weights of RELM is given below

β =

(
I
C
+ HT H

)−1
HTT. (16)

In order to tune the parameters of the RELM model, the SSA is employed. SSA is
determined as an arbitrary population-based approach. It is employed to accelerate the
swarming procedure of salp when foraging in the ocean. In the deep ocean, the salp
models, a swarm, called a salps chain. In this method, the dominant one is a salp facing
the chain, and the balance salp is called a follower. The salp locations could be stored in
two-dimensional matrices called as z. Furthermore, the food sources are represented as P
in search space as a swarm destination. The mathematical model for SSAs are given below:
The dominant salps would alter the position in the applications as follows:

z1
n =

{
Pn + r1((un − ln)r2 + ln) r3 ≥ 0
Pn − r1((un − ln)r2 + ln) r3 < 0

(17)

r1 = 2e−
(
−4a

A

)2
(18)

The coefficient r1 is an essential attribute in SSA since it offers better managements
amongst exploitation and exploration stages. In order to change the location of follower,
provided functions were used:

zm
n =

1
2

ce2 + v0e (19)

where as m ≥ 2, c =
ν f ′nal

ν0
where v = z−z0

e . Because of the time in optimization, the crises
amongst iterations are one, as well assume v0 = 0, i.e., defined as follows:

zmn =
1
2

(
zmn + zm−1

n

)
(20)

The summary of step-by-step definitions of this method is provided as follows:

1. Upload the variables of SSA as the amount of salps (S), number of iterations (A),
optimal salps location (Z∗) and optimum fitness values ( f (Z∗)).

2. Upload a population of S salp location arbitrarily.
3. Calculate the fitness of each salp.
4. Set number of iterations to zero.
5. Update r1.
6. For each salp,
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a. When m == 1, update the location of dominant salp using Equation (17).
b. Or else, update the location of followers’ salp using Equation (20).
c. Define the fitness of each salp.
d. Update Z∗ if there is a dominant solution.

7. Increase a to one.
8. Follow Steps 5 to 7 till a = A is met.
9. Give the best solution Z∗ and fitness values f (Z∗).

4. Experimental Validation

In this study, the experimental results of the EDL-MMLCC technique are validated
using a dataset from the Kaggle repository [25]. The dataset is gathered from the Amazon
rainforest and the Wet Tropics by Planet. It contains 40,479 image scenes of 256 × 256
pixels (i.e., 800 × 800 m) in size and has 17 possible image labels, clustered into a cloud
(clear, partly cloudy, cloudy, haze), land cover (forest, bare ground, road, water, agriculture,
habitation, cultivation). In this study, we have considered a set of 350 images under each
class apart from the haze class (which has 115 images). After the data augmentation process,
the total number of images under each class becomes 1050 images and 345 images exist.
Figures 4 and 5 illustrates the sample images of cloudy and partly cloudy conditions.
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The confusion matrix generated by the VGG-19 model on land cover classification is
given in Figure 6. The figure has shown that the VGG-19 model has classified 300 images
into Clear, 184 images into Haze, 484 images into Partly Cloudy, 507 images into Cloudy,
254 images into Agriculture, 398 images into Bare Ground, 287 images into Habitation, 335
images into Forest, and 214 images into Water.
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Table 1 provides the classification results of the VGG-19 model on the applied dataset.
The results demonstrated that the VGG-19 model has proficiently categorized the images
into distinct classes. For instance, the VGG-19 model has classified the images into ‘clear’
class with the PPV of 0.264, hit rate of 0.286, accuracy of 0.819, F-measure of 0.275, and MCC
of 0.171. In addition, the VGG-19 method has categorized the images into ‘partly cloudy’
class with the PPV of 0.404, hit rate of 0.461, accuracy of 0.854, F-measure of 0.431, and
MCC of 0.348. Further, the VGG-19 approach has ordered the images into ‘agriculture’ class
with the PPV of 0.503, hit rate of 0.242, accuracy of 0.880, F-measure of 0.327, and MCC of
0.292. Concurrently, the VGG-19 technique has classified the images into ‘habitation’ class
with the PPV of 0.341, hit rate of 0.273, accuracy of 0.849, F-measure of 0.303, and MCC of
0.222. Eventually, the VGG-19 methodology has categorized the images into ‘water’ class
with the PPV of 1.000, hit rate of 0.204, accuracy of 0.904, F-measure of 0.339, and MCC
of 0.429.

Table 1. Result analysis of VGG-19 model with different measures.

Methods PPV Hit Rate Accuracy F-Measure MCC

Clear 0.264 0.286 0.819 0.275 0.171

Haze 0.152 0.533 0.864 0.237 0.232

Partly cloudy 0.404 0.461 0.854 0.431 0.348

Cloudy 0.415 0.483 0.856 0.446 0.366

Agriculture 0.503 0.242 0.880 0.327 0.292

Bare Ground 0.441 0.379 0.868 0.408 0.335

Habitation 0.341 0.273 0.849 0.303 0.222

Forest 0.221 0.319 0.783 0.261 0.143

Water 1.000 0.204 0.904 0.339 0.429

Average 0.416 0.353 0.853 0.336 0.282
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The confusion matrix generated by the CapsNet approach on the classification of
land cover is provided in Figure 7. The figure demonstrated that the CapsNet manner has
classified 440 images into clear, 180 images into haze, 545 images into partly cloudy, 507
images into cloudy, 304 images into agriculture, 414 images into bare ground, 352 images
into habitation, 335 images into forest, and 214 images into water.
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Table 2 gives the classification outcomes of the CAPSNET manner on the applied
dataset. The results outperformed that the CapsNet method has proficiently categorized the
images into different classes. For instance, the CapsNet algorithm has ordered the images
into ‘clear’ class with the PPV of 0.345, hit rate of 0.419, accuracy of 0.835, F-measure of
0.378, and MCC of 0.286. Additionally, the CapsNet technique has classified the image into
‘partly cloudy’ class with the PPV of 0.439, hit rate of 0.519, accuracy of 0.862, F-measure
of 0.475, and MCC of 0.399. In the meantime, the CapsNet approach has categorized the
images into ‘agriculture’ class with the PPV of 0.521, hit rate of 0.290, accuracy of 0.883,
F-measure of 0.372, and MCC of 0.330. In line with, the CapsNet system has classified the
image into ‘habitation’ class with the PPV of 0.681, hit rate of 0.335, accuracy of 0.901, F-
measure of 0.449, and MCC of 0.433. At last, the CapsNet algorithm has ordered the images
into ‘water’ class with the PPV of 1.000, hit rate of 0.204, accuracy of 0.904, F-measure of
0.339, and MCC of 0.429.
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Table 2. Result analysis of CapsNet model with different measures.

Methods PPV Hit Rate Accuracy F-Measure MCC

Clear 0.345 0.419 0.835 0.378 0.286

Haze 0.143 0.522 0.858 0.225 0.219

Partly cloudy 0.439 0.519 0.862 0.475 0.399

Cloudy 0.415 0.483 0.856 0.446 0.366

Agriculture 0.521 0.290 0.883 0.372 0.330

Bare Ground 0.451 0.394 0.870 0.421 0.348

Habitation 0.681 0.335 0.901 0.449 0.433

Forest 0.221 0.319 0.783 0.261 0.143

Water 1.000 0.204 0.904 0.339 0.429

Average 0.468 0.387 0.861 0.374 0.328

The confusion matrix produced by the MobileNet technique on the classification of
land cover is provided in Figure 8. The figure depicted that the MobileNet manner has
classified 480 images into clear, 210 images into haze, 405 images into partly cloudy, 507
images into cloudy, 304 images into agriculture, 414 images into bare ground, 452 images
into habitation, 335 images into forest, and 194 images into water.
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Table 3 offers the classification outcomes of the MobileNet algorithm on the applied
dataset. The results showcased that the MobileNet method has proficiently categorized the
images into varying classes. For instance, the MobileNet approach has classified the images
into ‘clear’ class with the PPV of 0.359, hit rate of 0.457, accuracy of 0.837, F-measure of
0.402, and MCC of 0.313. Moreover, the MobileNet method has categorized the images into
‘partly cloudy’ class with the PPV of 0.404, hit rate of 0.386, accuracy of 0.858, F-measure
of 0.395, and MCC of 0.314. Meanwhile, the MobileNet algorithm has ordered the images
into ‘agriculture’ class with the PPV of 0.717, hit rate of 0.290, accuracy of 0.901, F-measure
of 0.413, and MCC of 0.415. Along with that, the MobileNet manner has categorized the
images into ‘habitation’ class with the PPV of 0.770, hit rate of 0.431, accuracy of 0.916,
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F-measure of 0.552, and MCC of 0.536. Lastly, the MobileNet methodology has classified
the image into ‘water’ class with the PPV of 1.000, hit rate of 0.185, accuracy of 0.902,
F-measure of 0.312, and MCC of 0.408.

Table 3. Result analysis of MobileNet model with different measures.

Methods PPV Hit Rate Accuracy F-Measure MCC

Clear 0.359 0.457 0.837 0.402 0.313

Haze 0.149 0.609 0.848 0.240 0.247

Partly cloudy 0.404 0.386 0.858 0.395 0.314

Cloudy 0.415 0.483 0.856 0.446 0.366

Agriculture 0.717 0.290 0.901 0.413 0.415

Bare Ground 0.391 0.394 0.854 0.393 0.309

Habitation 0.770 0.431 0.916 0.552 0.536

Forest 0.221 0.319 0.783 0.261 0.143

Water 1.000 0.185 0.902 0.312 0.408

Average 0.492 0.395 0.862 0.379 0.339

The confusion matrix created by the ensemble algorithm on the classification of land
cover is provided in Figure 9. The figure portrayed that the ensemble technique has
classified 700 images into clear, 293 images into haze, 710 images into partly cloudy, 763
images into cloudy, 750 images into agriculture, 719 images into bare ground, 647 images
into habitation, 738 images into forest, and 629 images into water.
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Table 4 offers the classification outcomes of the ensemble technique on the applied
dataset. The outcomes outperformed that the ensemble model has proficiently categorized
the images into several classes. For instance, the ensemble system has ordered the images
into ‘clear’ class with the PPV of 0.620, hit rate of 0.667, accuracy of 0.911, F-measure of
0.642, and MCC of 0.592. In addition, the ensemble algorithm has classified the image into
‘partly cloudy’ class with the PPV of 0.641, hit rate of 0.676, accuracy of 0.916, F-measure of
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0.658, and MCC of 0.610. Further, the ensemble method has categorized the images into
‘agriculture’ class with the PPV of 0.936, hit rate of 0.714, accuracy of 0.960, F-measure of
0.810, and MCC of 0.797. Concurrently, the ensemble methodology has classified the image
into ‘habitation’ class with the PPV of 0.683, hit rate of 0.616, accuracy of 0.920, F-measure
of 0.648, and MCC of 0.604. Eventually, the ensemble technique has categorized the images
into ‘water’ class with the PPV of 0.830, hit rate of 0.599, accuracy of 0.937, F-measure of
0.696, and MCC of 0.673.

Table 4. Result analysis of ensemble model with different measures.

Methods PPV Hit Rate Accuracy F-Measure MCC

Clear 0.620 0.667 0.911 0.642 0.592

Haze 0.364 0.849 0.936 0.510 0.531

Partly cloudy 0.641 0.676 0.916 0.658 0.610

Cloudy 0.765 0.727 0.940 0.746 0.712

Agriculture 0.936 0.714 0.960 0.810 0.797

Bare Ground 0.641 0.685 0.916 0.662 0.615

Habitation 0.683 0.616 0.920 0.648 0.604

Forest 0.685 0.703 0.925 0.694 0.651

Water 0.830 0.599 0.937 0.696 0.673

Average 0.685 0.693 0.929 0.674 0.643

Figure 10 shows the comparative ROC analysis of the EDL-MMLCC technique with
other DL models. The results demonstrated that the ensemble model has resulted to an
increased ROC of 98.3854 whereas the VGG-19, CapsNet, and MobileNet techniques have
attained a reduced ROC of 94.4794, 95.9203, and 97.7137 respectively.
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Finally, a brief comparative study of the EDL-MMLCC with existing techniques takes
place in Figure 11 [26]. The results portrayed that the XGBoost and AlexNet techniques
have resulted in lowering accuracy of 77.55% and 73.29% respectively. In addition, the
ResNet and DenseNet models have obtained slightly improved outcomes with the accuracy
of 79.13% and 79.55%, respectively. Eventually, the DeepLab and FCN techniques have
accomplished near-optimal outcomes with an accuracy of 80.48%. Though the ensemble
model has resulted in a competitive accuracy of 82%, the proposed EDL-MMLCC technique
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has accomplished superior performance with an accuracy of 92.90%. By looking into the
above mentioned tables and figures, it can be evident that the EDL-MMLCC manner has
resulted in an effective land cover classification tool using remote sensing images.
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5. Conclusions

In this study, a new EDL-MMLCC technique is derived for UAV networks using
PlanetScope imagery. The proposed EDL-MMLCC technique has the ability to effectually
classify different classes of clouds, shades, and land cover. Besides, an ensemble of DL
models with hyperparameter optimization processes takes place for feature extraction.
Meanwhile, the SSA-RELM technique is applied for the classification process. The experi-
mental validation of the proposed EDL-MMLCC technique is performed using the Amazon
dataset from the Kaggle repository. The simulation results reported the supremacy of
the proposed EDL-MMLCC technique over the recent state of art approaches. Therefore,
the proposed EDL-MMLCC technique can be utilized as an effective tool to classify the
land cover from remote sensing images. In future, the enhancements of DL models can be
performed for improving the overall classification performance, and the proposed model
can be employed on HSI classification.
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